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Abstract

In this article, we compare decision trees (DT) and sup-
port vector machines (SVM) in classifying gene expres-
sions. With the explosion of genome research, tremen-
dous amount of data have been made available and a
deep insight study becomes demanding. Among various
kinds of gene analysis approaches being developed, se-
quence based gene expression classification shows the
importance due to its ability to identify existence of
some specific gene pieces. In this article, we focus on
two major categories of classification methods, namely
decision trees and support vector machines. By compar-
ing various versions of decision tree algorithms, SVMs,
and a particular SVM that integrates structural informa-
tion of the gene sequence, it is shown that the structural
information does help in achieving better performance
with respect to the classification accuracy.

Introduction
A gene is a functional unit along the DNA of a chro-
mosome. Nucleotide sequencing and other physical stud-
ies have shown that between genes there are sequences of
DNA, where functions are mostly unknown. Therefore,
classifying gene sequences is fundamental in gene expres-
sion analysis. (Mount 2001) The strong sequence simi-
larity often implies functional and structural relationships.
In particular, sequence classification algorithms can be ap-
plied to problems such as determining whether a DNA se-
quence is part of a gene-coding or a non-coding region,
identifying the introns or exons of a eukaryotic gene se-
quence, predicting the secondary structure of a protein, and
assigning a protein sequence to a specific protein family.
Various machine learning techniques have been applied to
gene expression classification,(Deshpande & Karypis 2002;
Kuramochi & Karypis 2001; Lesh, Zaki, & Ogihara 1999;
Ohler et al. 1999; Yuan et al. 2002) among which decision
tree algorithms and support vector machines are widely rec-
ognized as the most effective and efficient approaches deal-
ing with that huge amount of data. (Kuramochi & Karypis
2001; Wang et al. 1999) However, few if any studies have
been conducted that compare their performance over such
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particular kind of data. In addition, whether the characteris-
tics of the gene data can be employed to improve the classifi-
cation performance remains an open question. In this paper,
we compare the performance of various kinds of decision
tree algorithms, namely traditional decision trees (such as
C4.5), bagged (bagging) decision trees, and boosted (boost-
ing) decision trees, and SVM classifier with respect to con-
ditions such as varying training set size and different num-
ber of possible classes. The experiments show that these
methods generate good classifiers and handle large amount
of data very well. Although decision tree algorithms may
suffer from over fitting, both bagged (bagging) and boosted
(boosting) decision trees perform as well as SVMs and even
better in some cases. However, due to the characteristics of
gene data, a SVM Bank is created to integrate the structural
knowledge of a gene into the classifier. The classification is
determined by the weighted majority vote of SVMs from the
bank and the improvement on performance is clearly shown
by the experiments. The rest of this article is organized as
follows. A brief review on decision trees and SVMs, as well
as ensemble techniques such as bagging and boosting are
given in the next section. A further extension of SVMs inte-
grating gene structural characteristics is also described. The
experiments are carried out with widely used gene data sets
and followed by discussion and conclusion.

Background

Decision Tree

Decision tree learning is a method for approximating
discrete-valued target functions, in which the learned func-
tion is represented by a decision tree. (Mitchell 1997) De-
cision trees classify instances by sorting them down the tree
from the root to some leaf node, which provides the classi-
fication of the instance. Each node in the tree specifies the
test of some attribute of the instance, and each branch de-
scending from that node corresponds to one of the possible
values for this attribute. An instance is classified by starting
at the root node of the tree, testing the attribute specified by
this node, then moving down the tree branch corresponding
to the value of the attribute in the given example. This pro-
cess is then repeated for the sub-tree rooted at the new node.
Some widely used algorithms include ID3, ASSISTANT,
and C4.5. (Quinlan 1986; 1993) Most algorithms that have
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been developed for learning decision trees are variations on
a core algorithm that employs a top-down and greedy search
through the space of possible decision trees. The central is-
sue is selecting which attribute to test at each node in the
tree. This is determined based on measures, such as in-
formation gain, that evaluate how well a single node clas-
sifies the training examples. The Bagging algorithm votes
classifiers built from different bootstrap samples, which are
generated by uniformly sampling N replacement instances
from the original training set (of size N). (Breiman 1994;
1996) The new training set has the same size as that of the
original training set, but is more randomized in that some
instances may not appeared while others appear more than
once. For trials t, t = {1, 2, . . . , T}, bootstrap sample sets
D1, D2, . . . , DT are generated and a classifier Ci is built by
a learning system for each bootstrap sample set Di. The fi-
nal classifier C∗ is built from C1, C2, . . . , CT by majority
vote, so that the result classification is the class that output
most often by the sub-classifiers. Boosting is another ensem-
ble technique to improve the performance of a weak learning
system. A weak learning system is a system whose predic-
tion accuracy is at least 50It is proven that the error rate of
the boosted classifier C∗ on the given examples approaches
zero exponentially as number of trials T increases, and the
error rate of trials is less than 0.5. (Freund & Schapire 1999)
Therefore, a succession of weak classifiers are boosted to
a strong classifier, which is usually more accurate than the
best weak classifier is on the given training data.

Support Vector Machine
Support vector machines are introduced to solve two-class
pattern recognition problems using the Structural Risk Min-
imization principle. (Vapnik 1995; 1998; Burges 1998;
Cristianini & Shawe-Taylor 2000; Scholkopf, Burges, &
Smola 1999) Given a training set in a vector space, SVMs
find the best decision hyperplane that separates two classes.
The quality of a decision hyperplane is determined by the
distance (i.e. margin) between two hyperplanes defined by
support vectors. The best decision hyperplane is the one
that maximizes this margin. Figure 1 shows these concepts
in two-dimensional feature space. By defining the hyper-
plane in this fashion, SVM is able to generalize to unseen
instances quite effectively. SVM extends its applicability on
the linearly non-separable data sets by either using soft mar-
gin hyperplanes, or by mapping the original data vectors into
a higher dimensional space in which the data points are lin-
early separable. The mapping to higher dimensional spaces
is done using appropriate kernels such as Gaussian kernel
and polynomial kernel.

Integrating Gene Structural Information
Gene Representation
A gene can be defined as a region of the chromosomal
DNA that can be transcribed into a functional RNA during
development. DNA is constructed with four nitrogenous
bases: adenine, guanine, cytosine, and thymine, which are
referred by A, G, C, and T respectively. In turn, the gene
data are most commonly arranged in sequence as illustrated

Figure 1: Classification with SVMs.

below.

. . . GAAGTCCAGTTGCTACAGGCCCTGGAG
ACTGACATGCCAAAGTACCATCCGAAGGG
AGCCCCGTGCTCGGCAGCCCCGATGCTCT
AAACTAGGAAGTGGCAGCATGTCAGAC. . .

From computer science point of view, to analyze gene
data, it is necessary to convert from symbolic representation
to numerical representation, especially when applying
methods such as neural networks and SVMs. Obviously,
there are infinite ways of mappings. The question is
will simple ways, such as assigning each nucleotide a
two-digit number, make classification difference from using
a complicated coding strategy? To study the potential
differences, we compare the following two coding schemes
with Hamming distance.

Scheme 1: A = 00, C = 01, G = 10, T = 11
Scheme 2: A = 0001, C = 0010, G = 0100, T = 1000
Sequences: {A, A, G, T, C, C, A, G, T, T, G, C}

{A, G, T, A, C, C, A, T, T, C, G, G}
The Hamming distance using the first coding scheme is

8, while it is 12 using the second coding scheme. It is clear
that the coding scheme affects the value of similarity mea-
surement.

Integrating Gene Structural Information into SVM

Given a DNA sequence, since there is no a priori informa-
tion on how each nucleotide relates to each other, it is im-
portant to preserve the sequential structure in it. From above
discussion, it is obvious that different coding schemes affect
the similarity measure, thus may affect the learned classifier.
This requires that when translating symbols to numerical
representation, no bias should be introduced by these cod-
ing schemes. The best choice is to treat these nucleotides
is to consider these bases as equally correlated individual.
It is suggested that the ideal mapping should be as shown
in Figure 2. (Xu & Buckles 2002) However, with any set
of values, it is infeasible to guarantee an unbiased assign-
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ment. To approach this ideal model, we take into account all
the possible encoding schemes and build a SVM bank. The
four nucleotides, A, C, G, T, formed a base so that a gene
sequence can be fully represented by their combinations.
Thus, for gene sequence analysis, a maximum of 24 cod-
ing combinations are necessary, as shown in Table 1. These
24 coding schemes can be used for any application that can
be fully described by four characteristics and their combina-
tions, which could be a very large number. It is noted that
even though coding combination may increase exponentially
when the underline base increases, there are several ways to
simplify the coding schemes.

Figure 2: The ideal mapping structure. Keep symbols
equally apart.

Table 1: Possible coding combinations, assuming number
basis is (00 01 10 11).

Nuc. A G C T Nuc. A G C T
1 00 01 10 11 13 00 01 11 10
2 00 10 01 11 14 00 10 11 01
3 00 11 01 10 15 00 11 10 01
4 01 00 10 11 16 01 00 11 10
5 01 10 00 01 17 01 10 01 00
6 01 11 00 10 18 01 11 10 00
7 10 00 01 11 19 10 00 11 01
8 10 01 00 11 20 10 01 11 00
9 10 11 00 01 21 10 11 01 00

10 11 00 01 10 22 11 00 10 01
11 11 01 00 10 23 11 01 10 00
12 11 10 00 01 24 11 10 01 00

Using different coding schemes, 24 support vector ma-
chines are built from training data, S = {s1, s2, . . . , s24},
which can be considered as a SVM Bank designed for gene
expression analysis. To predict an unlabelled sequence,
each SVM, si (i = {1, 2, . . . , 24}) is applied and gives its
classification result pi. The final judgment is determined by
the majority vote on all predictions. In addition, weights,
W = {w1, w2, . . . , w24}, are assigned to SVMs according
to their accuracy during prediction. Initially, an equal
weight is assigned to each SVM (Here, wi = 1 is used in
our experiments.) Each weight is dynamically updated with

adjustment δ based on the correctness of each prediction.
Let the final classification on a unlabeled instance be p∗.

wi = wi + φ(si) × δ

and φ(si) =
{

1 pi = p∗

−1 otherwise
For reference purpose, we call such SVM as Gene Structural
SVM (GS-SVM).

Experiments
In this section, the experiments on the classification of two
gene sequence data sets, namely ALU gene and splice junc-
tions, are performed and followed by the comparison and
discussion.

Data Set Description
Two widely used gene sequence analysis sets, ALU gene
sequences and splice junction sequence, are used as test
beds, which are available for download at (ALU 2002;
Blake & Merz 1998). (Jurka et al. 1993; Wang et al.
1999) ALU gene is the most abundant single sequence in
the entire human genome. The data set we use has 327
positive instances which are downloaded from (ALU 2002;
Blake & Merz 1998) and 654 negative instances. These
negative instances were generated randomly while keeping
the nucleotide frequencies unchanged. (Wang et al. 1999)
The sequence length varies from 69bp to 379bp (where bp
stands for base pair, a biological metric for gene length.)
Splice junctions (SJ) are sections on a DNA sequence at
which superfluous DNA is removed during the process of
protein creation in higher level organisms. There exist two
forms of boundaries: (1) the transition from intron to exon,
called acceptor, and (2) the transition from exon to intron,
called donor. All the sequences are in length of 60bp, among
which 767 sequences contain acceptor, 768 sequences con-
tain donor, and 1655 sequences contain neither of them. In
all experiments, training sets are randomly selected from the
original data set without replacement according to specified
percentage. The remaining data will be used as testing set.
Table 2 summarizes the properties of the experimental data
sets.

Table 2: Properties of the experimental data sets.
Set Cases Classes Positive Negative

ALU 981 2 327 654

Positive
Set Cases Classes Acceptor Donor Neg.
SJ 3190 3 767 768 1655

Experimental Setup
Both bagging and boosting decision trees are developed
by extending C4.5 algorithm. (Quinlan 1993) The imple-
mentation of SVM for our experiments is developed by S.
R. Gunn. (Gunn 1998) Considering possible errors made
during data collection stage, a soft margin SVM is used.
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The kernel we employed is a 6th order polynomial func-
tion. For both Bagging and Boosting, the parameter T
governing the number of classifiers generated was set at
ten. This is based on the results from (Breiman 1994;
1996) that most of the performance improvement from bag-
ging is evident within the first ten trials. Ten complete tests
were carried out for each training set. In each classifica-
tion experiment, Training sets are randomly selected from
original data set and the training set size range from 10% to
90% of original data set. The corresponding remaining data
sets are used as testing set. All parameters of C4.5 main-
tained their default values, and the pruned trees were used
for decision trees. However, there are several issues regard-
ing the choice of the training set. First, extreme situations,
such as all training instances are negative or positive exam-
ples, will compromise learning the classifier. Second, mar-
gin samples may missed from training set. To minimize the
possible misleading caused by the training data, ten experi-
ments were conducted for each experiment using same data
sets and parameters. The average of the prediction accuracy
is used in the performance comparison. Three sets of ex-
periments were done to systematically compare the classifi-
cation performance of different ensemble methods (bagging
or boosting), different encoding methods (symbolic or gene-
structural based), and in general, different learning methods
(decision trees or SVMs).

Results and Discussion

Figure 3 illustrates the classification performance with splice
junctions sequence. Without considering gene structural
information, the accuracy of decision tree algorithms and
SVM algorithm are very close, especially when using less
than 50% data as training set. In some cases, bagging and
boosting are better than SVMs. When increasing training
set size, the accuracy of SVMs continues to improve while
decision tree based classifiers are less satisfactory for little
improvement and they show degradation due to over fitting.
Also, it is shown that by incorporating gene structural infor-
mation, GS-SVM classifiers gain improvement for all popu-
lation sizes, where it gives the best performance than any of
others most of time.

Figure 3: Classification performance with splice junctions
sequence.

Figure 4 illustrates the classification performance with
ALU gene sequence data. It is clear that the gene structural
information plays an important role in learning the classifier
and an average accuracy gain is over 70%.

Figure 4: Classification performance for ALU gene se-
quence.

Table 3 lists the error rate improvement of GS-SVM in
terms of Average Error Rate (AER) of decision trees and
SVMs and in terms of average error rate of SVMs. The sec-
ond column lists the classification error rate of GS-SVM.
The next two columns are average error rate and the im-
provement of GS-SVM compared to AER. The last two
columns show the error rate of SVM classifier and GS-
SVM’s performance gain.

Table 3: Error rate reduction of GS-SVM.
Splice junctions sequence

TDR GS-SVM AER Impro. SVM Impro.
10% 0.0980 0.1200 18% 0.1200 18%
20% 0.0750 0.0829 10% 0.0921 19%
30% 0.0616 0.0703 12% 0.0643 4%
40% 0.0519 0.0598 13% 0.0546 5%
50% 0.0355 0.0507 30% 0.0428 17%
60% 0.0211 0.0539 61% 0.0396 47%
70% 0.0169 0.0498 66% 0.0276 39%
80% 0.0074 0.0433 83% 0.0164 55%
90% 0.0046 0.0463 90% 0.0158 71%

ALU gene sequence
TDR GS-SVM AER Impro. SVM Impro.
10% 0.0522 0.2081 75% 0.1226 57%
20% 0.0572 0.1921 70% 0.1066 46%
30% 0.0531 0.1705 69% 0.1107 52%
40% 0.0448 0.1600 72% 0.1025 56%
50% 0.0440 0.1523 71% 0.1128 61%
60% 0.0305 0.1473 79% 0.1120 73%
70% 0.0300 0.1482 80% 0.1000 70%
80% 0.0247 0.1404 82% 0.0839 71%
90% 0.0101 0.1337 92% 0.0893 89%

The performance improvement of GS-SVM relies on the
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fact that although there are some co-occurrences of nu-
cleotides to form a gene, little knowledge is present. By
assuming an equal correlation between nucleotides, given
a coding base, 24 identical combinations exist. Obviously,
encoding scheme changes the information distribution, i.e.
the co-occurrence of basic representative units. In addition,
genes have their own features, or we can say, the regular-
ity of both occurrence of nucleotides and spatial relation-
ship determine if it is a gene or not and which gene it is.
Encoding nucleotides is essentially mapping the sequence
to a different space. This process may increase the dis-
crimination, within one encoding scheme, or among several
encoding schemes. Also, which encoding schemes play a
more important role varies from gene to gene. Therefore,
a weighted majority voting circumvents this by learning the
weights along predictions.

Conclusions
In this article, we study the performance of the classification
of gene sequence data with decision trees and SVMs. From
our experiments, it is clearly shown that these methods gen-
erate good classifiers and handle large amount of data very
well. Although decision tree algorithms suffer from over
fitting difficulty, both bagging and boosting decision trees
perform as well as or close to SVM and even better in some
cases. However, due the data pre-processing requirements,
i.e. converting symbolic to numeric representation, bias is
inevitable. To circumvent this, a weighted voting scheme
using SVM Bank is described, which is inspired by the gene
structural characteristics. A 24-SVM bank is learned from
data sets independently and a voting weight is assigned to
each SVM and updated according to the classification per-
formance on each prediction. The promising results with
experimental data suggest that incorporating structural in-
formation greatly improves the classifier.
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