
Correctness of Constraint Retraction Algorithms∗

Romuald Debruyne† and Gérard Ferrand ‡ and Narendra Jussien†

and Willy Lesaint ‡ and Samir Ouis† and Alexandre Tessier‡
† École des Mines de Nantes - La Chantrerie

4, rue Alfred Kastler – BP 20722 – F-44307 Nantes Cedex 3 – France
{Romuald.Debruyne,Narendra.Jussien,Samir.Ouis}@emn.fr
‡ Laboratoire d’Informatique Fondamentale d’Orléans

rue Léonard de Vinci – BP 6759 – F-45067 Orléans Cedex 2 – France
{Gerard.Ferrand,Willy.Lesaint,Alexandre.Tessier}@lifo.univ-orleans.fr

Abstract

In this paper, we present a general scheme for incremental
constraint retraction algorithms that encompasses all existing
algorithms. Moreover, we introduce some necessary condi-
tions to ensure the correctness of any new incremental con-
straint retraction algorithms. This rather theoretical work is
based on the notion of explanation for constraint program-
ming and is exemplified within thePALM system: a constraint
solver allowing dynamic constraint retractions.

Introduction
Local consistencies through filtering techniques provide an
efficient way to reduce the search space both before or dur-
ing search. Most of modern constraint solvers (e.g. CHIP,
GNUPROLOG, ILOG SOLVER, CHOCO) use this scheme.

Filtering algorithms are often incremental algorithms
w.r.t. constraints addition. Several extensions have been
proposed to handle dynamic retraction of constraint. How-
ever, no common and unified analysis of these algorithms
has been proposed yet. Some of them (following (Bessière
1991)) store information in anTMS-like (Doyle 1979) way
(e.g. explanation-sets in (Jussien, Debruyne, & Boizumault
2000)) or analyze reduction operators (Berlandier & Neveu
1994; Georget, Codognet, & Rossi 1999) to be able to iden-
tify the past effect of a constraint and so incrementally re-
tract it.

In this paper, we present a general scheme for all these
techniques, showing the similarities of these approaches to
efficiently and dynamically retract constraints. Moreover,
we determine what it is sufficient to do in order to design a
new incremental constraint retraction algorithm.

Our paper is organized as follows: we recall basic back-
ground on local consistencies propagation mechanisms be-
fore introducing our general scheme. Then, we highlight
sufficient properties to ensure correctness of constraint re-
traction and we present relations with previous works before
concluding.

∗This work is partially supported by the
French RNTL through the OADymPPaC project.
http://contraintes.inria.fr/OADymPPaC/
Copyright c© 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Preliminaries
Constraint satisfaction problems(CSP) (Tsang 1993) have
proven to be an efficient model for solving many combina-
torial and complex problems. We introduce here a formal
model for representing both a constraint network and its res-
olution (domain reductions and constraint propagation).

Following (Tsang 1993), aConstraint Satisfaction Prob-
lem is made of two parts: a syntactic part and a semantic
part. The syntactic part is a finite setV of variables, a fi-
nite setC of constraints and a function var: C → P(V),
which associates a set of related variables to each con-
straint. Indeed, a constraint may involve only a subset of
V . For the semantic part, we need to consider variousfami-
liesf = (fi)i∈I . Such a family is referred to by thefunction
i 7→ fi or by theset{(i, fi) | i ∈ I}.

(Dx)x∈V is a family where eachDx is afinite non empty
setof possible values forx. We define thedomain of com-
putationby D =

⋃
x∈V ({x} × Dx). This domain allows

simple and uniform definitions of (local consistency) oper-
ators on a power-set. For reduction, we consider subsetsd
of D. Such a subset is called anenvironment. Let d ⊆ D,
W ⊆ V , we denote byd|W = {(x, e) ∈ d | x ∈ W}. d
is actually a family(dx)x∈V with dx ⊆ Dx: for x ∈ V , we
definedx = {e ∈ Dx | (x, e) ∈ d}. dx is thedomain of
variablex.

Constraints are defined by their set of allowed tuples.
A tuple t on W ⊆ V is a particular environment such
that each variable ofW appears only once:t ⊆ D|W and
∀x ∈ W,∃e ∈ Dx, t|{x} = {(x, e)}. For eachc ∈ C, Tc is
a set of tuples on var(c), called the solutions ofc. Note that
a tuplet ∈ Tc is equivalent to a family(ex)x∈var(c) andt is
identified with{(x, ex) | x ∈ var(c)}.

We can now formally define aCSPand a solution.

Definition 1 A Constraint Satisfaction Problem(CSP) is de-
fined by: a finite setV of variables; a finite setC of con-
straints; a function var: C → P(V); a family (Dx)x∈V

(the domains); a family(Tc)c∈C (the constraints semantics).
A solutionfor a CSP(V,C, var, (Dx)x∈V , (Tc)c∈C) is a tu-
ples onV such as∀c ∈ C, s|var(c) ∈ Tc.

Two more key concepts need some details: the domain
reduction mechanism and the propagation mechanism itself.

172 FLAIRS 2003

A constraint is fully characterized by its behavior re-
garding modification of the environments of the variables.
Local consistency operatorsare associated with the con-
straints. Such an operator has atype (Win ,Wout) with
Win ,Wout ⊆ V . For the sake of clarity, we will consider in
our formal presentation that each operator is applied to the
whole environment, but, in practice, it only removes from
the environments ofWout some values which are inconsis-
tent with respect to the environments ofWin .

Definition 2 A local consistency operatorof type
(Win ,Wout), with Win ,Wout ⊆ V , is a monotonic
function r : P(D) → P(D) such that: ∀d ⊆ D,
r(d)|V \Wout

= D|V \Wout
, andr(d) = r(d|Win

)

Classically (see for example (Benhamou 1996; Apt
1999)), reduction operators are considered asmonotonic,
contractantandidempotentfunctions. However, on the one
hand,contractanceis not mandatory because environment
reduction after applying a given operatorr can be forced by
intersecting its result with the current environment, that is
d ∩ r(d). On the other hand,idempotenceis useless from
a theoretical point of view (it is only useful in practice for
managing the propagation queue). This is generally not
mandatory to design effective constraint solvers. We can
therefore use onlymonotonicfunctions in definition 2.

The solver semantics is completely described by the set
of such operators associated with the handled constraints.
More or less accurate local consistency operators may be
selected for each constraint. Moreover, this framework is
not limited to arc-consistency but may handle any local con-
sistency which boils down to domain reduction as shown in
(Ferrand, Lesaint, & Tessier 2002).

Of course local consistency operators should becorrect
with respect to the constraints. In practice, to each constraint
c ∈ C is associated a set of local consistency operatorsR(c).
The setR(c) is such that for eachr ∈ R(c): let (Win ,Wout)
be the type ofr with Win ,Wout ⊆ var(c); for eachd ⊆ D,
t ∈ Tc: t ⊆ d ⇒ t ⊆ r(d).

For example, in the freeware constraint solverCHOCO
(Laburthe 2000) a constraint is fully characterized by its
behavior regarding the basic events such as value removal
from the environment of a variable (methodawakeOnRem)
and environment bound updates (methodsawakeOnInf
andawakeOnSup) representing the associatedlocal con-
sistency operators.

Example 1 x ≥ y + c is one of the basic constraints inCHOCO.
It is represented by theGreaterOrEqualxyc class. Reacting
to an upper bound update for this constraint can be stated as: if
the upper bound ofx is modified then the upper bound ofy should
be lowered to the new value of the upper bound ofx (taking into
account the constantc). This is encoded as:

[awakeOnSup(c:GreaterOrEqualxyc,idx:integer)
-> if (idx = 1)

updateSup(c.v2,c.v1.sup - c.cste)]

idx is the index of the variable of the constraint whose bound (the
upper bound here) has been modified. This particular constraint
only reacts to modification of the upper bound of variablex (c.v1
in the code). TheupdateSup method only modifies the value
of y (c.v2 in the code) when the upper bound is really updated.

TheawakeOnSup method is a local consistency operator where
Win = {c.v1} andWout = {c.v2}.

Constraint propagation is handled through a propaga-
tion queue (containing events or conversely operators to
awake). Informally, starting from the giveninitial environ-
mentfor the problem, a local consistency operator is selected
from the propagation queue (initialized with all the opera-
tors) and applied to the environment resulting to a new one.
If an environment/domain reduction occurs, new operators
(or new events) are added to the propagation queue.

Termination is reached when: (1) a variable environment
is emptied: there is no solution to the associated problem;
(2) the propagation queue is emptied: a common fix-point
(or a desired consistency state) is reached ensuring that fur-
ther propagation will not modify the result.

The resulting environment is actually obtained by sequen-
tially applying a given sequence of operators. To formalize
this result, let consider iterations.

Definition 3 The iteration(Apt 1999) from the initial envi-
ronmentd ⊆ D with respect to aninfinite sequence of op-
erators ofR: r1, r2, . . . is the infinite sequence of environ-
mentsd0, d1, d2, . . . inductively defined by:d0 = d; for each
i ∈ N, di+1 = di ∩ ri+1(di). Its limit is∩i∈Ndi.

A chaotic iterationis an iteration with respect to a se-
quence of operators ofR where eachr ∈ R appears in-
finitely often.

The most accurate set which can be computed using a
set of local consistency operators in the framework of do-
main reduction is thedownward closure. Chaotic iterations
have been introduced for this aim in (Fages, Fowler, & Sola
1995).

Definition 4 Thedownward closureof d by a set of opera-
tors R is CL ↓ (d,R) = max{d′ | d′ ⊆ d,∀r ∈ R, d′ ⊆
r(d′)}. Note that ifR′ ⊆ R, thenCL ↓ (d, R) ⊆ CL ↓
(d, R′).

Obviously, each solution to theCSP is in the downward
closure. It is easy to check thatCL ↓ (d,R) exists and
can be obtained by iteration of the operatord′ 7→ d′ ∩⋂

r∈R r(d′). Usingchaotic iterationsprovides another way
to computeCL ↓ (d,R) (Cousot & Cousot 1977). Iterations
proceed by elementary steps.

Lemma 1 The limit of every chaotic iteration of the set of
local consistency operatorsR from d ⊆ D is thedownward
closureof d byR.

This well-known result of confluence (Fages, Fowler, &
Sola 1995) ensures that any chaotic iteration reaches the
closure. Notice that in practice computation ends as soon
as a common fix-point is reached (e.g. using a propagation
queue).

Notice that, since⊆ is a well-founded ordering (i.e.D
is a finite set), every iteration fromd ⊆ D (obviously de-
creasing) is stationary, that is,∃i ∈ N, ∀j ≥ i, dj = di:
in practice computation ends when a common fix-point is
reached (eg.using a propagation queue).

FLAIRS 2003 173

Constraint retraction
Dynamic constraint retraction is performed through the fol-
lowing steps (Georget, Codognet, & Rossi 1999; Jussien
2001):

Disconnecting The first step is to cut the retracted con-
straint c from the constraint network.c needs to be com-
pletely disconnected (and therefore will never get propa-
gated again in the future).

Setting back values The second step, is to undo the past
effects of the constraint. Both direct (each time the con-
straint operators have been applied) and indirect (further
consequences of the constraint through operators of other
constraints) effects of that constraint. This step results in the
enlargement of the environment: values are put back.

Controlling what has been done Some of the put back
values can be removed applying other active operators (i.e.
operators associated with non retracted constraints). Those
environment reductions need to be performed andpropa-
gatedas usual.

At the end of this process, the system is in a consistent
state. It is exactly the state (of the domains) that would have
been obtained if the retracted constraint would not have been
introduced into the system.

This process encompasses both information recording
methods and recomputation-based methods. The only dif-
ference relies on the way values to set back are determined.
The first kind of methods record information to allow an
easy computation of values to set back into the environment
upon a constraint retraction. (Bessière 1991) and (Debruyne
1996) usejustifications: for each value removal the applied
responsible constraint (or operator) is recorded. (Fages,
Fowler, & Sola 1998) uses a dependency graph to determine
the portion of past computation to be reset upon constraint
retraction. More generally, those methods amount to record
some dependency information about past computation. A
generalization (Jussien, Debruyne, & Boizumault 2000) of
both previous techniques rely upon the use ofexplanation-
sets(informally, a set of constraints that justifies a domain
reduction).

Explanation-sets and explanation-trees
Definition 5 Let R be the set of all local consistency oper-
ators. Leth ∈ D andd ⊆ D. We callexplanation-setfor h
w.r.t. d a set of local consistency operatorsE ⊆ R such that
h 6∈ CL ↓ (d,E).

Explanation-sets allow a direct access to direct and indi-
rect consequences of a given constraintc. For eachh 6∈
CL ↓ (d,R), expl(h) represents any explanation-set forh.
Notice that for anyh ∈ CL ↓ (d,R), expl(h) does not exist.

Several explanations generally exist for the removal of a
given value. (Jussien 2001) show that a good compromise
between precision (small explanation-sets) and ease of com-
putation of explanation-sets is to use the solver-embedded
knowledge. Indeed, constraint solvers always know, al-
though it is scarcely explicit,why they remove values from
the environments of the variables. By making that knowl-

edge explicit and therefore kind oftracing the behavior of
the solver, quite precise explanation-sets can be computed.
Indeed, explanation-sets are a compact representation of the
necessary constraints to achieve a given domain reduction.
A more complete description of the interaction of the con-
straints responsible for this domain reduction can be intro-
duced throughexplanation-treeswhich are closely related to
actual computation. For that, we need to introduce the no-
tion of deduction rule related to local consistency operators.

Definition 6 A deduction ruleof type(Win ,Wout) is a rule
h ← B such thath ∈ D|Wout andB ⊆ D|Win .

The intended semantics of a deduction ruleh ← B can be
presented as follows: if all the elements ofB are removed
from the environment, thenh does not appear in any solution
of the CSPand may be removed harmlesslyi.e. elements of
B represent the support set ofh.

A set of deduction rulesRr may be associated with each
local consistency operatorr. It is intuitively obvious that
this is true for arc-consistency enforcement but it has been
proved in (Ferrand, Lesaint, & Tessier 2002) that for any lo-
cal consistency which boils down to domain reduction it is
possible to associate such a set of rules (moreover it shows
that there exists a natural set of rules for classical local con-
sistencies). It is important to note that, in the general case,
there may exist several rules with the same head but dif-
ferent bodies. We consider the setR of all the deduction
rules for all the local consistency operators ofR defined by
R = ∪r∈RRr.

The initial environment must be taken into account in the
set of deduction rules: the iteration starts from an environ-
mentd ⊆ D; it is therefore necessary to add facts (deduction
rules with an empty body) in order to directly deduce the
elements ofd: letRd = {h ← ∅ | h ∈ d} be this set.

Definition 7 A proof treewith respect to a set of rulesR ∪
Rd is a finite tree such that for each node labelled byh, let
B be the set of labels of its children,h ← B ∈ R ∪Rd.

Proof trees are closely related to the computation of en-
vironment/domain reduction. Letd = d0, . . . , di, . . . be an
iteration. For eachi, if h 6∈ di thenh is the root of a proof
tree with respect toR∪Rd. More generally,CL ↓ (d,R) is
the set of the roots of proof trees with respect toR∪Rd.

Each deduction rule used in a proof tree comes from a
packet of deduction rules, either from a packetRr defining
a local consistency operatorr, or fromRd.

A set of local consistency operators can be associated with
a proof tree:

Definition 8 Let t be a proof tree. AsetX of local consis-
tency operators associated witht is such that, for each node
of t: let h be the label of the node andB the set of labels
of its children: eitherh 6∈ d (and B = ∅); or there exists
r ∈ X, h ← B ∈ Rr.

Note that there may exist several sets associated with a
proof tree. Moreover, each super-set of a set associated with
a proof tree is also convenient (R is associated with all proof
trees). It is important to recall that the root of a proof tree
does not belong to the closure of the initial environmentd

174 FLAIRS 2003

by the set of local consistency operatorsR. So there exists
an explanation-set (definition 5) for this value.

Lemma 2 If t is a proof tree, then each set of local consis-
tency operators associated witht is an explanation-set for
the root oft.

From now on, a proof tree with respect toR∪Rd is there-
fore called anexplanation-tree. As we just saw,explanation-
setscan be computed fromexplanation-trees.

In practice, explanation-trees/explanation-sets are com-
puted when the value removal is actually performedi.e.
within the propagation code of the constraints (namely
in the definition of the local consistency operators – the
awakeOnXXX methods ofCHOCO). Extra information
needs to be added to theupdateInf or updateSup calls:
the actual explanation. Example 2 shows how such an expla-
nation can be computed and what the resulting code is for a
basic constraint.

Example 2 It is quite simple to make modifications considering
example 1. Indeed, all the information is at hand in theawakeOn-
Sup method. The modification of the upper bound of variable
c.v2 is due to: (a) the call to the constraint (operator) itself (it will
be added to the computed explanation); (b) the previous modifica-
tion of the upper bound of variablec.v1 that we captured through
thecallingvariable (idx). The source code is therefore modified in
the following way (the additional third parameter forupdateSup
contains the explanation attached to the intended modification):

[awakeOnSup(c:GreaterOrEqualxyc,idx:integer)
-> if (idx = 1)

updateSup(c.v2, c.v1.sup - c.cste,
becauseOf(c, theSup(c.v1)))]

becauseOf builds up an explanation from its event-parameters.
Note thatCHOCO itself does not provide those explanation mecha-
nism, onlyPALM does.

Let us consider a fixed iterationd = d0, d1, . . . , di, . . .
of R with respect tor1, r2, In order to incrementally
define explanation-trees during an iteration, let(Si)i∈N be
the family recursively defined as (where cons(h, T) is the
tree defined byh is the label of its root andT is the set
of its subtrees, and where root(cons(h, T)) = h): S0 =
{cons(h, ∅) | h 6∈ d}; Si+1 = Si ∪ {cons(h, T) | h ∈
di, T ⊆ Si, h ← {root(t) | t ∈ T} ∈ Rri+1}.

It is important to note that some explanation-trees do not
correspond to any iteration, but when a value is removed
there always exists an explanation-tree in

⋃
i Si for this

value removal.
Among the explanation-sets associated with an

explanation-treet ∈ Si, one is preferred. This explanation-
set is denoted by expl(t) and defined as follows (where
t = cons(h, T)) if t ∈ S0 then expl(t) = ∅; else
there existsi > 0 such that t ∈ Si \ Si−1, then
expl(t) = {ri} ∪⋃

t′∈T expl(t′). In fact, expl(t) is expl(h)
previously defined wheret is rooted byh.

In the following, we will associate a single explanation-
tree, and therefore a single explanation-set, to each element
h removed during the computation. This set will be denoted
by expl(h).

Correctness of constraint retraction
Let us consider a finite iteration from an initial environment
d with respect to a set of operatorsR. At the stepi of this
iteration, the computation is stopped. The current environ-
ment isdi. Note that this environment is not necessarily the
closure ofd by R (we haveCL ↓ (d,R) ⊆ di ⊆ d). At
this ith step of the computation, some constraints have to
be retracted. As we saw, performing constraint retraction
amounts to:

Disconnecting Disconnecting a set of constraintC ′
amounts to remove all their related operators from the cur-
rent set of active operators. The resulting set of operators
is Rnew ⊆ R, whereRnew =

⋃
c∈C\C′ R(c) whereR(c)

is the set of local consistency operators associated withc.
Constraint retraction amounts to compute the closure ofd
by Rnew.

Setting back values Here, we want to benefit from the
previous computation ofdi instead of starting a new itera-
tion fromd. Thanks to explanation-sets, we know the values
of d \ di which have been removed because of a retracted
operator (that is an operator ofR\Rnew). This set of values
is defined byd′ = {h ∈ d | ∃r ∈ R \ Rnew, r ∈ expl(h)}
and must be re-introduced in the domain. Notice that all
incremental algorithms for constraint retraction amount to
compute a (often strict) super-set of this set. The next theo-
rem ensures that we obtain the same closure if the computa-
tion starts fromd or from di ∪ d′ (the correctness of all the
algorithms which re-introduce a super-set ofd′).

Theorem 1 CL ↓ (d,Rnew) = CL ↓ (di ∪ d′, Rnew)
Proof. ⊇: becausedi ∪ d′ ⊆ d and the closure operator is
monotonic.

⊆: we proveCL ↓ (d, Rnew) ⊆ di ∪ d′. Reductio ad
absurdum: leth ∈ CL ↓ (d, Rnew) but h 6∈ di ∪ d′.
h 6∈ di, so expl(h) exists. Either expl(h) ⊆ Rnew, so
h 6∈ CL ↓ (d, Rnew): contradiction; or expl(h) 6⊆ Rnew,
soh ∈ d′: contradiction. Thus,CL ↓ (d, Rnew) ⊆ di ∪ d′

and so, by monotonicity:CL ↓ (CL ↓ (d, Rnew), Rnew) ⊆
CL ↓ (di ∪ d′, Rnew).

Controlling what has been done and repropagation In
practice the iteration is done with respect to a sequence of
operators which is dynamically computed thanks to a prop-
agation queue. At theith step, before setting values back,
the set of operators which are in the propagation queue is
Ri. Obviously, the operators ofRi ∩ Rnew must stay in the
propagation queue. The other operators (Rnew \Ri) cannot
remove any element ofdi, but they may remove an element
of d′ (the set of re-introduced values). So we have to put
back in the propagation queue some of them: the operators
of the setR′ = {r ∈ Rnew | ∃h ← B ∈ Rr, h ∈ d′}.
The next theorem ensures that the operators which are not in
Ri∪R′ do not modify the environmentdi∪d′, so it is useless
to put them back into the propagation queue (the correctness
of all algorithms which re-introduce a super-set ofR′ in the
propagation queue).

Theorem 2 ∀r ∈ Rnew \ (Ri ∪R′), di ∪ d′ ⊆ r(di ∪ d′)

FLAIRS 2003 175

Proof. we provedi ⊆ r(di ∪ d′):

di ⊆ r(di) becauseRnew \ (Ri ∪R′) ⊆ Rnew \Ri

di ⊆ r(di ∪ d′) becauser is monotonic

we proved′ ⊆ r(di ∪ d′):

Reductio ad absurdum: leth ∈ d′ but h 6∈ r(di ∪ d′). Then
there existsh ← B ∈ Rr, that isr ∈ {r′ ∈ Rnew | ∃h ←
B ∈ Rr′ , h ∈ d′}, thenr 6∈ Rnew\(Ri∪R′): contradiction.
Thusd′ ⊆ r(di ∪ d′).

Therefore, by the two theorems, any algorithm which
restarts with a propagation queue includingRi ∪ R′ and an
environment includingdi∪d′ is proved correct. Among oth-
ers thePALM algorithm for constraint retraction is correct.

Discussion
(Fages, Fowler, & Sola 1998) and (Codognet, Fages, & Sola
1993) both use a dependency graph to perform their incre-
mental constraint retraction. This dependency graph is far
less precise that our explanation mechanism. Indeed, value
restoration is performed the following way: if the relaxed
constraintc has removed values of a variablex, then all
these values are restored; next, if another constraint has re-
moved values of another variabley because of an environ-
ment/domain reduction ofx then all of them are put back
evenif the removal of a value ofy is the consequence of
the removal of a value ofx which has not been removed by
c. This set of restored value is clearly a superset of ourd′.
Thus, according to theorem 1 their algorithms are members
of the family of algorithms proved correct here.

Conversely,DNAC* algorithms (DNAC4 (Bessìere 1991),
DNAC6 (Debruyne 1996)) usejustification(namely the first
encountered constraint on which the value has no support
for a given value deletion). This amounts to record direct
effects of constraints. Indirect effects need to be recursively
computed. However, here again, all values fromd′ will be
restored and according to theorem 1,DNAC* algorithms ob-
tain the closure they would have obtained restarting from the
initial environment. To reinforce arc-consistency,DNAC*
algorithms do no look for a support for each value on each
constraint. They only check whether the restored values still
have at least one support on each constraint, and obviously
propagate the eventual removals. Therefore,DNAC* begin
the propagation looking for supports only when this can lead
to the deletion of a restored values. However, the theorem 2
ensures that this is sufficient.

Another way to perform constraint retraction has been
proposed in (Georget, Codognet, & Rossi 1999). The main
difference with our work is that they do not modify the
solver mechanism. Indeed, constraints dependencies are
computed only when a constraint has to be removed. In these
conditions, the comparison with our work is difficult. Nev-
ertheless, in that paper three lemmas are introduced to prove
the correctness of their algorithms. All three are verified in
our framework.

Conclusion
This paper focuses on the correctness of constraint retrac-
tion algorithms in the framework of domain reduction and

is illustrated by the constraint solverPALM. Furthermore,
sufficient conditions to be verified to ensure correctness of
retraction algorithms are provided.

Constraint retraction is addressed as a three phase pro-
cess: disconnecting the constraint, enlarging the current en-
vironment/domain and re-propagating. The proof of correct-
ness proposed here uses the notions of explanation defined
in an adapted theoretical framework. Explanations are used
by the proofs, but the proofs obviously apply to algorithms
which do not use explanations insofar as they re-introduce
a good set of values in the environment and a good set of
operators in the propagation queue.

The precision obtained in the paper is due to the use of
deduction rules. Any local consistency operator can be de-
fined by such a set. A deduction rule allows to describe the
withdrawal of a value as the consequence of others value re-
movals. The linking of these rules completely defines, in
terms of proof trees, explanations of value removals. This
precision allows us to prove the correctness of a large fam-
ily of constraint retraction algorithms.

References
Apt, K. R. 1999. The essence of constraint propagation.Theoretical Computer Science221(1–
2):179–210.

Benhamou, F. 1996. Heterogeneous constraint solving. In Hanus, M., and Rofrı́guez-Artalejo,
M., eds.,International Conference on Algebraic and Logic Programming, volume 1139 ofLecture
Notes in Computer Science, 62–76. Springer-Verlag.

Berlandier, P., and Neveu, B. 1994. Arc-consistency for dynamic constraint problems: A rms-free
approach. In Schiex, T., and Bessiére, C., eds.,Proceedings ECAI’94 Workshop on Constraint
Satisfaction Issues raised by Practical Applications.

Bessìere, C. 1991. Arc consistency in dynamic constraint satisfaction problems. InProceedings
AAAI’91.

Codognet, P.; Fages, F.; and Sola, T. 1993. A metalevel compiler of clp(fd) and its combina-
tion with intelligent backtracking. In Benhamou, F., and Colmerauer, A., eds.,Constraint Logic
Programming: Selected Research, Logic Programming. MIT Press. chapter 23, 437–456.

Cousot, P., and Cousot, R. 1977. Automatic synthesis of optimal invariant assertions mathematical
foundation. InSymposium on Artificial Intelligence and Programming Languages, volume 12(8)
of ACM SIGPLAN Not., 1–12.

Debruyne, R. 1996. Arc-consistency in dynamic CSPs is no more prohibitive. In8th Conference
on Tools with Artificial Intelligence (TAI’96), 299–306.

Doyle, J. 1979. A truth maintenance system.Artificial Intelligence12:231–272.

Fages, F.; Fowler, J.; and Sola, T. 1995. A reactive constraint logic programming scheme. In
International Conference on Logic Programming. MIT Press.

Fages, F.; Fowler, J.; and Sola, T. 1998. Experiments in reactive constraint logic programming.
Journal of Logic Programming37(1-3):185–212.

Ferrand, G.; Lesaint, W.; and Tessier, A. 2002. Theoretical foundations of value withdrawal
explanations for domain reduction.Electronic Notes in Theoretical Computer Science76.

Georget, Y.; Codognet, P.; and Rossi, F. 1999. Constraint retraction in clp(fd): Formal framework
and performance results.Constraints, an International Journal4(1):5–42.

Jussien, N.; Debruyne, R.; and Boizumault, P. 2000. Maintaining arc-consistency within dynamic
backtracking. InPrinciples and Practice of Constraint Programming (CP 2000), number 1894 in
Lecture Notes in Computer Science, 249–261. Singapore: Springer-Verlag.

Jussien, N. 2001. e-constraints: explanation-based constraint programming. InCP01 Workshop
on User-Interaction in Constraint Satisfaction.

Laburthe, F. 2000. Choco: implementing a cp kernel. InCP00 Post Conference Workshop on
Techniques for Implementing Constraint programming Systems (TRICS).

Tsang, E. 1993.Foundations of Constraint Satisfaction. Academic Press.

176 FLAIRS 2003

