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Abstract 
This research explores machine learning methods for the 
development of computer models that use gene expression 
data to distinguish between tumor and non-tumor, between 
metastatic and non-metastatic, and between histological 
subtypes of lung cancer. A second goal is to identify small 
sets of gene predictors and study their properties in terms 
of stability, size, and relation to lung cancer. We apply four 
classifier and two gene selection algorithms to a 12,600 
oligonucleotide array dataset from 203 patients and normal 
human subjects. The resulting models exhibit excellent 
classification performance. Gene selection methods reduce 
drastically the genes necessary for classification. Selected 
genes are very different among gene selection methods, 
however. A statistical method for characterizing the causal 
relevance of selected genes is introduced and applied. 

Introduction and Problem Statement   

Lung cancer is the third most common cancer in the 
United States yet causes more deaths than breast, colon 
and prostate cancer combined (Parker et al. 1996). In spite 
of recent advances in treatment, approximately 90% of the 
estimated 170,000 patients diagnosed with lung cancer in 
2002 are expected to eventually die of their disease. Major 
goals of lung cancer research is to understand the 
molecular basis of disease, to offer patients with better 
early diagnostic and therapeutic tools, and to individualize 
therapeutics based on molecular determinants of the 
tumors.  The present research addresses three aims related 
to creating clinically and biologically useful molecular 
models of lung cancer using gene expression data:  (a) 
Apply supervised classification methods to construct 
computational models that distinguish between: (i) 
Cancerous vs Normal Cells; (ii) Metastatic vs Non-
Metastatic cells; and (iii) Adenocarcinomas vs Squamous 
carcinomas. (b) Apply feature selection methods to reduce 
the number of gene markers such that small sets of genes 
can distinguish among the different states (and ideally 
reveal important genes in the pathophysiology of lung 
cancer).  (c) Compare the performance of the machine 
learning (classifier and feature selection) methods 
employed in these dataset and tasks.  
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Data and Methods 

Data. We analyzed the data of Bhattacharjee et al., which 
is a set of 12,600 gene expression measurements 
(Affymetrix oligonucleotide arrays) per patient from 203 
patients and normal subjects. The original study explored 
identification of new molecular subtypes and their 
association to survival. Hence the experiments presented 
here do not replicate or overlap with those of 
(Bhattacharjee et al. 2001). 
Classifiers. In our experiments we used linear and 
polynomial-kernel Support Vector Machines (LSVM, and 
PSVM respectively) (Scholkopf et al. 1999), K-Nearest 
Neighbors (KNN) (Duda et al. 2001), and feed-forward 
Neural Networks (NNs) (Hagan et al. 1996). For SVMs 
we used the LibSVM base implementation (Chang et al.), 
with C chosen from the set: {1e-14, 1e-3, 0.1, 1, 10, 100, 
1000} and degree from the set {2, 3, 4}. For KNN, we 
chose k from the range [1,…,number_of_variables] using 
our own implementation of the algorithm. For NNs we 
used the Matlab Neural Network Toolbox (Demuth et al. 
2001) with 1 hidden layer, number of units chosen 
(heuristically) from the set {2, 3, 5, 8, 10, 30, 50}, 
variable learning rate back propagation, performance 
goal=1e-8 (i.e., an arbitrary value very close to zero), a 
fixed momentum of 0.001, and number of epochs chosen 
from the range [100,…,10000]. The number of epochs in 
particular was optimised via special scripts with nested 
cross-validation during training such that training would 
stop when the error in an independent validation set would 
start increasing. To avoid overfitting, either in the sense of 
optimising parameters for classifiers, or in the sense of 
estimating final performance of the best classifier/gene set 
found (Duda et al. 2001) a nested cross-validation design 
was employed. In this design, the outer layer of cross-
validation estimates the performance of the optimised 
classifiers while the inner layer chooses the best parameter 
configuration for each classifier). For the two tasks 
(adenocarcinoma-squamous, and normal-cancer) we used 
5-fold cross-validation while for the metastatic-
nonmetastatic task we used 7-fold cross-validation (since 
we had only 7 metastatic cases in the sample). To ensure 
optimal use of the available sample, we required that data 
splits were balanced (i.e., instances with the rarer of the 
two categories of each target would appear in the same 
proportion in each random data split).   
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Feature Selection. The feature (or variable) selection 
problem can be stated as follows: given a set of predictors 
(“features”) V and a target variable T, find a minimum 
subset F of V that achieves maximum classification 
performance of T (relative to a dataset, task, and a set of 
classifier-inducing algorithms). Feature selection is 
pursued for a number of reasons: for many practical 
classifiers it may improve performance; a classification 
algorithm may not scale up to the size of the full feature 
set either in sample or time; feature selection may allow 
researchers to better understand the domain; it may be 
cheaper to collect a reduced set of predictors; and, finally, 
it may be safer to collect a reduced set of predictors 
(Tsamardinos and Aliferis 2003). Feature selection 
methods are typically of the wrapper or the filter variety. 
Wrapper algorithms perform a heuristic search in the 
space of all possible feature subsets and evaluate each 
visited state by applying the classifier for which they 
intend to optimise the feature subset. Common examples 
of heuristic search are hill climbing (forward, backward, 
and forward-backward), simulated annealing, and Genetic 
Algorithms. The second class of feature selection 
algorithms is filtering. Filter approaches select features on 
the basis of statistical properties of their joint distribution 
with the target variable. We used two such methods: 
(a) Recursive Feature Elimination (RFE). RFE builds on 
SVM classification. The basic procedure can be 
summarized as follows (Guyon et al. 2002):  

1. Build a linear Support Vector Machine 
classifier using all V features 
2. Compute weights of all features and choose 
the first |V|/2 features (sorted by weight in 
decreasing order) 
3. Repeat steps #1 and #2 until one feature is left 
4.Choose the feature subset that gives the best 
performance 
5. Optional: Give the best feature set to other 
classifiers of choice. 

RFE was employed using the parameters employed in 
(Guyon et al. 2002). 

(b) Univariate Association Filtering (UAF). UAF 
examines the association of each individual predictor 
feature (gene) to the target variable. The procedure is 
common in applied classical statistics (Tabachnick et al. 
1989) and can be summarized as follows: 
     1.   Order all predictors according to strength of  
      pair-wise (i.e., univariate) association with target 
     2.   Choose the first k predictors and feed them to  
      the classifier 

We note that various measures of association may be used. 
In our experiments we use Fisher Criterion Scoring, since 
previous research has shown that this is an appropriate 
measure for gene expression data (Furey et al. 2000). In 
practice k is often chosen arbitrarily based on the 
limitations of some classifier relative to the available 
distribution and sample, or can be optimised via cross-
validation (our chosen approach). We used our own 
implementations of RFE and UAF. 
Performance Evaluation. In all reported experiments we 
used the area under the Receiver Operator Characteristic 
(ROC) curve (AUC) to evaluate the quality of the 
produced models (Provost, Fawcett and Kohavi 1998).  
Unlike accuracy (i.e., proportion of correct classifications) 
this metric is independent of the distribution of classes. It 
is also independent of the misclassification cost function. 
Since in the lung cancer domain such cost functions are 
not generally agreed upon, we chose to use the AUC 
metric. We note that by emphasizing robustness AUC also 
captures more the intrinsic quality of what has been 
learned (or is learnable) in the domain and in that sense 
can be considered more useful for biomedical discovery. 
We use our own Matlab implementation of computation of 
AUC using the trapezoidal rule (DeLong et al. 1998). 
Statistical comparisons among AUCs were performed 
using a paired Wilcoxon rank sum test (Pagano et al. 
2000). 

Results 

Classification Performance. Table 1 shows the average 
cross-validated AUC performance of models built using 
all genes as well as genes selected by the RFE and UAF 

Cancer vs normal 
Adenocarcinomas vs squamous 

carcinomas 
Metastatic vs non-metastatic 

adenocarcinomas 
 

classifiers 
 

RFE UAF All 
Features 

RFE UAF All 
Features 

RFE  
 

UAF All 
Features 

LSVM 97.03% 99.26% 99.64% 98.57% 99.32% 98.98% 96.43% 95.63% 96.83% 

PSVM 97.48% 99.26% 99.64% 98.57% 98.70% 99.07% 97.62% 96.43% 96.33% 

KNN 87.83% 97.33% 98.11% 91.49% 95.57% 97.59% 92.46% 89.29% 92.56% 

NN 97.57% 99.80% N/A 98.70% 99.63% N/A 96.83% 86.90% N/A 
Averages 

over 
classifier 

 
94.97% 

 
 

98.91% 
 
 

99.13% 
 
 

 
96.83% 

 
 

98.30% 
 
 

98.55% 
 
 

 
95.84% 

 
 

92.06% 
 
 

95.24% 
 
 

Table 1. Classification Performance Of All Classifier/Gene Selection Method Employed 
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methods. We see for example that UAF in combination 
with NNs gives the best-performing model (with almost 
perfect classification performance) in two out of three 
tasks and that KNN exhibits poorer performance 
compared to the other classifiers. The UAF method is the 
most robust across all classifier-inducing algorithms tested 
for two of three classification tasks. Boldface denotes best 
values such that non-bold fonts are statistically 
significantly different from the best values for each task at 
the 5% significance level. Note that NNs could not be run 
in reasonable time using the full set of genes. 
Gene Selection Analysis. In Table 2 we show the 
numbers of genes selected by each method for each 
classification task. We note that these genes were selected 
by running the methods on all available sample after 
(cross-validated) analyses of Table 1 were completed. 
This contrasts parsimony with classification performance. 
RFE produces the most parsimonious gene marker sets. In 
boldface we denote the set that gives the best classifier for 
each task. Table 3 examines the relative overlap of 
selected genes among the gene selection methods for each 
classification task. As can be seen, the two methods 
contribute several additional genes with respect to each 
other (i.e., neither is redundant). Clearly the two gene 
selection methods exhibit a different inductive bias (i.e., a 
preference criterion for selected genes). Characterizing 
this inductive bias is very important since it effectively 

answers the question “what is the biological meaning that 
this gene was selected by method X?” Since we are 
fundamentally interested in causal discovery of gene-gene 
interactions in this domain, and as a step toward such an 
understanding, we apply the following analysis: we 
measure the number of genes in the output of RFE that 
become conditionally independent from the target when 
conditioning on some subset of genes in the output  of 
UAF. We call this criterion “Relative Conditional 
Blocking” (RCB). This criterion captures aspects of the 
causal bias of each method. The rationale is the 
following: Under broad conditions (Spirtes, Glymour, 
Scheines 2000) if variable X is causing (or is caused by) 
the target directly, there cannot be a non-direct cause or 
effect variable Y that can render X independent of the 
target once we condition on Y. Relative conditional 
blocking measures therefore how close in a causal 
“directness” sense is the output of RFE to each of the 
three classification targets compared to the output of UAF 
(so that the genes that block other genes are causally 
closer to the target than the blocked genes). Table 4 shows 
the relative conditional blocking of UAF, and RFE for all 
classification tasks. We see, for example, that for 31.24% 
of genes selected by UAF for classification of 
Adenocarcinomas vs Squamous carcinomas, that there is 
at least one subset of genes selected by RFE that makes 
the association of the UAF-selected gene to the target 

Number of features discovered  
 

Feature Selection Method 
Cancer vs normal 

Adenocarcinomas vs 
squamous carcinomas 

Metastatic vs non-metastatic 
adenocarcinomas 

RFE 6 12 6 
UAF 100 500 500 

Table 2. Parsimony of Gene Marker Sets (In Bold: Better-Performing Models) 

 
Cancer 

 vs normal 

Adenocarcinomas vs squamous 
carcinomas 

Metastatic vs non-metastatic 
adenocarcinomas 

Contributed by method on the 
left compared with method on 

the right 
RFE UAF RFE UAF RFE UAF 

RFE 0 2  0 5 0 2 

UAF 96 0 493 
 

0 496 0 
        Table 3. Relative Overlap of Genes Between the Gene Selection Methods For Each Task 

 
Cancer  

vs normal 
Adenocarcinomas vs squamous 

carcinomas 
Metastatic vs non-metastatic 

adenocarcinomas 

Percentage of genes from 
method on the left eliminated 

by genes from methods on 
the right 

RFE UAF RFE UAF RFE UAF 

RFE  100.00%   100.00%   100.00% 

UAF 0.00%   31.24%   7.46%   

p-value 0.001 <0.001 <0.001 
Table 4. Relative Conditional Blocking 
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concept “Adenocarcinoma vs Squamous carcinoma”, 
vanish.  
 In order to test whether the observed relative blocking 
ratio (of 31.24% over 100% in the example) can be due to 
random chance, we perform a permutation test (Noreen 
1989) as follows: we simulate 1,000 random pairs of 
genes with the first set comprising of j randomly selected 
genes and the second set of i randomly selected genes 
from the union of genes outputted by the two methods for 
a specific task such that j is the number selected by RFE 
and i is the number of genes selected by UAF for the 
examined task. This amounts to a null hypothesis that the 
two gene selection methods select genes from the same 
(population of) genes but in different numbers. Then we 
compute the relative conditional blocking ratio for each 
random set pair. We derive the empirical distribution of 
the relative conditional blocking ratio for all 1,000 such 

randomly selected gene set pairs and examine the 
probability that the expected ratio under the hypothesis of 
randomly selected sets is equal or larger to the observed 
one. The resulting p-values are shown in the last row of 
Table 4. All observed differences in relative conditional 
blocking ratios are therefore non-random. A standard 
cautionary notice with such conditional (i.e., as opposed 
to unconditional) statistical tests (Agresti 1990) is that the 
results are meaningful only in the context of the specific 
algorithm’s output (i.e., it does not automatically 
generalize to any output of these algorithms). 
Furthermore, the interpretation of the differences must 
take into account the differences in the number of selected 
genes. In the example of Adenocarcinoma vs Squamous 
carcinoma classification used previously, for every 
variable X output by RFE there is a subset of the output of 
UAF that is causally closer to the target than X.  
 Another important consideration in feature selection is 
stability, that is, how robust the selected genes are within 
some method from one data split to another (in cross-
validation) and from task to task. Genes that are highly 

stable across tasks and data splits are less likely to be 
selected due to sampling variance. Clearly, methods that 
produce more stable gene sets for a fixed sample size have 
an advantage over unstable methods and are more likely to 
point to valuable gene candidates for subsequent 
experimental research. Table 5 shows the stability of RFE 
and UAF measured by the following metric: for each one 
of the two gene selection methods we take the union of all 
genes selected in some cross-validation split. Then we 
examine the proportion of genes selected at least 1,2,…,n 
times (where n is the total number of splits for a task, i.e., 
5 or 7).  We then compare the two distributions using a G2 
statistic test for independence (Agresti 1990). For 
example, we see that UAF is more stable than RFE for the 
metastatic-nonmetastatic classification model since the 
distribution of multiple occurrences of genes selected by 
UAF is shifted to higher frequency values relative to RFE 

and the differences between the distributions of 
corresponding proportions are statistically significant at 
the 5% level. In the other two tasks the two methods 
appear to be equally stable. The lists of genes selected by 
each method are available to a web supplement to this 
paper at:  
http://discover1.mc.vanderbilt.edu/discover/public/  
lungcancerFlairs2003/ 

Discussion 

Our experimental results support the hypothesis that gene 
expression data combined with powerful learning 
algorithms can lead to excellent diagnostic models of lung 
cancer types even with very modest sample sizes and with 
very low sample-to-feature ratios. These models can 
distinguish almost perfectly between cancer and normal 
cells, between squamous carcinomas and 
adenocarcinomas and between metastatic and non-
metastatic adenocarcinomas, all clinically and biologically 
important states. We found that NNs were not practical for 
use with all gene predictors but had excellent performance 

 
Cancer vs normal 

Adenocarcinomas vs 
squamous carcinomas 

Metastatic vs non-metastatic 
adenocarcinomas 

Proportion of selected genes RFE UAF RFE UAF RFE UAF 

cardinalities of selected 
feature sets per data split 

 
12, 6, 6, 3, 6 

100, 1000, 25, 
100, 25 

24, 49, 6, 12, 
6 

25, 25, 100, 
1000, 500 

12, 3, 6, 6, 6, 
24, 3 

 

500, 1000, 
500, 500, 500, 

500, 100 

Frequency=1 23 69.70% 1000 79.87% 71 70.30% 1095 64.07% 37 61.67% 1656 38.76% 

Frequency=2 7 21.21% 119 9.50% 19 18.81% 472 27.62% 8 13.33% 769 18.00% 

Frequency=3 2 6.06% 86 6.87% 8 7.92% 96 5.62% 5 8.33% 610 14.28% 

Frequency=4 1 3.03% 33 2.64% 3 2.97% 33 1.93% 4 6.67% 504 11.80% 

Frequency=5 0 0.00% 14 1.12% 0 0.00% 13 0.76% 4 6.67% 411 9.62% 

Frequency=6 -  -  -  -  1 1.67% 255 5.97% 

Frequency=7 -  -  -  -  1 1.67% 67 1.57% 

p-value 0.255 0.243 0.031 
Table 5. Relative and Absolute Stability of Gene Selection Methods 
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with selected gene sets. KNN, on the other hand, exhibited 
consistently poorer performance for all classification tasks 
relative to SVM and NN classifiers irrespective of gene 
selection. Since gene selection methods can significantly 
reduce the number of necessary predictors, this leads to 
the expectation that in the future, the delay and cost for 
obtaining molecular-based diagnostic test results will be 
much lower than current genome-wide arraying for the 
studied (and similar) tasks. An important finding is that 
the selected genes are different among the gene selection 
methods despite the fact that both gene selection methods 
produce high-quality diagnostic models with significant 
reduction in predictor numbers (with RFE selecting genes 
sets that are very parsimonious compared to UAF).  
 In the array used in our analyses 10% of 
oligonucleotides have the same GenBank gene accession 
number (i.e., corresponding to the same gene or variants, 
such as splice variants, mutations and polymorphisms). In 
the reported analyses we treated unique oligonucleotides 
as unique genes. In additional experiments (not reported 
here) in which oligonucleotides with same GenBank 
accession numbers were replaced by their median we 
verified that: (a) classifier performance was the same as 
reported here; (b) RFE is more parsimonious than UAF; 
and (c) UAF blocks higher percentage of RFE-selected 
genes. Hence our conclusions are robust to these two 
possible treatments of oligonucleotides as they relate to 
unique genes.  
 In general, since selected genetic markers contain the 
necessary “expression signatures” of important biological 
states (i.e., cancer, metastasis, etc.) they may provide 
guidance in experimental investigation of the pathogenesis 
of lung cancer. Researchers need to interpret results in the 
context of the inductive biases of each gene selection 
method before using these results to design expensive and 
labor-intensive experiments, however.  To facilitate this 
endeavor we introduced a novel method (Relative 
Conditional Blocking - RCB) for characterizing the 
relative causal bias of two feature selection methods. 
Applied to our data RCB suggests that UAF provides a set 
of genes that appear to be causally closer to the predicted 
variables than support vector methods.  The validity of 
this hypothesis needs be verified with experimental work 
with cell lines or model organisms; however it does 
provide a valuable starting point for experimental 
exploration.  
 There are many possible extensions to the basic RCB  
method presented here. For example, to control for 
differences in sizes of algorithm outputs a possible 
approach is to compare the two algorithms by comparing 
their RCBs relative to random subsets of genes of size 
equal to the output size of each algorithm separately. We 
are in the process of extending the RCB method and 
systematically studying its properties using synthetic data 
under different conditions and null hypothesis types. We 
are also exploring algorithms in which RCB is 
encapsulated as a stand-alone gene selection and causal 
hypothesis generation method, returning a Markov 

Boundary or direct causal neighbourhood of the target 
variable (for preliminary results, see Tsamardinos Aliferis, 
and Statnikov 2003b). 
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