
Meta-S: A Strategy-Oriented Meta-Solver Framework

Stephan Frank and Petra Hofstedt
Technical University Berlin

{sfrank, ph}@cs.tu-berlin.de

Pierre R. Mai
PMSF IT Consulting
pmai@pmsf.de

Abstract

Meta-S is a practical implementation and extension of the
theoretical framework developed by Hofstedt, which allows
the user to attack problems requiring the cooperation of arbi-
trary domain-specific constraint solvers. Through its modu-
lar structure and its extensible strategy specification language
it also serves as a test-bed for generic and problem-specific
(meta-)solving strategies, which are employed to minimize
the cooperation overhead incurred. This paper introduces
Meta-S, focusing on its strategy-related aspects.

Introduction
Constraint solving has been actively researched during the
last decades, and good progress has been made in reduc-
ing the computational costs associated with this approach
for several specialized problem domains. However since
many problems are more naturally described using mixed-
domain constraints, one focus of current research has been
on combining specialized constraint solvers into one solver
that is able to handle such mixed-domain constraints. The
work (Hofstedt 2001) describes a meta-solver approach that
enables the cooperative solving of mixed-domain constraint
problems using arbitrary specialized solvers, none of which
would be able to handle the problem individually. Treating
the employed solvers as black boxes, the meta-solver takes
constraints from a global pool and propagates them to the
individual solvers, which are in return requested to provide
newly gained information (i.e. constraints) back to the meta-
solver, through variable projections. In order to turn mixed-
domain constraints into single-domain constraints, user and
solver generated constraints are analyzed and split up into
parts processable by the individual solvers. This overall
propagation–projection cycle is repeated until a failure oc-
curs or the pool is emptied.

The major advantage of this approach lies in the ability
to integrate arbitrary, new or pre-existing constraint solvers,
to form a system that is capable of solving complex mixed-
domain constraint problems, at the price of increased coop-
eration overhead. This overhead can however be reduced
through more intelligent and/or problem-specific coopera-
tive solving strategies.

Copyright c© 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

This paper describes the current implementation of the
theoretical work of Hofstedt, which, taking aboard lessons
learned in the first proof-of-concept implementation (Hof-
stedt, Seifert, & Godehardt 2001), offers a fully modular
meta-solver framework, that also serves as a test-bed for
ongoing research into new, more efficient generic solving
strategies. It also provided the foundation for the design and
implementation of an extensible strategy specification lan-
guage, which allows users to define problem-specific solv-
ing strategies, based on their knowledge of the problem
structure and/or the performance characteristics of the par-
ticipating solvers. We will focus on the strategy-related as-
pects of Meta-S in this paper.

The following section gives a short overview of the
framework, followed by a more detailed description of the
strategy-related parts of the system, with special emphasis
on those items that enable the integration of new solving
strategies at various levels of the design. This leads over to
the next section, where we are focusing on generic strate-
gies, their construction and properties. The last section in-
troduces the strategy specification language, including an
example strategy. Finally we conclude our paper.

The Framework
The overall structure of the meta-solver framework, as de-
picted in Figure 1, was kept highly modular, to ensure that
even radical changes to one module would not harm the util-
ity of the overall framework. The three main modules are
the Base module, the Meta module, and any number of plug-
gable constraint solvers.

The Base module provides the common substrate of the
whole Meta-S system. This includes the external and in-
ternal representations of constraints, facilities for translating
between those, a syntax extension facility, a pattern match-
ing facility for constraints, and the abstract interface be-
tween the framework and attached constraint solvers.

As the system is embedded into the Common Lisp (CL)
programming language, it was deemed most convenient to
use an s-expression based syntax as the external represen-
tation for constraints. This has the additional benefit of
eliminating the problems associated with operator prece-
dence rules in a system with extensible operators, since s-
expressions are fully parenthesized. In order to support the
use of better-suited or more natural syntax for certain prob-

FLAIRS 2003    177  



Meta

Meta-Solver Basic Strategies

Strategy LanguageUser Macros

«Solver» Interval

«Solver» Linear

«Solver» CL-Solver

FD-Solver

«Solver» FD-Rational «Solver» FD-Float

«Solver» FD-String

Base

Constraints Translation

SyntaxPattern Language Solver

Figure 1: The module structure of Meta-S

lem domains, the system provides a syntax extension facil-
ity, which, based on CL reader-macros, allows the definition
and selection of named syntax extensions.

The pattern matching facility provides positional pattern
expressions for matching constraints based on their structure
and contents. It is applied mainly in the strategy language,
but also has uses in other parts of the system.

Using the abstract solver interface of the base module,
we have currently interfaced several external and inter-
nal constraint solvers: linear arithmetic and interval arith-
metic solvers, finite-domain solvers for rationals, floats and
strings, and a CL solver toolkit that enables the generation
of residuation-based solvers from CL functions.

The Meta module includes the meta-solver proper, user
facilities to support the command line interface, and pro-
grammatic macros to ease the integration of the meta-solver
system into other applications. Another part is the strategy
framework, which will be considered later.

The class meta-solver lies at the core of this module. In-
stances of it represent each actual instantiation of the meta-
solver system, which is defined by the participating solvers,
the defined variables and the initial disjunction, i.e. it cor-
responds to one particular problem description and hence a
complete constraint system that is to be tackled.

Hofstedt introduces the notion of configuration to rep-
resent the state of the architecture. The meta-solver class
keeps all state information that is shared between all config-
urations. Instances of the class meta-config correspond to
such configurations that each represent a potential solution.
These configurations are necessary in order to process the
different branches of a disjunction that each can individually
fail or succeed. The state information of each configuration
comprises the set of pending constraints (the constraint pool)
and possibly some strategy specific information like the cur-
rent projection mode1, or pending disjunctions. The state

1An optimization adopted from (Hofstedt, Seifert, & Godehardt
2001), which distinguishes between weak projection, which tries to

information for the participating solvers like the store copy
used in the current branch and the dirty flag (i.e. have there
been changes since the last projection, which would neces-
sitate further projections) is represented by instances of the
class solver-config, one for each solver and configuration.

The meta-solver starts off with a configuration for each of
the branches of the initial disjunction. From this set of pend-
ing configurations one is picked for the next solving step.
Further disjunctions encountered during the solving process
cause cloning of the current configuration, adding further
configurations to the set of pending configurations. The con-
figurations in this set are processed one by one until no pend-
ing configurations are left (all having either failed, thus caus-
ing their destruction, or terminated and hence moved to the
set of solved configurations).

The abstract class meta-config keeps track of all associ-
ated solver-config instances, and offers a minimal interface
between the configurations and the controlling meta-solver.
This interface comprises the following categories of generic
functions (GFs):

• GFs to control the life-time of configurations, i.e. creation
of the initial configuration, cloning of configurations, and
destruction once they have failed or are no longer needed.

• GFs to add new constraints and disjunctions (of conjunc-
tions) of constraints to the pool of a configuration.

• A GF that controls the complete process of “solving”
a particular configuration, which, once invoked by the
meta-solver, continues processing until the configuration
either fails (and is hence destroyed), succeeds, thus signi-
fying a “solution” to the initial constraint problem, or is
suspended, thus yielding control back to the meta-solver,
without having completed processing.

avoid returning disjunctions where possible, e.g. by replacing them
with interval constraints, and strong projection, which does not,
in order to avoid backtracking induced by early creation of (large)
disjunctions. Solvers are free to handle both like strong projection.

178    FLAIRS 2003   



This last option can be used by strategies to e.g. limit pro-
cessing depth/time per configuration, which can speed up
the task of finding a single solution, quickly, rather than
all possible solutions. A suspended configuration can be
restarted at any time by reinvoking this GF.

• A GF that extracts the set of final constraints from a
solved configuration for result presentation/processing.

As long as implementors adhere to the contracts under-
lying those generic functions, they are free to employ any
particular solving strategy, while retaining the ability to use
the remainder of the framework (i.e. the base constructs, the
meta-solver and all attached solvers) without any changes.

Thus meta-config represents the natural place for im-
plementing different solving strategies, through complete
implementations of the GF meta-config-run. While this
gives strategies much freedom in their implementations, it
also means that they must implement nearly all code from
scratch. Further experimentation showed that more code
reuse could be achieved by factoring out more code that is
common to many/most strategies, so that strategies could
override default code at a finer granularity, thus keeping
most of the freedom, but reducing the amount of work
needed to implement new strategies. This led to the creation
of the abstract class strategy, which we will describe next.

Generic Strategies
Central to the creation of the strategy class was the formula-
tion of algorithm-independent termination conditions, which
could be kept track of without particular assistance from the
strategy proper, thus freeing the implementors of strategies
from keeping track of termination conditions themselves.

In addition to the state kept by meta-config, the class
keeps track of the set of pending constraints, the set of de-
layed constraints2 (per solver), the current projection mode
(strong or weak), and the remainder of any parked disjunc-
tion. Disjunction parking is an optimization which allows
the gradual dissolution of a disjunction, so that, for a dis-
junction of n branches, instead of cloning the current state
n-1 times all at once, we clone it just once, leaving the re-
maining n-1 branches of the disjunction as a parked dis-
junction in the clone. This reduces the set of live config-
urations considerably, especially for disjunctions with many
branches.

Using those pieces of state information we are able to for-
mulate the following set of termination criteria.

Termination of the solving process of a particular config-
uration ensues when:

1. there remain no pending constraints in the pool,
2. there is no parked disjunction,
3. none of the solvers are marked dirty, i.e. there are no

changes in the solver stores that have not yet been re-
quested by projection, and

4. we are currently in strong projection mode.

2Solvers can delay the processing of constraints they are offered
to a later point in time, for example when the constraint references
variables whose domain is not yet known to the solver.

Since these criteria can be independently tested at any point
during the solving process, we can “outsource” the termi-
nation testing from the solving strategy itself. Furthermore,
updating of all required state can be done automatically in
the various individual actions, as we shall see below. Taken
together, this allows the formulation of strategies without ex-
plicit checks for termination. Since the conditions are fairly
narrow, every strategy that eventually empties the pool and
projects all solvers w.r.t. all variables as well as eventually
switches to strong projection, will terminate regardless of
any other actions or the order of actions it performs.

The class strategy also extends the interface of meta-
config, providing more fine-grained action-oriented generic
functions, and thus more hooks where derived classes can
add or substitute their own, specific code. It also provides
many default implementations for those GFs, and the GFs of
meta-config, in order to factor out code common to most/all
strategies. The generic functions fall into one of the follow-
ing categories:

• GFs to keep track of the delaying and undelaying of con-
straints.

• GFs to propagate constraints, and project individual or all
solvers against a set of variables, defaulting to all out-
standing variables of the given solver.

• A GF that handles the conversion of projected constraints
from the solver they originated on to all other solvers, and
another GF that automatically extends this conversion to
the level of disjunctions of conjunctions of constraints.

• GFs that are invoked by the control loop to test for ter-
mination (strategy-finish ), and to carry out all actions
that are needed when the control loop is to be restarted
(strategy-restart-actions, see below).

• The GF strategy-run that constitutes the whole control
loop of the strategy, invoked by a default method on the
GF meta-config-run, which establishes constructs to dy-
namically exit from the overall control loop at any time,
returning a return value indicating the reason for termina-
tion, i.e. either success, failure or suspension.

• The GF strategy-step that carries out the “normal” pro-
cessing of the control loop, and which is the central place
for strategies to hook into to influence the ordering and
form of propagation and projection actions.

The default method for strategy-run now implements the
following overall algorithm:

restart:
invoke strategy-restart-actions
until pending constraints = ∅∧

∀solver:¬dirty(solver)
do

invoke strategy-step
end until
if strategy-finish returns then

goto restart
end if

Since individual strategies may employ optimizations that
keep pending constraints from the set of pending constraints,

FLAIRS 2003    179  



like e.g. the disjunction parking discussed earlier, we allow
further termination checking to occur through methods on
the generic function strategy-finish, which can restart the
loop when needed. It does this by returning, and, in con-
junction with methods on the GF strategy-restart-actions, by
placing new constraints into the set of pending constraints,
and/or causing the dirtying of solvers, so that the unaug-
mented termination check does not succeed.

Thus freed from keeping track of termination, the generic
function strategy-step represents the place to implement
strategies based on the order of constraint propagation and
projection. The default method on this GF implements a
simple propagate all, project all strategy.

Demonstrating the flexibility of the abstract strategy class
we implemented three generic strategies that differ in their
handling of constraint disjunctions. They were realized
by defining methods on the generic functions for adding
disjunctions and termination testing (strategy-finish ), us-
ing less than 50 lines of code combined. Thus the strate-
gies leave the overall control loop unchanged, and can be
combined with problem-specific strategies defined using the
strategy language described in the next section.

The individual strategies implement the following ap-
proaches to deal with disjunctions:

eager This is the most simple though surprisingly effective
strategy. Once a disjunction is encountered a clone of the
pool and the solver states is (eventually) produced for ev-
ery disjunction branch. As a space optimization the actual
clone creation for each branch is delayed until that branch
is actually processed, keeping a backup copy for further
cloning (see the discussion on parked disjunctions above).
All strategies share an optional variable projection order
argument that influences the order in which variable pro-
jections are requested by the meta-solver, thus controlling
the generation of disjunctions.

lazy This is similar to the eager strategy though cloning
is delayed to process pending conjunctions in the hope
of further pruning the search space with additional con-
straints before actually processing any pending disjunc-
tions, thus performing the cloning this entails. How-
ever, as it turned out, this approach conflicts with the
weak/strong-projection scheme, which already moves
many disjunctions to a stage where projections do not
yield any non-disjunctive constraints, thus removing most
of the advantages of the lazy strategy.

heuristic This strategy is a hybrid of the previous two and
integrates a heuristic element known as fail first as de-
scribed in (Bitner & Reingold 1975). Since generic strate-
gies in the meta-solver cannot have any domain know-
ledge as external solvers are treated as black boxes, they
can only look at the domain size by counting the num-
ber of branches of a projected disjunction. Thus it is ad-
vantageous to perform strong-projections on all solvers,
and then choosing the disjunction with the smallest set
of possible values and discarding all other disjunctions.
Care must be taken to mark solvers, which returned a now
discarded disjunction, dirty (again) to ensure that the in-
formation they contain is requested again at a later stage.

strategy time # of # of projections
in s clones weak strong

lazy 79.0 3521 18909 16126
lazy, ordered 27.7 5269 2761 25366
eager 91.2 2502 20933 2068
eager, ordered 9.2 253 2717 858
heuristic 10.2 73 3829 1276
heuristic, ordered 8.4 45 2915 1012

domain-eq-first 9.1 253 2728 858
once-domain-eq-first 9.2 253 2728 858
eager-solver-flow 6.3 253 2013 858
heuristic-solver-flow 5.4 45 2123 1012

Table 1: Benchmarking results for generic and problem-spe-
cific strategies for the well-known SEND+MORE=MONEY
constraint problem.

This strategy uses the variable projection ordering as a tie
breaker to choose among same-sized disjunctions.

These strategies were benchmarked against a set of more
than 10 different constraint systems to evaluate their per-
formance. The upper half of Table 1 gives their results
for one particular constraint system, namely the well-known
“SEND + MORE = MONEY” problem with multiple so-
lutions, solved cooperatively by a linear arithmetic and a
finite-domain solver. It illustrates the general performance
levels of the generic strategies, where the “ordered” entries
are based on strategies with a specified (near-)optimal vari-
able ordering for the problem at hand, whereas the other en-
tries use a random (identical) variable ordering.

The table underscores the important gains the heuristic
strategy offers over the other strategies, because it usually
(though not always) offers very good performance levels
even in the absence of a known-good variable ordering, thus
freeing the user from the need to find such a variable order-
ing for their specific constraint systems.

Strategy Language
Despite the quite comfortable performance improvements
seen in the generic strategies, we have also seen that large
gains can be achieved through the incorporation of problem-
specific information (e.g. variable projection order) into the
solving process. In order to allow the user to devise more
efficient strategies based both on existing generic strategies,
and his knowledge about the problem at hand, a strategy lan-
guage was developed.

It was anticipated that the user would want to control the
exact order of constraint propagation, based on the target
solver and/or the form of the constraint, as well as the order
of projection based on variables and solvers. Additionally,
the user might, in certain circumstances, want to (re)write
constraints on the fly, especially when converting projected
constraints from one solver for the consumption of other
solvers, which do not implement an identical set of relations
or functions.

Founded on those considerations, the strategy language
offers the following set of constructs:

180    FLAIRS 2003   



• The language is designed as an extension to Common
Lisp, thus offering all normal CL constructs to the user.
This provides the user with all kinds of normal control
and data flow constructs, as well as abstraction features
like macros.

• Since strategies live at the core of the inner loop of con-
straint solving, efficiency of execution is very important.
By compiling the strategy language (on invocation) via
CL to native code, we ensure that no interpretation over-
head is carried into the inner loop of execution.

• In order to allow the selection, destructuring and rewrit-
ing of constraints, the strategy language supports po-
sitional pattern expressions, with a corresponding pat-
tern matcher. The pattern expressions allow destructur-
ing of constraints by binding variables to matched sub-
expressions. There are also constructs to partition a set of
constraints (e.g. the set of pending constraints) into dis-
joint subsets based on a set of pattern expressions.
Like the strategy language as a whole, pattern expressions
are compiled to efficient native code pattern matchers.
Creation of constraints is supported through a template
mechanism, based on the CL backquote reader-syntax.

• The language offers primitives for the propagation of sets
of constraints, as well as the projection of individual or all
solvers against a given set of variables.

Strategies are defined, based on existing strategies, using
the define-strategy construct, which allows the user to spec-
ify methods to override those in the base strategy, through
the specification of “method clauses”. For example the
:step “method clause” can be used to define methods on the
generic function strategy-step. Another method clause is the
:convert clause, which can be used multiple times in a strat-
egy, to define more specialized methods for converting pro-
jected constraints between any pair of solvers in the system.

Using the constructs provided by the strategy language, it
is possible to design more advanced, custom-tailored strate-
gies, which easily outperform even the best generic strate-
gies. Figure 2 gives the specification of one such strategy.
This strategy prefers domain and equality constraints over
other constraints, and takes advantage of the fact that it is
mostly the linear arithmetic solver (“my-linar”) which gen-
erates restrictions, whereas the finite-domain solver mostly
just generates all possible combinations. The performance
improvements thus gained can be seen in the lower half of
Table 1, where it is compared to generic and other similar
problem-specific strategies which prioritize different types
of constraints and solvers.

Conclusion and Related Work
We have presented an implementation of the meta-solver
framework as described in (Hofstedt 2001). The meta-solver
coordinates the cooperative work of arbitrary pluggable con-
straint solvers. Redesign of an early proof-of-concept pro-
totype now provides better modularization and encapsula-
tion of the termination conditions. To cushion the inherent
collaboration overhead and resulting performance problems

(define-strategy heuristic-solver-flow
(heuristic-strategy)

(:step
(select ((eq-constraints (= t t))

(in-constraints (in t t))
(rest t))

(tell-all in-constraints)
(tell-all eq-constraints)
(tell-all rest)
(project-one my-linar)
(tell-all)
(project-all))))

Figure 2: Strategy specification for the heuristic-solver-flow
strategy.

of meta-solver systems stemming from the necessary com-
munication between the participating solvers, we designed
a strategy language that enables the definition of problem
domain tailored cooperation strategies. With the help of a
positional pattern language and taking advantage of the en-
capsulated termination conditions it is possible to easily en-
hance or alter existing basic strategies for problem specific
needs. The effect of such strategies has been verified on sev-
eral multi-domain constraint problems.

In recent years several approaches for cooperating solvers
have been presented (Kobayashi et al. 2002; Monfroy 1996;
Rueher 1995). In the works of Monfroy and Rueher coop-
eration is based on a fixed set of strategies and solvers. The
architecture of Kobayashi et al. is quite similar to the one
of Hofstedt. However, with the presented strategy language
our system gives finer control over the individual collabo-
ration steps than the abstract control facilities employed in
other systems. The level of abstraction used depends on the
desired strategy. To our knowledge, the grouping of con-
junction parts based on their structure as exercised by our
pattern facility has not been applied in any similar system.

References
Bitner, J., and Reingold, E. M. 1975. Backtrack Program-
ming Techniques. Communications of the ACM (CACM)
18(11):651–655.
Hofstedt, P.; Seifert, D.; and Godehardt, E. 2001. A Frame-
work for Cooperating Constraint Solvers – A Prototypic
Implementation. In CoSolv Workshop, CP’2001.
Hofstedt, P. 2001. Cooperation and Coordination of Con-
straint Solvers. Ph.D. Dissertation, Technische Universität
Dresden. Shaker Verlag, Aachen.
Kobayashi, N.; Marin, M.; Ida, T.; and Che, Z. 2002. Open
CFLP: An Open System for Collaborative Constraint Func-
tional Logic Programming. In WFLP’2002.
Monfroy, E. 1996. Solver Collaboration for Constraint
Logic Programming. Ph.D. Dissertation, Université Henri
Poincaré – Nancy I.
Rueher, M. 1995. An Architecture for Cooperating Con-
straint Solvers on Reals. In Podelski, A., ed., Constraint
Programming: basics and trends, volume 910 of LNCS,
231–250. Springer-Verlag.

FLAIRS 2003    181  


