
Proving Harder Theorems by Axiom Reduction

Geoff Sutcliffe
Department of Computer Science

University of Miami
P.O. Box 248154, Coral Gables, FL 33124, USA

Email: geoff@cs.miami.edu

Alexander Dvorsky
Department of Mathematics

University of Miami
P.O. Box 249085, Coral Gables, FL 33124, USA

Email: dvorsky@math.miami.edu

Abstract

Automated Theorem Proving (ATP) problems may contain
unnecessary axioms, either because some of the axiomati-
zation of the theory is irrelevant to the particular theorem,
or because the axiomatization is redundant by design. ATP
systems do not have effective techniques for detecting that
axioms are unnecessary (or unlikely to be necessary) to the
proof of a theorem. Axiom reduction removes combinations
of axioms from an ATP problem, and submits the resultant
axiom-reduced problems to an object ATP system. When
a combination of only unnecessary axioms is removed, the
problem may be quickly solved.

Introduction
Automated Theorem Proving (ATP) is concerned with the
development and use of computer programs that automate
sound reasoning: the derivation of conclusions that follow
inevitably from facts. In this work we are dealing with ATP
for 1st order classical logic, which has well known computa-
tional properties, and henceforth all discussion is in that con-
text. Current ATP systems are capable of solving non-trivial
problems, e.g., EQP solved the Robbins problem (McCune
1997). In practice, however, the search complexity of in-
teresting problems is often enormous, and many problems
cannot currently be solved within realistic resource limits.
Therefore a key concern of ATP research is the development
of techniques that can be used to £nd proofs of harder theo-
rems.

ATP systems can be designed and implemented to be
(refutation) complete, i.e., they will always produce a so-
lution if one exists. However, this guarantee is honored in
general only if in£nite resources (time and memory) are pro-
vided. In reality, the performance of current state-of-the-art
ATP systems has a quite distinctive form. Figure 1 plots the
CPU times taken by several contemporary ATP systems to
solve TPTP problems1, for each solution found, in increas-
ing order of time taken. The relevant feature of these plots is
that each system has a point at which the time taken to £nd
solutions starts to increase dramatically. This point is called

Copyright c© 2003, American Association for Arti£cial Intelli-
gence (www.aaai.org). All rights reserved.

1The TPTP Problem Library (Sutcliffe & Suttner 1998) is the
accepted standard for testing ATP systems.

the system’s Peter Principle Point (PPP). Evidently a lin-
ear increase in the computational resources beyond the PPP
would not lead to the solution of signi£cantly more prob-
lems. Users typically impose a realistic CPU time limit that
allows the system to pass its PPP, and problems that are not
solved within the limit are considered to be beyond the reach
of the system. Figure 1 suggests that 300s is a realistic CPU
time limit for many systems.

Figure 1: Peter Principle Points

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000 3500

C
P

U
 ti

m
e

in
 s

ec
on

ds

Solution number

Bliksem 1.12
DCTP 1.0

E 0.62
E-SETHEO csp01

Gandalf c-1.9c
Otter 3.2

S-SETHEO 0.0
SCOTT 6.0.0

SNARK 990218
SPASS 1.03
Vampire 2.0

In order to solve more problems within a realistic time
limit, ATP researchers strive to improve their techniques and
systems, and there has been impressive progress in the last
decade (Sutcliffe, Fuchs, & Suttner 2001). The increased
power of ATP systems “rolls down” the performance curves:
some problems that are on the rapidly rising part of the sys-
tem’s performance curve are solved quickly and move down
to extend the ¤atter part of the performance curve, and some
problems that were considered to be beyond the reach of the
system are solved within the CPU time limit.

An alternative to relying on increased ATP system power
for solving more dif£cult problems is to reformulate the
problems so that they can be solved within the CPU time
limit. Rather than changing an ATP system’s performance
curve, this approach aims to move problems into the por-
tion of the curve below the user’s CPU time limit, ideally

108 FLAIRS 2003

down to the ¤atter portion of the curve. This ideal is not
unrealistic, given the sharpness of the PPP - a small change
in problem dif£culty can produce a dramatic decrease in the
time required to solve it. A solution to such a reformulated
problem may immediately satisfy the user’s need, or the so-
lution may be used to help produce a solution to the original
problem. Examples of this approach include the magic set
transformation (Stickel 1994) and iterative easing (Sutcliffe
2001). Axiom reduction is another technique in this fam-
ily. Axiom reduction reformulates a problem by removing
axioms that may be unnecessary for a proof of the theorem.
A proof for such a reformulated problem is immediately a
proof for the original problem.

A Motivating Example
“Diagram Chasing” in Homological Algebra

The Short Five Lemma (Weibel 1994) is a standard depar-
ture point for any homological algebra course. It considers
the following commutative diagram with exact rows, in an
arbitrary abelian category, e.g., a category of abelian groups:

Figure 2: Short 5 Lemma diagram

0

0

0A B

ED R

C
α β

γ δ

gf h

0

All of the maps in the diagram are homomorphisms of
abelian groups (in particular, they map the 0 of the do-
main to the 0 of the codomain). The exactness of the
rows means that α and γ are injections, and that β and δ
are surjections. Exactness in the middle term means that
ker β = Im α and ker δ = Im γ. Finally, the two squares
in the diagram commute, i.e., γ(f(a)) = g(α(a)), a ∈ A
and δ(g(b)) = h(β(b)), b ∈ B. Thus eight conditions are
imposed on the morphisms.

Part 1 of the short £ve lemma claims that if f and h are
injections then g is an injection. Part 2 claims that if f and h
are surjections then g is a surjection. Only four of the eight
conditions are necessary for each of the proofs. Two of the
conditions - injectivity of α and surjectivity of δ - are not
needed for either proof.

These problems are easily formulated in 1st order logic,
and can be submitted to an ATP system. For example, the
properties of a morphism are captured by the axiom (using
the FOF syntax of the TPTP problem library):

! [Morphism,Dom,Cod] :
(morphism(Morphism,Dom,Cod)

=> (! [El] :
(element(El,Dom)
=> element(apply(Morphism,El),Cod))

& equal(apply(Morphism,zero(Dom)),zero(Cod))))

and the necessary properties for a surjection are captured by
the axiom:

! [Morphism,Dom,Cod] :
((morphism(Morphism,Dom,Cod)
& ! [ElCod] :

(element(ElCod,Cod)
=> ? [ElDom] :

(element(ElDom,Dom)
& equal(apply(Morphism,ElDom),ElCod))))

=> surjection(Morphism))

The fact that α is an injective morphism is asserted by the
two formulae:

morphism(alpha)
injection(alpha)

The full axiomatization of the theory, and the con-
jectures of part 1 and part 2, are available online at:

http://www.cs.miami.edu/˜tptp/ATPSystems/RedAx/

The axiomatization provides:

• The properties of morphisms, injections, surjections, ex-
act sequences, and commutative squares.

• The necessary properties for injections, surjections, exact
sequences, and commutative squares.

• The de£nition of subtraction in an abelian group.
• The de£nition of the diagram in Figure 2.

With the complete axiomatization, part 1 provides a rea-
sonable challenge to contemporary ATP systems. For exam-
ple, Vampire 5.0 (Riazanov & Voronkov 2002) £nds a proof2

in 42.3s, using its automatic mode, while E 0.7 (Schulz
2002) cannot £nd a proof in 300s. All testing was done on a
450MHz SUN Ultra 80 with 1GB RAM.

The proof uses only a subset of the axiomatization:

• The properties of morphisms, injections, exact sequences,
and commutative squares.

• The necessary properties for injections.
• The facts that γ is an injection, the upper row is exact, and

the two squares commute.

Reformulating the problem to contain only the necessary ax-
ioms makes it much easier: Vampire £nds a proof in 0.1s,
and E £nds a proof in 0.6s. Reducing the axiomatization
brings the problem into the ¤atter parts of both Vampire’s
and E’s performance curves. This success motivated the de-
velopment of this technique, the removal of unnecessary ax-
ioms, for general application.

Axiom Reduction
There are two situations in which unnecessary axioms may
be present in the formulation of a problem. First, as in part
1 of the short £ve lemma, some of the axiomatization may
be irrelevant to the theorem. Irrelevant axioms increase the
search space but cannot contribute to a proof. Second, the
axiomatization may be redundant by design. For example,
in group theory a minimal axiomatization contains only the
left or right identity axiom - the other is dependent, but com-
monly both are provided (ditto for the inverse axioms). Al-
though dependent axioms may be helpful, e.g., for £nding
shorter proofs, they also increase the search space.

A survey of proofs of FOF problems from the TPTP con-
£rms that many of the problems contain unnecessary ax-
ioms. There are 1135 FOF problems in TPTP v2.5.0 that

2Actually, Vampire produces a refutation of the clause normal
form of the problem.

FLAIRS 2003 109

are believed to be theorems. Of these, 939 have axiom for-
mulae, and hence may have unnecessary axioms. SPASS
2.0 (Weidenbach & et al. 2002), a system recognized for its
ability on FOF problems due to its excellent FOF to CNF
converter, can solve 513 of the 939, with a 600s CPU time
limit. (Again, all testing was done on the 450MHz SUN
Ultra 80 with 1GB RAM.) Figure 3 shows the fraction of
formulae in SPASS’ proofs vs. the number of formulae in
those 513 problems. Evidently many of the problems con-
tain unnecessary axioms. Note that the 600s CPU time limit
is well beyond SPASS’ PPP.

Figure 3: Fractions of formulae used in SPASS proofs

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

F
ra

ct
io

n
of

 F
or

m
ul

ae
 U

se
d

in
 P

ro
of

Number of Formulae in Problem

Human theorem provers are often capable of recognizing
that certain axioms are unnecessary (or unlikely to be neces-
sary) to the proof of a theorem, and hence avoid introducing
those axioms into their proof attempt. However, human the-
orem provers have to be careful about which axioms they
avoid, because their work rate is very low and they cannot
afford too many proof attempts without all the necessary ax-
ioms. In contrast to human theorem provers, ATP systems
do not have effective techniques for detecting that axioms
are unnecessary (or unlikely to be necessary) to the proof
of a theorem. Subsumption style techniques (Wos, Over-
beek, & Lusk 1993; Benanav 1992) determine that a formula
may be discarded because a “better” formula is available,
but do not detect that a formula is in principle unnecessary
for proof. Data management techniques such as Vampire’s
limited resource strategy (Riazanov & Voronkov 2002) and
Otter’s max weight setting (McCune 1994) remove for-
mulae that are not expected to be processed due to resource
limits, but make no judgement regarding their potential to
contribute to a proof. Relevancy testing techniques - see
(Plaisted & Yahya To appear) for an example and further
references - seem to require signi£cant machinery in order
to be effective. There are only a few simple techniques that
remove formulae that oviously cannot contribute to a proof,
based on syntactic or semantic arguments, e.g., pure-literal
deletion and tautology deletion. When equality is present
it is dif£cult to use syntactic methods to determine that a

formula cannot contribute to a proof. Alongside, and par-
tially caused by, the inability to detect which axioms are un-
necessary for a proof, the performance curves in Figure 1
show that ATP systems are more effective at quickly £nding
proofs for easy problems than they are at taking a long time
to £nd proofs for harder problems.

The combination of unnecessary axioms, ATP systems’
inability to carefully detect unnecessary axioms, and ATP
systems’ better ability on easy problems, suggest trying to
make a problem easier for ATP systems to solve by “quickly
and carelessly” removing combinations of axioms, in the
hope that some combination removes only unnecessary ax-
ioms and the theorem can be quickly proved from the re-
mainder. This is the technique of axiom reduction. Axiom
reduction removes combinations of axioms from a problem,
and submits the resultant axiom-reduced problem to an ob-
ject ATP system. A short CPU time limit is imposed on
the object ATP system so that if the axiom-reduced prob-
lem is not easily solved, then the proof attempt is abandoned
and another axiom-reduced problem can be generated. Ax-
iom reduction aims to generate an axiom-reduced problem
that falls into the ¤atter portion of the object systems per-
formance curve, where a short time limit is enough to £nd a
proof.

Axiom reduction has been implemented in the RedAx
(Reduce Axioms) meta-ATP system. RedAx is parameter-
ized by the object ATP system, and a time limit for each
of the object system’s proof attempts. RedAx preemptively
removes equality axioms that are not needed by the object
ATP system, e.g., if the object system is SPASS, all equality
axioms are removed. The remaining axioms are weighted
according to the number of symbols in the formula and the
depth of nesting of functions. Axioms are then removed in
a simple combinatorial fashion, with a preference for re-
moving heavy axioms. Successively, all combinations of
0, 1, 2, . . . axioms are removed from the problem, and the
resultant axiom-reduced problem is submitted to the object
ATP system through the SystemOnTPTP package (Sutcliffe
2000). RedAx is implemented in perl.

Testing Results
RedAx has been tested on problems from TPTP v2.5.0, us-
ing SPASS 2.0 and Vampire 5.0 as the object ATP systems.
All testing was done on the 450MHz SUN Ultra 80 with
1GB RAM.

The £rst round of testing used SPASS 2.0 as the object
ATP system, on 60 TPTP FOF problems randomly selected
from the 426 problems with axioms that SPASS could not
solve alone within 600s. A simpli£ed variant of the problem
selection technique used in the CADE ATP System Compe-
tition (Sutcliffe, Suttner, & Pelletier 2002) was used to en-
sure a broad selection of problem types. A 3600s CPU time
limit was imposed, with a 60s limit for each axiom-reduced
problem. Additionally, for comparison, SPASS 2.0 was run
alone on the problems with a 3600s time limit. Table 1
shown the results of this testing. RedAx with SPASS found
proofs for 14 problems, and SPASS alone found proofs for
7 problems, with an overlap of 6 problems. The remaining

110 FLAIRS 2003

45 problems were not solved by either system con£guration
within the 3600s time limit.

The TPTP rating in the second column of Table 1 mea-
sures the dif£culty of the problem with respect to the current
state-of-the-art in ATP (Sutcliffe & Suttner 2001). Problems
rated 0.00 are easy, and problems rated 1.00 have not been
solved by any ATP system in regular testing (such testing
typically imposes a realistic CPU time limit of 300s). Seven
of the problems solved by only RedAx have a rating of 0.50
or higher. The results thus show that axiom reduction effec-
tively extends the capability of SPASS on hard problems.

Problem TPTP SPASS 2.0 RedAx # of #
Rating CPU time CPU time Axioms Used

GEO083+1 0.67 Timeout 2059.9 16 14
GEO084+1 0.50 3041.8 2038.4 16 14
GEO093+1 0.67 2245.6 173.7 16 15
MGT005+2 0.33 Timeout 2438.0 12 10
MGT042+1 0.83 3500.4 249.6 9 8
MGT043+1 0.33 1380.0 267.1 9 8
MGT047+1 0.50 Timeout 819.6 15 14
MGT051+1 0.50 Timeout 818.5 15 14
MGT064+1 0.83 1559.2 642.8 19 18
SET011+3 0.57 Timeout 1447.6 7 5
SET593+3 0.71 Timeout 244.8 6 5
SET594+3 0.14 2591.9 1624.6 8 6
SET595+3 0.71 1788.8 Timeout 8 -
SET351+4 0.86 Timeout 1864.2 11 9
SWC021+1 0.67 Timeout 383.1 95 94

Table 1: Results for RedAx and SPASS 2.0

The second round of testing used Vampire 5.0 as the ob-
ject ATP system, on the 73 geometry and set theory FOF
problems with a TPTP dif£culty rating of 1.00. Geometry
and set theory were chosen because they have rich axioma-
tizations, and it is realistic to a priori believe that not all ax-
ioms will be necessary for the proofs of all theorems. Vam-
pire was chosen because it is a very powerful system for
problems with the characteristics of the geometry and set
theory problems. They are non-Horn problems with some
equality, and Vampire 5.0 was the best performing system
for this category of problems in the CADE-18 ATP system
competition. A 3600s CPU time limit was imposed, with
a 60s limit for each axiom-reduced problem. Additionally,
for comparison, Vampire 5.0 was run alone on the problems
with a 3600s time limit. Table 2 shown the results of this
testing. RedAx with Vampire found proofs for 4 problems,
and Vampire alone found no proofs.

Problem TPTP Vampire 5.0 RedAx # of #
Rating CPU time CPU time Axioms Used

GEO098+1 1.00 Timeout 1080.8 16 14
GEO110+1 1.00 Timeout 1145.1 17 15
GEO116+1 1.00 Timeout 473.7 17 16
SET674+3 1.00 Timeout 1609.7 40 38

Table 2: Results for RedAx and Vampire 5.0

The success of RedAx with Vampire on these problems
is signi£cant because it shows that axiom reduction can be
used not only to extend the capability of a particular ATP
system, but can also be used to push the frontier of what
ATP systems can deal with at all.

Analysis and an Application
The simple combinatorial removal of axioms means that
very many axiom-reduced problems can be formed and sub-
mitted to the object ATP system. If there are N axioms then
there are 2N − 1 possible axiom-reduced problems. This
O(E) search space has to be viewed in the context of the
super-exponential growth of the search space of ATP sys-
tems, which is O(N2searchdepth

). Axiom reduction helps the
object ATP system by reducing N , so that it has a smaller
search space. Additionally, by removing successively more
axioms, RedAx may £nd a proof with some unnecessary ax-
ioms left in the axiom-reduced problem, i.e., without having
to search through to an axiom-reduced problem containing a
minimal axiomatization for the theorem. This possibility is
borne out by the testing results, in which proofs were found
typically with only one or two axioms removed. It seems
that a “few rotten eggs can spoil the basket” for ATP sys-
tems, and that axiom reduction can be used to remove them.

The short CPU time limit imposed on the object ATP sys-
tem is founded in the hope that an axiom-reduced problem
will fall into the ¤atter portion of the system’s performance
curve. Within the short time limit the object ATP system
develops less of its search space, and in turn this may en-
able the system to make better local decisions about the di-
rection of its search. In the context of the O(E) RedAx
search space, the short time limit is necessary in order to
work through more of the possible axiom-reduced problems.
A reasonably long overall CPU time limit is appropriate for
RedAx, £rstly to allow more axiom-reduced problems to be
generated and attempted, and secondly because each axiom-
reduced problem provides new hope for a proof. This con-
trasts with giving an ATP system enough time to go past its
PPP, where there is little increased hope for £nding a proof.

An Application in Homological Algebra
Axiom reduction has been used in a piecewise construction
of a proof of part 2 of the short £ve lemma. Recall that part
2 claims that if f and h are surjections then g is a surjec-
tion. Even with the minimal axiomatization required for the
proof, this problem appears to be well beyond the reach of
contemporary ATP systems, with a realistic or even unreal-
istic CPU time limit. In order to construct the full proof,
three lemmas were used as intermediate steps:

IL1 For every element e ∈ E there exist elements b ∈ B and
e′ ∈ E such that e′ = g(b) − e and δ(e′) = 0R.

IL2 IL1 extended to claim that there exists an element a ∈ A
such that e′ = γ(f(a)) = g(α(a)).

IL3 For every element e ∈ E there exists an element b ∈ B
such that e = g(b). (It is surprising that this lemma about
surjection is necessary, but without it ATP systems seem
unable to make the £nal step in the overall proof.)

The ATP problems were therefore:

P1 Prove IL1 from the axiomatization.
P2 Prove IL2 from the axiomatization and IL1.
P3 Prove IL3 from the axiomatization and IL2.
P4 Prove part 2 of the short £ve lemma from the axiomatiza-

tion and IL3.

FLAIRS 2003 111

Only P4 can be solved directly by Vampire 5.0 with a 7200s
time limit, in 0.6s. RedAx with Vampire 5.0 fares no bet-
ter, solving only P4 in 4.2s (note the overhead of the RedAx
problem preparation). A version of Vampire manually con-
£gured by the developer for these problems can solve P1,
P3, and P4, in 2.1s, 30.4s, and 4.4s, respectively. The man-
ually con£gured Vampire cannot solve P2 with a 15000s
CPU time limit. However, using the manually con£gured
Vampire in RedAx, with a 60s limit for each axiom-reduced
problem, produces a proof for P2 in 12265s. The axiom-
reduced problem has 29 of the 31 axioms, omitting the def-
inition of a morphism and the property that subtraction pro-
duces an element in the same set. It is interesting that a
proof is possible without the de£nition of a morphism; here
the remaining axioms are suf£cient to derive the instance of
the de£nition used in the proof. The proof is found from
the 202nd axiom-reduced problem, in only 4s. Thus with-
out the two axioms a proof can be found very easily (setting
the CPU time limit for each axiom-reduced problem to 4s
would give an overall CPU time of only 808s!). With all the
component proofs available, a proof for part 2 of the short
£ve lemma can be constructed

Conclusion

Axiom reduction differs from much of the current develop-
ment of ATP systems and techniques, which aims to solve
both a broader range of problems and some harder prob-
lems. Axiom reduction aims only to £nd proofs of harder
theorems. As well as being directly useful in a production
environment, £nding such proofs provides valuable infor-
mation to both users and developers of ATP systems. For
users, axiom reduction identi£es unnecessary axioms. Find-
ing small or minimal sets of axioms suf£cient for the proof
of a theorem is of scienti£c interest. For developers, having
access to a proof provides insights that can lead to further de-
velopment of their ATP systems, bringing the problem and
other problems within the reach of the systems (with a real-
istic time limit).

The current simple implementation of axiom reduction in
RedAx has already been successful and useful. The success
is founded on insights into the performance characteristics
of ATP systems, acknowledgement of the existence of un-
necessary axioms, and adaptation of the human ability to
focus on relevant axioms. Immediate future work is to more
carefully order the axioms for removal, based on the expec-
tation that axioms that share predicate and function sym-
bols with the conjecture are more likely to be necessary than
those that do not. This will be implemented by heuristically
evaluating axioms: axioms that share symbols with the con-
jecture will have weight 1, and recursively, unweighted ax-
ioms that share symbols with axioms of weight W will have
weight W +1 (this is an intuitive relaxation of the technique
used in (Plaisted & Yahya To appear)). This weighting func-
tion will be combined with the current symbol and depth
measures. Further experimentation is also planned. In par-
ticular, it is planned to investigate the ef£cacy of removing
all combinations of N − 1, N − 2, . . . axioms from the ax-
iomatization, i.e., removing more axioms before less. One

possible outcome is to detect minimal subsets of axioms suf-
£cient for a proof.

References
Benanav, D. 1992. Recognising Unnecessary Clauses in
Resolution Based Systems. Journal of Automated Reason-
ing 9(1):43–76.
McCune, W. 1994. Otter 3.0 Reference Manual and Guide.
Technical Report ANL-94/6, Argonne National Labora-
tory, Argonne, USA.
McCune, W. 1997. Solution of the Robbins Problem. Jour-
nal of Automated Reasoning 19(3):263–276.
Plaisted, D., and Yahya, A. To appear. A Relevance Re-
striction Strategy for Automated Deduction. Arti£cial In-
telligence.
Riazanov, A., and Voronkov, A. 2002. The Design and Im-
plementation of Vampire. AI Communications 15(2-3):91–
110.
Schulz, S. 2002. E: A Brainiac Theorem Prover. AI Com-
munications 15(2-3):111–126.
Stickel, M. 1994. Upside-Down Meta-Interpretation of the
Model Elimination Theorem-Proving Procedure for De-
duction and Abduction. Journal of Automated Reasoning
13(2):189–210.
Sutcliffe, G., and Suttner, C. 1998. The TPTP Problem
Library: CNF Release v1.2.1. Journal of Automated Rea-
soning 21(2):177–203.
Sutcliffe, G., and Suttner, C. 2001. Evaluating General
Purpose Automated Theorem Proving Systems. Arti£cial
Intelligence 131(1-2):39–54.
Sutcliffe, G.; Fuchs, M.; and Suttner, C. 2001. Progress in
Automated Theorem Proving, 1997-1999. In Hoos, H., and
Stützle, T., eds., Proceedings of the IJCAI’01 Workshop on
Empirical Methods in Arti£cial Intelligence, 53–60.
Sutcliffe, G.; Suttner, C.; and Pelletier, F. 2002. The IJCAR
ATP System Competition. Journal of Automated Reason-
ing 28(3):307–320.
Sutcliffe, G. 2000. SystemOnTPTP. In McAllester, D.,
ed., Proceedings of the 17th International Conference on
Automated Deduction, number 1831 in Lecture Notes in
Arti£cial Intelligence, 406–410. Springer-Verlag.
Sutcliffe, G. 2001. The Design and Implementation
of a Compositional Competition-Cooperation Parallel ATP
System. In Proceedings of the 2nd International Workshop
on the Implementation of Logics, 92–102.
Weibel, C. 1994. An Introduction to Homological Algebra.
Cambridge University Press.
Weidenbach, C., and et al. 2002. SPASS 2.0. In Voronkov,
A., ed., Proceedings of the 18th International Conference
on Automated Deduction, number 2392 in Lecture Notes in
Arti£cial Intelligence, 275–279. Springer-Verlag.
Wos, L.; Overbeek, R.; and Lusk, E. 1993. Subsump-
tion, a Sometimes Undervalued Procedure. Technical Re-
port MCS-P93-0789, Mathematics and Computer Science
Division, Argonne National Laboratory, Argonne, USA.

112 FLAIRS 2003

