
Language, Definition and Optimal Computation of CSP Approximations

Arnaud Lallouet, Thi Bich Hanh Dao and AbdelAli Ed-Dbali
Université d’Orléans — LIFO

BP 6759 — F-45067 Orléans cedex 2

Abstract

In this paper, we introduce a formal framework to de-
scribe CSP approximations (usually called consisten-
cies), showing the importance of the language (or data-
structure) used to perform this consistency. We intro-
duce the notion of R-consistency which takes into ac-
count the representation of the data and which gener-
alizes many known consistencies. We then automati-
cally derive from a CSP and its approximation scheme
a rule system describing the constraint propagation and
we propose an optimal algorithm in the spirit of AC4 to
achieve it.

Introduction
This paper introduces the following notions:

• The formalism of CSP approximation: the main novelty of
the CSP approximation framework is to show how the lan-
guage used for the computation, or equivalently the data-
structure used to represent the problem, is a central issue
in determining the level of local consistency which can
be performed. We propose to make explicit the language
used for the computation by approximating a CSP C to be
solved by another CSP K used as a data-structure.

• R-consistency: this form of consistency defines the prun-
ing of tuples relatively to the approximating CSP K . It
does not make other assumptions about represented data.
For example, variables and their domains may not be ac-
cessible.

• A rule system: from a CSP C, an approximation frame-
work K and a notion of consistency, we automatically de-
rive a rule system to perform the consistency.

• The RC4 algorithm: this algorithm optimally enforces
the desired level of consistency. Its first part consists in
the rule generation in such a way that its second part can
optimally perform the propagation. Optimality is under-
stood in the same meaning as in the AC4 algorithm (Mohr
& Henderson 1986). In particular, it does not mean that
this algorithm could be faster than optimized ones (see
(Bessière 1994) for one of the first discussion on this
topic).

Copyright c© 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

CSP approximations and R-consistency
In this section, we present a high-level model for the approx-
imation computed by some consistencies. This set-theoretic
formulation allows to describe very precisely the approxi-
mation process without introducing a particular language to
express constraints or reductions done in the solving pro-
cess. The basic idea is to clearly separate the CSP to be
solved from its approximation (and more generally from the
sequence of approximating CSPs). In solvers, the approxi-
mating CSP represents the evolving data-structure used for
the computation.

Let V be a set of variables and D = (DX)X∈V their
(finite) domains. For W ⊆ V , we denote by DW the set
of tuples on W , namely ΠX∈W DX . Therefore, we have
DV = ΠD. Projection of a tuple or a set of tuples on a
set of variables is denoted by |, natural join of two sets of
tuples is denoted by �. If A is a set, then P(A) denotes its
powerset and for a ∈ A, A−a denotes A− {a}.
Definition 1 (Constraint) A constraint c is a pair (W, T)
where

• W ⊆ V is the arity of the constraint c and is denoted by
var(c).
• T ⊆ DW is the solution of c and is denoted by sol(c).

A CSP is a set of constraints. The join of two constraints
is defined as a natural extension of the join of tuples: the
join of c and c′ is the constraint c � c′ = (var(c) ∪
var(c′), sol(c) � sol(c′)). Similarly, for c = (W, T) and
U ⊆ V , we define:

• the projection c|U = (W ∩ U, T |U).

• the cardinal |c| = |sol(c)|.
Join is naturally extended to CSPs and the solutions of a CSP
C are sol(� C). A direct computation of this join is too
expensive to be tractable. We define the following notion of
approximation between constraints and also between CSPs:

Definition 2 (Approximation ordering) A constraint c′ =
(W ′, T ′) approximates c = (W, T), denoted by c ⊆ c′, if:

var(c) = var(c′) and sol(c) ⊆ sol(c′)

A CSP K approximates C, denoted by C ⊆ K , if:

� C ⊆ � K

182 FLAIRS 2003

In the following, we consider that the resolution of the CSP
C will be done within the approximation defined by K . Intu-
itively, the CSP K is intended to be physically represented,
for example (but not exclusively) by sets of tuples. This is
why C and K may be built on completely different con-
straints. When all constraints in K are unary, and thus rep-
resent the domain of variables, it yields to the well-known
“domain reduction scheme” used in most solvers and repre-
sented in figure 1. More generally, K defines the language
we are allowed to manipulate: an access to the constraints of
C can be made only via this representation. The good choice
of K is a very important step and is related to the choice of
an ontology in the field of Knowledge Representation. We

Figure 1: Domain approximation of a CSP.

call K the approximating CSP. In the following, C repre-
sents the CSP to be solved and K the approximating CSP.
Here is an example of two different approximating CSPs:

Example 3 Let C be the CSP composed of one constraint:
c = ({X, Y, Z}, {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 1)}).
Here are two approximating CSPs K1 = {x, y, z} and
K2 = {x, yz} which are represented in figure 2. Here
x = ({X}, {(0), (1)}) is an unary constraint representing
the domain of X and yz = ({Y, Z}, {(0, 0), (0, 1), (1, 0)})
is an arbitrary binary constraint. The constraints y and z
are defined in the same straightforward way.

Figure 2: Two different approximations for a CSP.

Most of the time, switching from C to K provides a gain
in terms of memory consumption. For example, in the do-
main reduction approximation for n variables and a domain
of size m, it boils down from mn to m ∗n. But the trade-off
is that representable approximations are less precise since
they are limited to (the union of) cartesian products. Most
(all?) solvers only represent variable domains and hence the
best approximation, which is computed by arc-consistency
when only one constraint is processed at a time, is limited

by this representation of data. The use of non-unary con-
straints in K opens the way to a very fine tuning between the
precision of the approximation and the memory consump-
tion. Of course, the use of arc-consistency on a non-unary
approximating CSP allows prunings which are impossible
to get in the domain approximation framework and which
are different from those obtained by path-consistency or k-
consistency, where two or more constraints are processed at
a time. By using locally a precise representation, it is pos-
sible to strenghten the efficiency of filtering on some impor-
tant variables.

For a CSP C and a constraint k, we call C-scope of k
the set C(k) = {c ∈ C | var(c) ∩ var(k) �= ∅}. An ap-
proximating CSP K is precise w.r.t. C if ∀k ∈ K, ∀c ∈ C,
var(k) ∩ var(c) �= ∅ ⇒ var(k) ⊆ var(c). The domain
reduction scheme is a precise approximation. Precise ap-
proximations provide a simplification in the rule generation
algorithm.

Since our goal is to find the best approximation (in
some sense), we call an approximating CSP K a search
state and the set of such states is the search space S =
Πk∈KP(Dvar(k)). We call singletonic a CSP K such that
| � K| = 1 (such a CSP represents a single tuple). A con-
sistency is a subset C ⊆ S such that:

∀K ∈ S, | � K| = 1 =⇒ (K ⊆ C ⇐⇒ K ∈ C)
In other words, a consistency contains (a representation of)
every solution of C and rejects every non-solution. All
known local consistencies differ by the way they treat non-
singletonic CSPs. Usually, C is closed by union. Global
consistency is exactly the set of representations in K of so-
lutions of C and null-consistency is S itself: it does noth-
ing or, which is the same, all search states are consistent.
Note also that in this framework, consistencies can be com-
pared easily by set-inclusion. Moreover, it gives new lights
on the basic nature of consistencies, for example, it is obvi-
ous that no local consistency can enforce global consistency
if ∃/k ∈ K, var(k) = var(C). This explains for exam-
ple why a n-consistent (Mohr & Masini 1988) CSP can still
have no solution.

We present here a notion of relational consistency called
R-consistency which takes into account the separation be-
tween C and K .

Definition 4 (c-R-consistency) A constraint k ∈ K is c-R-
consistent if:

k ∈ K(c) =⇒ k ⊆ (c � K(c)) |var(k)

Intuitively, it means that if a tuple belongs to k, then it must
extend a solution of c in the current approximation K(c),
K(c) being the K-scope of c. The approximating CSP K is
c-R-consistent if ∀k ∈ K , k is c-R-consistent.

Definition 5 (1R-consistency) An approximating CSP K
of a CSP C is 1R-consistent if ∀c ∈ C, K is c-R-consistent.

Definition 6 (nR-consistency) An approximating CSP K
of a CSP C is nR-consistent if ∀{c1, . . . , cn} ⊆ C, K is
(c1 � . . . � cn)-R-consistent.

We also call 1R-consistency ArcR-consistency and 2R-
consistency PathR-consistency.

FLAIRS 2003 183

Proposition 7 In the particular case of the domain reduc-
tion scheme, 1R-consistency coincides with node-, arc- and
hyperarc-consistencies and mR-consistency amounts to re-
lational (1, m)-consistency (Dechter & van Beek 1997). In
particular, 2R-consistency is the relational path-consistency.

The goal of a consistency-enforcing algorithm is to build
a sequence of approximations (Ki)i=1..n from an arbitrary
search state K0 = K to the greatest consistent state included
in K .

Propagation rules
Enforcing R-consistency can be made explicit by a rule sys-
tem we call propagation rules. In this paper, we adopt
a logic programming presentation: for a constraint c =
(W, T) and a tuple a ∈ DW , we associate an atom c(a).
We call Herbrand base HB(K) the set of atoms obtained
by instanciation of constraints of K . Following the same
idea, a constraint c is identified with the set of its atoms
{c(a)|a ∈ sol(c)}.

The intuitive idea is that, since K is intended to be
the evolving data-structure, the propagation occurs between
atoms of HB(K). An atom is intended to be true if it is
eliminated by the propagation process, which means that it
does not participate to any solution of the CSP C.

Definition 8 (Propagation rule) A propagation rule is a
definite clause h ← B where h ∈ HB(K) and B ⊆
HB(K).
A propagation rule states that the head atom h can be deleted
whenever all atoms in its body are. In the domain reduc-
tion case, an atom represents a value in a variable’s domain.
Rule bodies must be carefully chosen to cover all possible
reason for the head to be removed. Our rule generation algo-
rithm provides a system of such rules for all possible atoms
in HB(K).

We first present rule generation on three examples before
stating the general case:

Example 9 (Arc-consistency) Let V = {X, Y },
let C be composed of only one constraint c =
({X, Y }, {(1, 2), (1, 3)}) and K be composed of two con-
straints x = ({X}, {(1), (2)}) and y = ({Y }, {(2), (3)})
representing the domain of the two variables. The Herbrand
base is {x(1), x(2), y(2), y(3)} and every atom will be
the head of one (or more) rule. Let us build first the rule
for x(1). The supports (in the sense of AC4 (Mohr &
Henderson 1986)) of x(1) are y(2) and y(3). Hence it
yields the rule:

x(1) ← y(2), y(3)

and this is the only rule for x(1). For x(2), and since this
atom has no support, we generate the fact:

x(2) ←
For y, both y(2) and y(3) have x(1) as only support, yield-
ing the rules:

y(2) ← x(1)

y(3) ← x(1)

In the second example, we deal with hyperarc-consistency
(arc-consistency for non-binary constraints) but still in the

domain reduction approximation framework. In this exam-
ple, we have to select the interesting part of the constraint to
find the atoms of K involved to maintain the head of a rule:
Example 10 (Hyperarc-consistency) Let V =
{X, Y, Z}, let C be a CSP with one constraint
c = ({X, Y, Z}, {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 3)}
described in figure 3 and K be composed of three con-
straints x = ({X}, {(1), (2)}), y = ({Y }, {(2), (3)})
and z = ({Z}, {(3), (4)}) representing the domain of the
variables. Let us find the rules for x(1). The useful part of

Figure 3: Selection of c where X = 1.

the constraint c is the set of tuples where X = 1 (the grey
part in figure 3). In other words, x(1) can be removed if
all these tuples of c are discarded because of the removal
of values in the domain of Y and Z . The first tuple of c,
(1, 2, 3) is discarded either if y(2) or z(3) is removed, the
second if y(2) or z(4) is removed and the last one if y(3) or
z(4) is removed. Then, in order to discard all these tuples
of c, we just have to consider the removal of any one atom
in each line. For example, the removal of y(2) and y(3) is
enough to forbid all three atoms, and so are the removal
of y(2) and z(4). By taking all possibilities, we get the
following set of rules (rules with ∗ are redundant):

x(1) ← y(2), y(3)

x(1) ← y(2), z(4)

x(1) ← y(2), z(4), y(3) ∗
x(1) ← z(3), y(2), y(3) ∗
x(1) ← z(3), y(2), z(4) ∗
x(1) ← z(3), z(4), y(3) ∗
x(1) ← z(3), z(4)

Other rules include:
x(2) ← y(3)

x(2) ← z(3)

y(2) ← x(1)

y(2) ← x(1), z(3) ∗
y(2) ← x(1), z(4) ∗

The last example presents an approximating CSP different
from the domain approximation one:
Example 11 (1R-consistency) Let V = {X, Y, Z}, let C
be a CSP with three constraints “X �= Y ”, “X + Y ≤
Z” and “X + Y + Z = 8” and K be composed of two
constraints xy = ({X, Y }, {1, 2, 3} × {1, 2, 3}) and z =
({Z}, {(2), (3), (4)}). Because “X �= Y ” has the same
variables as the represented constraint xy, 1R-consistency
is here equivalent to a generalization of node-consistency.
Hence the generated rules are just facts:

xy(1, 1) ←
xy(2, 2) ←
xy(3, 3) ←

184 FLAIRS 2003

Let us find the rules whose head is xy(1, 2). Since the selec-
tion of the tuples where X = 1 and Y = 2 in “X +Y +Z =
8” is empty, we just have the fact:

xy(1, 2) ←
Because of the two tuples (1, 2, 3) and (1, 2, 4) in sol(c),

the constraint “X + Y ≤ Z” yields the following rule:
xy(1, 2) ← z(3), z(4)

However, this rule is made redundant by the preceding fact.

General case To every atom of HB(K) is associated
zero, one or more rules, each one being a possible reason
yielding to the atom’s removal. Let h(a) ∈ HB(K) be an
atom intended to be the head of a rule. The body of one of
these rules is constituted of atoms of HB(K) which support
h(a) via some constraint c ∈ C. Let us be more precise for
1R-consistency, in which every constraint c ∈ C(h) can be
a reason for the removal of h(a). For nR-consistency, we
should pick up all subsets of C of size n. So, since we only
focus on 1R-consistency, let c ∈ C(h). Since a constraint
is identified with a set of atoms, {h(a)} is the constraint
containing the only atom h(a). We denote by c[h(a)] the se-
lection c � {h(a)}|var(c) of c which matches with h(a) on
the corresponding variables. This corresponds to the inter-
esting part of c for the possible removal of h(a). In example
10, c[x(1)] corresponds to the grey part in figure 3.

The following notion of support extends the classical no-
tion introduced for the presentation of AC4 (Mohr & Hen-
derson 1986) to cope with approximating CSPs and n-ary
constraints. Let h(a) be an atom, c ∈ C(h) and c(b) be an
atom of c[h(a)]. For k ∈ K(c)−h, the k-support of h(a) rel-
atively to c(b) is the set of atoms suppk(h(a), c(b)) = k �

{c(b)}|var(k).

Definition 12 (Support) The support of h(a) relatively to
c(b) is the family:

supp(h(a), c(b)) = {suppk(h(a), c(b)) | k ∈ K(c)−h}
In example 10, suppy(x(1), c(1, 2, 4)) = {y(2)} and
supp(x(1), c(1, 2, 4)) = {{y(2)}, {z(4)}}. A k-support is
a set and not only an atom because arities of constraints in
C and K may overlap without being included (for some
k ∈ K and c ∈ C, var(k)\var(c) �= ∅). A rule corre-
sponds to a reason for all supports to be invalidated. For
this, and since a support of an atom is a set, it is enough to
have one of these sets suppressed. Hence each rule mod-
els a possible way for every support to be removed. Let
Bod(h(a)) = Πc(b)∈c[h(a)]supp(h(a), c(b)). One element
of Bod(h(a)) is a family giving for every atom c(b) in
c[h(a)] an element of supp(h(a), c(b)), or in other terms,
a suppk(h(a), c(b)) for some k ∈ K(c)−h. For every
B = (Bi)i∈c[h(a)] ∈ Bod(h(a)), we associate a rule:

h(a)←
⋃

i∈c[h(a)]

Bi

In example 10, Bod(x(1)) = {{y(2)}, {z(3)}} ×
{{y(2)}, {z(4)}}×{{y(3)}, {z(4)}} and the rules are those
given above. The set of these rules is a (ground) logic pro-
gram and its minimal model is the set of atoms removed by
the consistency. By construction, to each atom in this model
corresponds a proof-tree explaining its removal.

Procedure 1 RC4 Generation phase
Require: CSP C, approximating CSP K
Ensure: Set of propagation rules S

S = ∅
for all h(a) ∈ HB(K) do

for all c ∈ C(h) do
c[h(a)] := c � {h(a)}|var(c)

if c[h(a)] = ∅ then
S := S ∪ {h(a)←}

else
for all c(b) ∈ c[h(a)] do

for all k ∈ K(c)−h do
suppk(h(a), c(b)) := k � {c(b)}|var(k)

end for
end for
for all (B1, . . . , B|c[h(a)]|) ∈

Πc(b)∈c[h(a)] supp(h(a), c(b)) do

S := S ∪ {h(a)← ∪|c[h(a)]|
i=1 Bi}

Eliminate redundant rules
end for

end if
end for

end for

The RC-4 algorithm
The basic idea of the algorithm is a generalization of AC4
(Mohr & Henderson 1986). The first part of AC4 is de-
voted to set up a complex structure recording and linking
all supports for a variable’s value. The role of this structure
is played here by the set of rules. Hence the first part of the
RC4 algorithm consists in the rule generation (see Procedure
1) according to the theory described above.

In the second part of AC4, the structure is used to perform
propagation and this propagation is optimal in the sense that
every variable’s value is considered only once. In RC4, this
second part is a standard forward-chaining algorithm. The
version we give here uses the same trick as AC4 to be opti-
mal: the use of counters to record the propagations already
done. The idea of this part of the algorithm is to associate
to each rule one counter initialized to the lenght of the rule’s
body and decremented whenever an atom of the body gets
deleted. At the beginning, a propagation queue is initial-
ized with the set of facts (atoms without support) and each
time a counter reaches 0, the atom of the head is deleted
from the constraint’s domain and placed in the propagation
queue. Remaining rules with the same head are also deleted.
The process stoppes when the queue is empty. This part of
the algorithm is presented in Procedure 2. The optimality of
this part comes from the fact that each atom is touched only
once. This can also be viewed as an instance of the linear
algorithm to compute a transitive closure due to (Dowling &
Gallier 1984). However, the general optimality comes from
the non-redundancy of the rules obtained after elimination
(see (Brand 2002) for instance).

Related Work
The idea of CSP approximation has been sketched in (Dao et
al. 2002) to set a framework for solver learning. We present
in this paper a more in-depth study of its properties. In

FLAIRS 2003 185

Procedure 2 RC4 Propagation phase
for all rule l ← r ∈ S do

cl←r = |r| /* counter is initialized to the number of atoms in
r */

end for
Q := {h(a) | the rule h(a)← is in the set of rules}
while Q �= ∅ do

take an atom h(a) in Q
for all rule l ← r ∈ S where h(a) ∈ r do

cl←r := cl←r − 1
if cl←r = 0 then

with l being k(b), remove the tuple b from sol(k)
Q := Q ∪ {k(b)}
remove from S all rules having k(b) as head

end if
end for

end while

this framework, the new generalization of mR-consistency
arises naturally. For m > 2, its space complexity is prob-
ably too high to be practical but so is k-consistency. Most
usual notions of local consistency are variable-based (Mohr
& Henderson 1986; Han & Lee 1988; Mohr & Masini 1988;
Cooper 1989) and suppose that variable domains are accessi-
ble. Dechter and Van Beek (Dechter & van Beek 1997) have
proposed a first notion of consistency based on relations, but
which is not fully relational in our sense because it still needs
to consider arbitrary sets of variables. In contrast, in our
framework of CSP approximations, relations are really first
class citizen. For example, access to a variable is possible
only if K owns a unary relation to represent this variable’s
domain. Finally, all consistencies can be formalized in this
framework , though they may not have a natural expression
in a given language, like, for example some hypothetico-
deductive consistencies such as singleton-consistency (De-
bruyne & Bessière 2001).

Rule-based formalisms have been introduced in constraint
programming since a long time, for example with indexi-
cals (van Hentenryck, Saraswat, & Deville 1991; Codognet
& Diaz 1996) and Constraint Handling Rules (Frühwirth
1998). In contrast, our rule system is very low-level, show-
ing immediate connection between variable values or con-
straint tuples. This does not mean that a more abstract
rule system cannot be derived, for example for consistencies
which exhibit some regularities like arc-consistency (Fer-
rand & Lallouet 2002). But one interest of such an instanti-
ated rule system is that any consistency can be represented
at this level (since all consistencies exploit some connexion
between variables). However, in our opinion, propagation
rules have more to offer: they are a high-level description
of low-level algorithms and this point deserves more atten-
tion for further works, notably in applications which involve
a deeper understanding of the propagation such as explana-
tions (Jussien 2001), constraint retraction or the automatic
transformation of the rule system.

Recently, Apt and Monfroy have proposed a rule genera-
tion algorithm intended to enforce a consistency named rule-
consistency (Apt & Monfroy 2001). They distinguish two
types of rules: equality rules and membership rules. Equal-

ity rules are of the form X1 = a1, . . . , Xn = an → X0 �=
a0 and enforce a weak consistency since they only fire when
domains of (Xi)i∈[1..n] are singletons. Membership rules
are of the form X1 ∈ S1, . . . , Xn ∈ Sn → X0 �= a0 and
the set of such rules they give enforces arc-consistency. But
since the head and the body of a rule are not in the same
set (the head corresponds to a value removal and the body
to values which are still in the domains), these rules are not
easily chainable without a specialized algorithm.

Acknowledgements. The authors would like to thank
Gérard Ferrand for valuable discussions. This research is
supported by the french CNRS grant ATIP/2JE095.

References
Apt, K. R., and Monfroy, E. 2001. Constraint programming
viewed as rule-based programming. Theory and Practice of Logic
Programming 1(6):713 – 750.
Bessière, C. 1994. Arc-consistency and arc-consistency again.
Artificial Intelligence 65:179–190.
Brand, S. 2002. A note on redundant rules in rule-based con-
straint programming. In S. Abdennadher, T. Früwirth, A. W., ed.,
Workshop on Rule-Based Constraint Reasoning and Program-
ming, 77–90.
Codognet, P., and Diaz, D. 1996. Compiling constraints in
clp(fd). Journal of Logic Programming 27(3):185–226.
Cooper, M. C. 1989. An optimal k-consistency algorithm. Artifi-
cial Intelligence 41(1):89–95.
Dao, T. B. H.; Lallouet, A.; Legtchenko, A.; and Martin, L.
2002. Indexical-based solver learning. In van Hentenryck, P.,
ed., International Conference on Principles and Practice of Con-
straint Programming, volume 2470 of LNCS, 541–555. Ithaca,
NY, USA: Springer.
Debruyne, R., and Bessière, C. 2001. Domain filtering consisten-
cies. Journal of Artificial Intelligence Research 14:205–230.
Dechter, R., and van Beek, P. 1997. Local and global relational
consistency. Theoretical Computer Science 173(1):283–308.
Dowling, W. F., and Gallier, J. H. 1984. Linear-time algorithms
for testing the satisfiability of propositional horn formulae. Jour-
nal of Logic Programming 1(3):267–284.
Ferrand, G., and Lallouet, A. 2002. A logic program characteri-
zation of domain reduction approximations in finite domain csps.
In Stuckey, P., ed., International Conference on Logic Program-
ming, volume 2401 of LNCS, 478–479. Springer-Verlag. Poster.
Frühwirth, T. 1998. Theory and practice of constraint handling
rules. Journal of Logic Programming 37(1-3):95–138.
Han, C.-C., and Lee, C.-H. 1988. Comments on Mohr and
Henderson’s path consistency algorithm. Artificial Intelligence
36(1):125–130.
Jussien, N. 2001. e-constraints: explanation-based constraint pro-
gramming. In CP01 Workshop on User-Interaction in Constraint
Satisfaction.
Mohr, R., and Henderson, T. C. 1986. Arc and path consistency
revisited. Artificial Intelligence 28(2):225–233.
Mohr, R., and Masini, G. 1988. Good old discrete relaxation. In
Kodratoff, Y., ed., European Conference on Artificial Intelligence,
651–656. Munich, Germany: Pitmann Publishing.
van Hentenryck, P.; Saraswat, V.; and Deville, Y. 1991. Constraint
processing in cc(fd). draft.

186 FLAIRS 2003

