
Abstract 

In this work two indexing approaches are presented 
for case-based reasoning. The first is a hybrid tech-
nique which uses a combination of a matrix struc-
ture and a tree structure to solve problems. The ma-
trix and tree structures index cases by their discre-
tised feature values. The second approach is based 
solely on the tree structure and never uses the ma-
trix. The two techniques are evaluated in terms of 
their competency and efficiency with respect to 
nearest neighbor retrieval. Both approaches provide 
average efficiency gains of up to 20 fold in com-
parison to nearest neighbour with only a slight loss 
in competency, as averaged across all case-bases 
tested. It is argued that these approaches are appeal-
ing due to their simplicity, competency and 
efficiency.  

Introduction   
The nearest neighbor (NN) algorithm is a commonly used 
similarity metric in Case-Based Reasoning (CBR). Its ap-
peal includes its simplicity, its transparency, its robustness 
in the presence of noise and the fact that it does not require 
training. Over the years researchers have studied the near-
est neighbor algorithm in detail to try and improve upon its 
competency. For example its noise tolerance has been im-
proved by retrieving k nearest cases and introducing a ‘vot-
ing’ scheme to combine the various predictions [20]. At-
tribute values have been weighted according to their sig-
nificance to help deal with the curse of dimensionality [20], 
cases themselves have been weighted to increase the re-
trieval probability of more competent cases [3,2,10] and 
approaches for improving the manner in which symbolic 
                                                 
Copyright © 2003, American Association for Artificial Intelligence  
 (www.aaai.org). All rights reserved. 

 
 

attributes are dealt with proposed [15,2,3]. All of these 
improvements have focused on improving the competency 
of the NN algorithm. A major drawback of the algorithm, 
due to its exhaustive search, remains its efficiency. This is 
especially poor for large case-bases or those of high dimen-
sionality. A serious consequence of this poor retrieval effi-
ciency in CBR is an exacerbation of the effects of the util-
ity problem [17]. 
  
The utility problem, which is seen in many problem solving 
systems, manifests itself as a reduction in the efficiency 
(average problem solving time) of a problem solving sys-
tem as new knowledge is learned. It is classically observed 
in first principles reasoners such as speed up learners, but 
has also been observed in CBR systems which do not have 
a first principles reasoner at their core [16]. In CBR the 
time taken to solve a problem is composed of the time re-
quired to search the case-base to retrieve an appropriately 
similar case or cases plus the time taken to adapt the re-
trieved case’s solution. The less similar a target problem 
and retrieved case are, the more processing is required dur-
ing adaptation and the longer the problem solving process 
will be [18]. Therefore to improve efficiency, compelling 
arguments exist which advocate continually adding cases to 
a case-base over time to try and maximise problem space 
coverage thus reducing the amount of adaptation required 
and therefore by default, the time taken to solve problems. 
Although this may initially seem to be logical unfortunately 
in reality it has not been shown to be true [16] as in some 
situations the overall time taken to solve a problem actually 
increases with the addition of a new case to the case-base. 
This is known as the utility problem in CBR. 
 
A number of techniques have been developed to reduce the 
effects of the utility problem in CBR. All can be regarded 
as knowledge maintenance strategies, which add a consid-
erable overhead to the housekeeping functions of the CBR 

Efficient Retrieval for Case-Based Reasoning 

David Patterson, Niall Rooney, Mykola Galushka 
Northern Ireland Knowledge Engineering Laboratory (NIKEL) 

Faculty of Informatics 
University of Ulster 

Jordanstown 
N. Ireland 

wd.patterson, nf.rooney, mg.galushka@ulster.ac.uk 
 

144    FLAIRS 2003   



system and all focus on the improved management of either 
similarity (retrieval) knowledge or case knowledge. Most 
of these techniques focus on ensuring that the basic prob-
lem solving ability (competence) of the CBR system is 
maintained whilst reducing retrieval time. These techniques 
fall into two main categories, namely, policies which do not 
limit the size of the case-base in achieving the maximal 
problem space coverage possible and those which do. The 
former use indexing structures to improve search efficiency 
while the latter, which include case addition and deletion 
policies, rely on the fact that the number of cases present in 
the case-base will never be allowed to become so large so 
as to affect the search efficiency of the retrieval process 
significantly. Overviews of these strategies are now pre-
sented. 
 
Indexing 
Case indexing has been widely applied in CBR as a 
method of improving search efficiency to combat the 
effects of the utility problem. As only a selective por-
tion of the case-base is made available during retrieval, 
search time is reduced and the efficiency of identifying 
a possible solution is increased dramatically. Unfortu-
nately building and maintaining a competent index is 
not an easy task as it is highly dependent on the re-
trieval circumstances, which are constantly changing. 
Therefore the indexing structure (retrieval knowledge) 
of the case-base must be maintained to reflect this.  Ad-
ditionally the addition of new cases to the case-base 
over time must be accommodated. This maintenance of 
retrieval knowledge can be a major burden on efficiency 
in CBR systems. If the indexing scheme is poor or 
maintenance is ignored, cases with good solutions to the 
target problem may be overlooked as they reside in a 
different part of the case-base inaccessible under the 
current indexing scheme. This can lead to the complex 
adaptation of less suited cases, a reduction in compe-
tency and in severe situations, problem-solving failures. 
Therefore, due to poor retrieval knowledge or insuffi-
cient maintenance, in an attempt to improve efficiency, 
competency is often sacrificed [11]. 
 
A number of researchers have applied indexing strategies 
to CBR. Aha [1] presented a methodology of continually 
refining a case library in the domain of conversational case-
base reasoning to improve both competency and efficiency. 
Deangdej [4] devised a dynamic indexing structure to re-
trieve cases at run time from a case-base of over two mil-
lion cases. Fox [5] developed an introspective reasoning 
technique for dynamically refining case indexes based on 
previous retrievals. Smyth has devised an indexing scheme 
based on a case competence model [18], which improves 
both retrieval competency and efficiency. Nearest 
neighbour retrieval can be improved by space partitioning 

techniques such as k-d trees [19]. However such techniques 
are restricted to continuous attributes. 
 
Addition 
The basic theory behind addition policies is to prevent the 
case-base from ever becoming so large that efficiency is 
detrimentally affected. The majority of these techniques 
focus on some concept of problem space coverage pro-
vided by the cases in the case-base and aim to build effi-
cient case-bases with the maximal coverage using the 
minimal number of cases. Space prevents an in depth 
analysis of these techniques but McSherry [8], Zhu & Yang 
[21] and Portinale et al [13] have all proposed case addi-
tion strategies which limit the size of the case-base. 
  
Deletion 
Most case deletion policies are also based on some notion 
of the problem space coverage provided by cases. Deletion 
is a very difficult strategy to implement in CBR as some 
cases are inevitably more expendable than others. This is 
due to the fact that cases are the basic unit of both compe-
tency and efficiency in a case-base [16], [13]. A number of 
deletion policies have been proposed by researchers [18], 
[7]. 
 
The main difficulty with both deletion and addition policies 
is the efficiency overhead they impose on the system. An-
other drawback is that by limiting the size of the case-base, 
knowledge will inevitably be lost to the system. It is widely 
recognized that knowledge can be converted from one 
knowledge container into another in CBR systems [14]. For 
example Hanney [6] and McSherry [8] have demonstrated 
how case-knowledge can be used as a source of adaptation 
knowledge. Patterson et al. [10] have demonstrated that 
case-knowledge can also act as a rich source of similarity 
knowledge. Therefore by excluding some of the cases vital 
knowledge could be lost to the system. 
 
In this work we report on advances to the Discretised 
Highest Similarity with Pattern Solution Re-use algorithm, 
(D-HS+PSR) [12], within the M2 CBR framework [9], spe-
cifically analyzing its improvements over NN in terms of 
efficiency and its ability to competently index case-bases. 
We present two algorithms for analysis. The first, D-
HS+PSR(II) is a hybrid retrieval technique, which uses a 
combination of a matrix and a tree structure for retrieval. 
The tree is used to provide solutions to problems already 
encountered in the lifetime of the system, whereas the ma-
trix solves new (previously un-encountered) problems from 
scratch and then updates the tree with this knowledge for 
reuse in the future. The second technique, D-HS+PSR(III), 
uses the matrix to build the tree structure initially, but it 
ignores the matrix during retrieval, converts the tree into a 
case vector representation and only uses this to solve target 

FLAIRS 2003    145  



problems. In this technique, if a target problem has not 
been encountered before a solution is formed from what are 
judged to be the most similar cases, using Euclidean dis-
tance as a measure.  Both techniques can be used for classi-
fication and regression type problems. 
 
The motivations for developing these techniques were 
three-fold. We wanted to develop a means of similarity 
determination, which was more efficient than the k-NN 
algorithm (as measured by a comparison of the speed of the 
technique) whilst maintaining similar competency (as 
measured by the accuracy of prediction). Secondly we were 
interested in developing an approach, which could help 
reduce the effects of the utility problem with a minimal 
overhead in terms of processing. Finally we wanted to en-
sure that the new approach was easily maintained in real 
time 

Methodology 
Here we describe the theory behind the construction of 
the matrix and tree structure used in the D-HS+PSR(II) 
technique and describe how they combine to solve prob-
lems. Each case-base was split into training and test 
cases. Each case was composed of a combination of 
numeric and/or nominal values. The training cases were 
processed to create a matrix M where each cell M(i,j) 
contains a list of cases whose normalized attribute value 
x for attribute i lies in an interval  1/di   * (j-1)  <=  x < 
1/di  * j.  For nominal attributes the value of di is simply 
the number of possible attribute values. For continuous 
numeric attributes, we chose di to have the value of 10 
so in essence numeric attributes are discretised into 10 
intervals. This discretization parameter was found from 
previous experiments to give competent results [12]. A 
target case was said to match a case from the case-base 
on a particular attribute value if both of their attribute 
values fell into the same discretised interval as defined 
in equation 1.  

1 21 2,( ) ( ( ), ( ))  (1)
1

                                        
d

similarity C C match C n C n
n

= ∑
=

 
where 
d is the number of attributes 
C1(n) is the case’s nth attribute value 
and  match(C1(n),C2(n)) = 1 if C1(n) and C2(n) lie in the 
same discretised interval, 0 otherwise. 
 
At least N (N = 10 in our experiments) cases from the ma-
trix, with highest matching count were considered for re-
trieval as part of an initial retrieval set for a Target. This 
set was reduced down to a final retrieval set of 5 entries by 
taking the 5 closest according to a Euclidean distance met-
ric. This final retrieval set was then used to predict an aver-

age value in the case of a continuous output field, and a 
majority class for classification problems.   
 
Figure 1 shows an example of how the matrix was con-
structed using the example case-base where cases consist of 
3 attributes (A1-A3) and a solution field S. It also describes 
the retrieval process for a target T. For simplicity it shows 
how each case attribute value was discretised into one of 5 
intervals. A count was kept of the number of times the at-
tributes of each case in the case-base fell into the same dis-
cretised intervals as the corresponding attribute of the tar-
get, T. All cases, which overlap with T, are shown in bold 
in Figure 1. This means that the similarity function has 
maximal value if two cases agree on all their attribute val-
ues and 0 if they agree on none of their attribute values.  
 
This matrix approach could be speeded up further by creat-
ing a tree like representation of the cases in the case-base. 
It was seen that, especially for larger case-bases, there was 
a high probability that a number of different target cases 
shared the same matrix retrieval pattern (as a result of the 
attribute value discretisation process) as cases in the case-
base.  

Case A1 A2 A3 S 
C1 0.1 0.3 0.9 0.6 
C2 0.2 0.9 0.4 0.3 
C3 0.4 0.3 0.1 0.2 
C4 0.5 0.3 0.1 0.8 
C5 0.3 0.1 0.6 0.4 
C6 0.9 0.5 0.3 0.3 
C7 0.3 0.3 0.2 0.3 
C8 0.3 0.3 0.1 0.2 
C9 0.2 0.5 0.5 0.3 

C10 0.3 0.5 0.5 0.3 
T 0.3 0.5 0.5 ? 

 

Interval: 1 2 3 4 5 
A1 C1 C2,C5,C7, 

C8,C9,  
C10, T 

C3,C4  C6 

A2 C5 C1,C3, C4 
C7,C8, 

C6,C9, 
C10, T 

 C2 

A3 C3, C4, 
C8 

C6,C7 C2,C9, 
C10, T 

C5 C1 

Interval 
 range: 

 
0.0-0.2 

 
0.2-0.4 

 
0.4-0.6 

 
0.6-0.8 

 
0.8-1.0 

 

Example Dataset Matrix

Cases Count 
C2 
C5 
C6 
C7 
C8 
C9 
C10 

2 
1 
1 
1 
1 
3 
3 

 

Matching Count Table

Final Retrieval Set

Cases Distance 
C2 
C5 
C6 
C7 
C8 
C9 
C10 

0.42 
0.41 
0.63 
0.36 
0.45 
0.1 
0 

 

Initial Retrieval Set

C2,C5,C6
C7,C8,C9

,C10

C10,C9,
C7,C5,C2

Cases S 
C10 
C9 
C7 
C5 
C2 

0.3 
0.3 
0.3 
0.4 
0.3

 

Solution
0.32

Set
Reduction by

Closest
Euclidean
Distance

Fig 1 Retrieval using the matrix in D-HS+PSR(II) 
 
An auxiliary retrieval tree structure was therefore built, 
which mirrored the exact matrix intervals each particular 
case fell into for each of its attributes. Figure 2 shows a 
partial tree for cases 1, 5, 9 & 10. Attribute decision nodes, 
A1,A2,A3, discriminate among the matrix intervals a case’s 
attribute falls into. At each leaf node of the tree is stored 
the actual cases which are indexed via the particular re-
trieval pattern of its attributes. Utilizing the tree, to exactly 
match a target case’s interval pattern, could negate the need 
for a matrix lookup when the pattern is recognized by the 
tree. If the target interval pattern is not recognized, then the 
matrix can still be used to solve the problem. From Figure 
2 it can be seen that each level of the tree corresponds to a 
specific attribute and each node in the tree can potentially 

146    FLAIRS 2003   



be split into the number of discretised intervals for that 
attribute. Each node has child pointers to the next attribute. 
The tree structure shown in Figure 2 corresponds to the 
same cases in the case-base as shown in the previous ex-
ample. The 1st attribute of case 1 falls into interval 1, its 2nd 
attribute falls into interval 2 and the 3rd attribute falls into 
interval 5, so the tree is traversed as shown and case 1 
stored at the leaf node and can be indexed by a retrieval 
pattern of {1,2,5}. The diagram demonstrates how the tar-
get case T with retrieval pattern {2,3,3} is solved using the 
tree. The retrieval patterns within the tree can be viewed as 
new ‘case structures’, which can be used to solve target 
problems. They can be seen as a generalization of the case 
knowledge within the matrix. 
 

 A1 

A2 

A3 

C1 

A2 

A3 

C9,C10 

A3 

C5 

1 

2 

5 

2 

1 

4 

3 

3 …… 

…… 

…… 

…… 

…… 

C9,C10

Final Retrieval Set
Cases S 

C9 
C10 

0.3 
0.3

 

Solution
0.3

Retrieval Tree

Vector representation:
T( 0.3 ,  0.5 , 0.5 , ? )

Matrix pattern
representation:
T( 2 ,  3 , 3 , ? )

Figure 2 Retrieval using the tree in D-HS+PSR(II) 
 
Figure 3 shows the architecture of this new system and it 
can be seen that initially retrievals are attempted from the 
tree (the primary case-base where an exact match is re-
quired for retrieval) and the matrix (the secondary case-
base) is now only required during retrieval if a target case’s 
pattern has not been encountered before and therefore not 
recognized by the primary case-base. In this situation the 
matrix is used to solve the problem and the cases in the 
initial retrieval set are added to the primary case-base, in-
dexed by the target case’s pattern and made available for 
future retrievals. Therefore the system learns over time 
increasing re-use and improving efficiency. 
 
It should be noted that the solutions produced by the tree 
may be different than if the matrix alone were used. This is 
because the tree only uses cases to form the solution that 
are indexed by the target’s whole pattern, whereas the ma-
trix allows partial overlap. Obviously it is faster to form a 
solution from the tree than the matrix, as the tree look-up of 
the initial retrieval set can be done in a time factor propor-
tional to the number of attributes, whereas the matrix for-

mation of the initial retrieval step is dependent on how 
many cases have some overlap with the target case.   

 
Figure 3 Architecture of D-HS+PSR(II) System 
 
This technique has an initial overhead in setting up the 
primary case-base but for large data sets with good prob-
lem space coverage this should be compensated for by the 
improved speed by which problems can be solved by using 
the primary case-base as opposed to the matrix. A major 
advantage of this technique is that updating the system with 
new cases can be achieved in real-time, as neither the ma-
trix or tree structure need to be re-structured to allow for 
the addition of new cases. 
 
DHS+SR(III) was developed to investigate the effi-
ciency and competency of the technique when using the 
primary case-base alone to solve problems. Here the 
tree structure was converted into a case vector represen-
tation, where each attribute of the case corresponded to 
the nodes in the tree, e.g. case 1 has a case representa-
tion of {1, 2, 5}. Euclidean distance was used to deter-
mine similarity. Obviously this may decrease efficiency 
compared to D-HS+PSR(II) but as the number of cases 
are less than in the original case-bases (see discussion 
on compression later), the search space is reduced and it 
may be more efficient than k-NN on the original case-
bases. 

Experimental Technique and Results 
Five case-bases, obtained from the UCI machine learning 
repository, were used in the following experiments. In each 
of the experiments 10-fold cross validation was used to 
build a model using the training cases. The test cases were 
used as targets to test the efficiency and competency of the 
model. 
 
Table 1 shows the % accuracies (or MAE in the case of 
abalone) for 5 case-bases using the D-HS+PSR(II) retrieval 
approach compared to k-NN2. It also shows the percentage 
of retrievals which used the primary case-base (% P). Addi-
tionally the speedup ratio of retrieval compared to k-NN 
retrieval is shown. 
                                                 
2 4 case-bases are classification problems while 1, Abalone, is a 
prediction problem. This was included to highlight the flexibility 
of the approach to solving both types of problems. 

FLAIRS 2003    147  



 
Case-Base DHS+PSR(II) 

Competency 
kNN 
Competency 

% P Efficiency 
Ratio 

Adult 82.0 82.6 44.1 14.4 
Abalone 1.66 1.6 89.5 54.6 
Letter 91.5 95.5 20.1 14.5 
Mushroom 100 100 0 9.4 
Waveform 74.2 79.5 0 8.3 
 
Table 1 Results for the D-HS+PSR(II) retrieval technique 
 
Note that these ratios take into consideration the time 
required to build the matrix structure, create the primary 
case-base and then retrieve a solution from either the 
primary case-base or matrix. From this it can be seen 
that the competency of retrieval is similar to k-NN (a 
drop of 3.13% averaged over all case-bases) but with an 
improvement in efficiency. Efficiency varies from 8.3 
times more efficient with Waveform to almost 55 times 
more efficient with Abalone and taken as an average 
over all case-bases the approach is seen to be 20.2 times 
faster. Also shown are the percentage of times a solu-
tion is reused from the primary case-base. This varies 
from 0% with Waveform and Mushroom, indicating that 
a pattern is never reused (i.e. a case’s attributes never 
exactly overlaps with a target’s attributes), to 89.5% 
with Abalone. These results demonstrate that, the more 
often retrievals are made using the primary case-base 
the greater the efficiency gain over k-NN will be. This 
is because despite there being an initial overhead in 
setting up the primary case-base, this is compensated 
for by the savings in time achieved by solving numerous 
problems using the tree as opposed to the matrix. Aba-
lone, which has a high percentage of reuse, provides the 
greatest time savings compared to k-NN, whereas 
Waveform and Mushroom with no reuse provide the 
least improvement in time. It would be possible to ana-
lyze the case-base in advance to determine whether to 
use the auxiliary tree store. As both Waveform and 
Mushroom consist of entirely unique case patterns, we 
could have predicted that there would be no advantage 
to having an auxiliary tree store. The fact that some ef-
ficiency improvement is noted with Waveform and 
Mushroom is solely due to the speed of the matrix tech-
nique, compared to k-NN, which compensates for the 
extra time required to build the tree even though it is 
never used in retrieval 
 
Table 2 shows results for D-HS+PSR(III) in terms of 
competency, efficiency ratio over k-NN and percentage 
reduction in the size of the search space compared to 
the original case-base. The percentage reduction in 
search space obtained varies from case-base to case-
base and is expressed as the number of cases in the pri-
mary case-base as a percentage of the total number of 
original cases. The amount of ‘compression’ obtained is 
determined primarily by the number of distinct case 
patterns in the case-base in comparison to the size of the 

original case-base. The higher the percentage reduction, 
the fewer the number of distinct patterns and the more 
efficient the technique will be. 
 

Case-Base DHS-PSR(III) 
Competency 

Efficiency 
Ratio 

% Reduction 
in cases 

Adult 80.6 6.5 32 
Abalone 1.7 73.7 79 
Letter 93.2 2.3 12.5 
Mushroom 100.0 0.9 0 
Waveform 72.3 0.9 0 

 
Table 2 Results for the D-HS+PSR(III) retrieval technique 
 
From this it can be seen that, with Mushrooms, compe-
tency is the same as D-HS+PSR(II), it is better than D-
HS+PSR(II) with Letter, and worse with the other 3 
case-bases. A decrease in competency of 4.8 % aver-
aged over all case-bases was observed with D-
HS+PSR(III) compared to k-NN. This is 1.67% on av-
erage less competent than D-HS+PSR(II). As for the 
efficiency of the algorithm, all case-bases gave better 
efficiencies than k-NN apart from Waveform and Mush-
room, which were slightly less efficient. This was be-
cause creating the tree did not reduce the search space 
at all (see Table 2, the reduction in cases = 0% for 
Waveform and Mushroom) but there is the extra over-
head of creating the tree in the first place. All case-
bases were slower than D-HS+PSR(II) with the excep-
tion of Abalone. This indicates that the efficiency of D-
HS+PSR(II) may be better for case-bases with less 
compression whereas whenever there is a large reduc-
tion in the search space, as with Abalone, an exhaustive 
NN search may be more efficient using the primary 
case-base alone as opposed to using the matrix and tree 
retrieval approach of D-HS+PSR(II). The average ratio 
of efficiency gain over k-NN was 17.9, which compares 
to a ratio of 20.2 for D-HS+PSR(II). From this we can 
conclude that D-HS+PSR(II) is more efficient and on 
average more competent than D-HS+PSR(III).  
 

Conclusions 
 

In this paper we present two related approaches to im-
prove the efficiency of retrieval in CBR. As such they 
could be used to reduce the effects of the utility prob-
lem in CBR due to the fact they would enable the con-
struction of a much larger case-base before the effects 
of the utility problem became apparent. Both are con-
siderably faster than k-NN but this efficiency improve-
ment is at the expense of a slight drop in competency. 
D-HS+PSR(II) is more efficient and on average more 
competent than D-HS+PSR(III). The only proviso with 
this is, if there is a large amount of compression 
achieved by creating the primary case-base, then D-
HS+PSR(III) may be more efficient. In general there-
fore D-HS+PSR(II) proved to be the more desirable 
technique. 

148    FLAIRS 2003   



The matrix component of D-HS+PSR(II) can also be used 
to highlight the areas of the problems space, where the sys-
tem presently lacks knowledge to solve problems, thus 
drawing attention to these areas for future case knowledge 
acquisition. One approach to discovering any missing ma-
trix knowledge would be to rely on the expert to actively 
acquire it but a more appealing and elegant approach would 
be to use machine-learning techniques to automatically 
discover the missing case knowledge. The matrix would be 
used in this instance as a knowledge acquisition tool. This 
will be the focus of future work within this system. Other 
issues for further study include the relationship between 
case knowledge and adaptation knowledge and an im-
provement to both techniques so they can more efficiently 
deal with nominal attributes. In addition, a study of variable 
sized matrix intervals and the weighting of attributes and 
retrieval cases will be carried out.  
 

References 
 

 [1] Aha, D. W. and Breslow, L. Refining conversational 
case libraries. In Proceedings of the 2nd International Con-
ference on Case-based Reasoning,-ICCBR-97, pp 267-276, 
Providence RI, USA, 1997. 
[2] Anand, SS; Patterson, DW and Hughes, JG. Knowledge 
Intensive Exception Spaces, AAAI-98, pp 574-579, 1998. 
[3] Cost, S.; and Salzberg, S. 1993. A Weighted Nearest 
Neighbour Algorithm for Learning with Symbolic Features. 
Machine Learning 10: 57-78. 
[4] Deangdej, J., Lukose, D., Tsui, E., Beinat, P. and 
Prophet, L. Dynamically creating indices for two million 
cases: A real world problem. In Smith, I. And Faltings, B. 
eds., Advances in Case-Based Reasoning, Lecture Notes in 
AI,  pp 105-119, Springer Verlag 1996. 
[5] Fox, S. and Leake, D.B. Using Introspective reasoning 
to refine indexing. In roceedings of the 14th International 
Joint Conference on Artificial Intelligence. Montreal, Can-
ada, August , pp 391-387, 1995. 
[6] Hanney, K. and Keane M. Learning Adaptation Rules 
from a Case-Base, Proc. Advances in Case-Based Reason-
ing, 3rd European Workshop, EWCBR-96, pp179-192, 
Lausanne, Switzerland, November 1996. 
[7] Hunt, J.E., Cooke, D.E. and Holstein, H. Case-memory 
and retrieval based on the immune system. 1st International 
Conference on Case-Based reasoning, pp 205-216, 1995. 
 [8] McSherry, D. Automating case selection in the con-
struction of a case library. Proceedings of ES99, the19th 
SGES International Conference on Knowledge-Based Sys-
tems and Applied Artificial Intelligence, Cambridge, pp 
163-177, December 1999 
[9] Patterson, D., Anand, S.S., Dubitzky, D. and Hughes, 
J.G. Towards Automated Case Knowledge Discovery in the 
M2 Case-Based Reasoning System, Knowledge and Infor-

mation Systems:An International Journal, (1), pp 61-82, 
Springer Verlag, 1999. 
[10] Patterson, D; Anand, SS; Dubitzky, D and Hughes, 
JG. A Knowledge Light Approach to Similarity Mainte-
nance for Improving Case-Based Competence. Workshop 
on Flexible Strategies for Maintaining Knowledge Con-
tainers 14th European Conference on Artificial Intelli-
gence, ECAI 2000. PP 65 - 77. 2000 
[11] Patterson, D., Rooney, N. & Galushka, M. Towards 
Dynamic Maintenance of Retrieval Knowledge in CBR. 
Proceedings of the 15th  International FLAIRS Conference. 
AAAI Press. 2002 
[12] Patterson, D., Rooney, N. & Galushka, M. Efficient 
Similarity Determination and Case Construction Tech-
niques For Case-Based Reasoning. 4th European Confer-
ence on CBR, pp 292-305, 2002. 
[13] Portinale, L., Torasso, P. and Magro, D. Dynamic 
Case Memory Management, Proc. ECAI 98, pp. 73-78, 
John Wiley and Sons, Brighton, 1998. 
[14] Richter, M. The Knowledge Contained in Similarity 
Measures. Invited Talk, The 1st International Conference 
in Case-Based Reasoning, Sesimbra, Portugal, 1995. 
 [15] Stanfill, C.; and Waltz, D. Towards Memory-based 
Reasoning. Communications of the ACM. 29(12): 1213-
1228, 1986. 
[16] Smyth, B. and Keane, M. Remembering to Forget.: A 
Competence-Preserving case Deletion Policy for Case-
Based Reasoning Systems. Proceedings of 14th IJCAI, 
pp377-382. 1995. 
[17] Smyth, B. Constructing Competent Case-Based Rea-
soners: Theories, Tools and techniques. Workshop On 
Automating the Construction of Case-Based Reasoners, 
Sixteenth International Joint Conference on Artificial Intel-
ligence, Stockholm, Sweden, pp 17-23, 1999 
[18] Smyth, B. and McKenna, E. Footprint-based retrieval. 
Proceedings of the 3rd International Conference on Case-
Based Reasoning , pp 343-357. July 1999. 
[19] Wess, S., Althoff, K., Richter, M., Using k-d trees to 
improve the retrieval step in case-based reasoning, Topics 
in Case-based Reasoning, First European Workshop 
(EWCBR-93), Springer-Verlag, pp. 67-81, 1993. 
[20] Wettschereck et al. Wettschereck, D.; Aha, D.; and 
Mohri, T. A Review of Empirical Evaluation of Feature 
Weighting Methods for a Class of Lazy Learning Algo-
rithms, Artificial Intelligence Review Journal, 1997. 
[21] Zhu, J. and Yang, Q. Remembering to Add: Compe-
tence-preserving Case Addition Policies for Case-base 
Maintenance. In International Joint Conference in Artificial 
Intelligence 1999 (IJCAI-99), pp. 234-239, 1999. 

FLAIRS 2003    149  


