
k-relevant Explanations for Constraint Programming

Samir Ouis and Narendra Jussien
École des Mines de Nantes – BP 20722
F-44307NANTES Cedex 3 –FRANCE

Samir.Ouis@emn.fr
Narendra.Jussien@emn.fr

Patrice Boizumault
GREYC, CNRS UMR 6072

Universit́e de Caen, Campus 2,
F-14032CAEN Cedex –FRANCE

Patrice.Boizumault@info.unicaen.fr

Abstract

This paper presents diagnosis tools and interaction-based
tools which could help the Constraint Programming user to
interactively develop its applications. The implementation of
these tools rely on explanations, and more precisely on k-
relevant explanations (Bayardo Jr. & Miranker 1996). An
example is given to illustrate k-relevant explanations and to
provide concrete situations illustrating the functionalities of
our interactive and diagnosis tools.

Introduction
Constraint programming (CP) has been proved extremely
successful for modelling and solving combinatorial prob-
lems appearing in fields such as scheduling, resource allo-
cation or design. Several languages and systems have been
developed and widely spread:CHIP, CHOCO, GNUPROLOG,
ILOG SOLVER, etc. But these systems are helpless when the
constraints network to solve has no solution. Indeed, the
user is left alone to seek why the solver answered herno
solution : why the problem has no solution; which con-
straint to relax in order to restore the coherence; etc.

These questions yield two different problems:explain-
ing inconsistency andrestoringconsistency. Several theo-
retical answers have been provided to address those ques-
tions: QUICKXPLAIN (Junker 2001) computes conflict-sets
for configuration problems, (Bessière 1991) and (Debruyne
1996) introduce tools to dynamically remove constraints,
PALM (Jussien 2001) uses conflict-sets to address those is-
sues and defines new search algorithms, (Squali & Freuder
1996) introduces constraint-specific tools for providing user-
friendly solutions to constraint problems, (Freuder, Likitvi-
vatanavong, & Wallace 2000) generates tree-like explana-
tions and combines them with ordering heuristics and selec-
tion strategies to obtain better explanations according to a
well-defined criterion, etc.

In this paper, we advocate for the use ofk-relevantex-
planations (Bayardo Jr. & Miranker 1996). The idea is to
record bounded sets of explanations (Jussien 2001) (rather
than a single one) based on their relevance. An explanation
is said to bek-relevant if it contains less thank constraints

Copyright c© 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

that are not validw.r.t. the current store of constraints (1-
relevant explanations are valid ones).

(a measurement of the distance between the current situ-
ation and a stored explanation). This relevance-based long
term memory for explanations is used to design interaction-
based tools, diagnosis tools as well as improved search tech-
niques.

This paper is organized as follows: first, we recall the
definition of conflict-sets and explanations and discuss their
storing. Then, we introducek-relevant explanations and
give an example. Next, we show howk-relevant expla-
nations are well suited for building both diagnosis tools
and interaction-based tools before concluding and present-
ing some further works.

Conflict-sets and explanations forCP

A Constraint Satisfaction Problem(CSP) is defined by a set
of variablesV = {v1, v2, . . . , vn} taking their values in their
respective domainsD = {d1, . . . , dn} and a set of con-
straintsC = {c1, c2, . . . , cm}. A solution of theCSP is an
assignment of values to all the variables such that all con-
straints inC are satisfied. We denote bysol(V, C) the set of
solutions of theCSP(V, D,C).

In the following, we consider variables’ domains as unary
constraints. Moreover, the classical enumeration mechanism
that is used to explore the search space is handled as a series
of constraints additions (value assignments) and retractions
(backtracks). Those particular constraints are calleddeci-
sion constraints.

Let us consider a constraints system whose current state
(i.e. the original constraints and the set of decisions made so
far) is contradictory. Aconflict-set (a.k.a. nogood(Schiex
& Verfaillie 1994)) is a subset of the current set of con-
straints of the problem that, left alone, leads to a contradic-
tion (no feasible solution contains a nogood). A conflict-set
can be partitioned into two parts: a subset of the original
set of constraints (C ′ ⊂ C in the following equation) and a
subset of decision constraints introduced so far in the search
(heredc1, . . . , dck) i.e. sol (V, (C ′ ∧ dc1 ∧ ... ∧ dck)) = ∅.

An operational viewpoint of conflict-sets can be made ex-
plicit by rewriting the previous equation the following way:

C ′ ∧
(∧

i∈[1..k]\j dci

)
→ ¬dcj .

If dcj : vj = a in the previous formula, the previous result

192 FLAIRS 2003

can be read as (s(v) is the value of variablev in the solution

s): ∀s ∈ sol
(
V,C ′ ∧

(∧
i∈[1..k]\j dci

))
, s(vj) 6= a.

The left hand side of the previous implication is called an
eliminating explanation (explanation for short) because it
justifies the removal of valuea from the domaind(vj) of
variablevj . It is noted:expl(vj 6= a).

Explanations can be combined to provide new ones. Let
us suppose thatdc1∨. . .∨dcj is the set of all possible choices
for a given decision (set of possible values, set of possible
sequences, etc.). If a set of explanationsC ′1 → ¬dc1, ...,
C ′j → ¬dcj exists, a new conflict-set can be derived:C ′1 ∧
. . . ∧ C ′j . This new conflict-set provides more information
than each of the previous ones. Notice that conflict-sets can
be computed from explanations for the empty domain of a
variablev:

∧
a∈d(v) expl(v 6= a).

There generally exists several explanations for the re-
moval of a given value. Several different approaches were
introduced to handle that multiplicity: from a complete stor-
ing (like in Dependency Directed Backtracking(Stallman &
Sussman 1977)) leading to an exponential space complex-
ity to storing only a single explanation (like inDynamic
Backtracking(Ginsberg 1993) and its improvements or in
Conflict-directed BackJumping(Prosser 1995)). The idea,
here, is to erase (i.e. forget) explanations as soon as they are
no longer valid with the current set of decision constraints.
Space complexity remains polynomial while keeping the al-
gorithms complete. However, such a drastic behavior is
not compatible with developing efficient debugging tools:
a large part of the search history will be completely lost.

Between recording all and only one explanation, an in-
teresting idea is to pick up a criterion that will be used to
erase/forget past explanations. It can either be: (a) atime-
bounded criterion: explanations are forgotten after a given
time (this criterion is similar totabulist management intabu
search (Glover & Laguna 1993)); (b) asize-bounded crite-
rion (Schiex & Verfaillie 1994): only explanations having
a size lower or equal to a given valuen are kept (this cri-
terion limits the spatial complexity, but may forget really
interesting conflict-sets); or (c) arelevance-bounded crite-
rion: explanations are kept if they are still close to the cur-
rent set of decision constraints. This last concept (called
k-relevance) has been introduced in (Bayardo Jr. & Mi-
ranker 1996) and focuses explanations/conflict-sets manage-
ment to what is important: relevancew.r.t. the current situ-
ation. Time and size-bounded recording do have a control-
lable space complexity. It will be the same fork-relevance
learning. As we shall see, our tools are meant for debugging
and interactive development ofCP programs: the space oc-
cupation overhead (compared to recording-free techniques)
is well worth it.

k-relevance-bounded explanations
While solving a constraint problem, the current state of cal-
culus can be described with two sets of constraints:R the
set of relaxed constraints(decisions which have been un-
done during search, constraints which have been explicitly
relaxed by the user, etc.) andA the set of active constraints

(the current constraint store).〈A, R〉 is called aconfigura-
tion. Following (Bayardo Jr. & Miranker 1996), we can now
formally define ak-relevant explanation as:

Definition 1 k-relevant explanation
Let〈A, R〉 be a configuration. An explanatione is said to be
k-relevantif it contains at mostk − 1 relaxed constraints,
i.e. |e ∩R| < k.

In k-relevance-bounded learning, onlyk-relevant expla-
nations are kept during search. Hence, several different ex-
planations may be kept for a given value removal. Thus
expl(v 6= a) will not contain any more only a single ex-
planation but the set of currentlyk-relevant explanations
recorded for the removal of valuea from the domaind(v)
of variablev.

Computing k-relevant explanations k-relevant explana-
tions, as regular explanations (Jussien 2001), can becom-
puted during propagation. However, some issues arise
(see example 1).

Example 1 (Example for explanation computation) :
Let us consider two variablesv1 andv2. Let us assume that
valuea for v1 is only supported by valueb from v2 in con-
straint c. Let us finally assume thatb is removed fromv2

(a set of explanations being:{{c1, c2}, {c1, c3}, {c4, c5}}).
This removal needs to be propagated. But, which explana-
tion one should choose to compute the explanation of the
value removalv1 6= a ? Do we have to consider all the pos-
sibilities{c, c1, c2}, {c, c1, c3} or {c, c4, c5}? Only one?

As values are removed only once, we can focus on one
particular explanation: the one which actually performs the
removal (it is called themain one). Only that explanation
will be used to compute forthcoming explanations1. More-
over, this explanation is exactly the one that would have been
computed by a classical approach. It is however worth notic-
ing that this particular explanation completely depends on
the order in which constraints are introduced and handled.

Example 1 (followed) :
Let us suppose that themainexplanation for the removal of
valueb from v2 is {c1, c2}. Thus, the removalv1 6= a will
be justified by{c, c1, c2}.

We need to maintain the relevance information attached
to stored explanations upon constraint additions and retrac-
tions. In both ways, the relevance of some explanations may
evolve. The idea is to keep track of these variations and to
forget explanations as soon as they become irrelevant (their
relevance is greater thank). All k-relevant explanations for
a given removalexpl(v 6= a) are partitioned intok subsets,
i.e. expl(v 6= a) = ∪i∈[0..k−1]expl(v 6= a, i). An expla-
natione ∈ expl(v 6= a, i) if |e ∩ R| = i with R the set of
relaxed constraints.

1This implies that we will never willingly compute the complete
set ofk-relevant explanations for a given value removal. We only
keep track ofencounteredk-relevant explanations.

FLAIRS 2003 193

The dilemma encountered when computing explanations
appears again forcomputing conflict-sets. Indeed, when a
contradiction is identified (the domain of a variable becomes
empty), we saw above how to compute a conflict-set. How-
ever, there may exist several explanations for each value re-
moval. Contrarily to the explanation computation process,
we chose here to provide all possible explanations (limiting
ourselves to valid explanationsi.e. expl(v 6= a, 0)) for all
a ∈ d(v). The resulting number of valid conflict-sets is:∏

a∈d(v) |expl(v 6= a, 0)|

Complexity issues Let us consider aCSPwith n discrete
variables with maximum domain sized upon which are
postede constraints. If we only keep a single explanation
per value removal, there will be at mostn × d explanations
of maximal sizee+n i.e.all the constraints from the problem
(e) and the decision constraints (n). Thus the complexity of
the classical approach isO((e + n) × n × d). However, as
far as thek-relevance approach is concerned, an explanation
can contain up tok−1 relaxed constraints, the maximal size
of an explanation beingn + e + k− 1. The maximum num-
ber of explanations for a given value removal is bounded
by the maximum number of non included subsets in a set.

The worst case is:

(
e + n + k − 1

(e + n + k − 1)/2

)
subsets of size

(e + n + k − 1)/2.
Therefore, the spatial complexity for storingk-relevance

explanations is in:

O

(
n× d×

(
e + n + k − 1

(e + n + k − 1)/2

)
× (e + n + k − 1)/2

)

Discussion
• Classical approaches vs1-relevance

All classical approaches (eg. Dynamic Backtrackingor
MAC-DBT (Jussien, Debruyne, & Boizumault 2000)) for-
get explanations as they become invalid. A1-relevant
learning technique will obviously proceed the same way.
However, it differs from classical approaches by the num-
ber of recorded explanations by value removal. Indeed,
during resolution, one may come across an explanation
for an already performed removal. Instead of not taking it
into account,1-relevance will keep that secondary infor-
mation2. Furthermore, all classical approaches take into
account only one conflict-set.1-relevance will generally
have to deal with more than one conflict-set. Neverthe-
less that particular explanation management has a com-
putational and spatial cost.

• How to compute the best conflict-set?

The most interesting conflict sets are those which are min-
imal regarding inclusion. Minimal ones can be obtained
by computing a covering of all the valid explanations. Un-
fortunately, computing such a set is exponentially costly.
The simplest conflict-set can be computed by taking the

2It will be used to compute conflict-sets. Themainexplanation
will still be the only one used to compute subsequent explanations.

union of all the valid explanations; but thus a lot of preci-
sion will be lost. A good compromise between both pre-
cision and ease of computation is to select only one expla-
nation by value removal (namely the main one) and then
to union them in order to build the conflict-set. Instead of
always taking the main explanation for a value removal,
the selected explanation could be chosen by a compara-
tor which will be able to take the user’s preferences into
account.

An example : the conference problem
To illustrate the use of thek-relevant explanations, we
present the resolution of the conference problem (Jussien &
Boizumault 1996). From now on, we fill focus our study to
1-relevance.

Michael, Peter and Alan are organizing a two-day semi-
nar for writing a report on their work. In order to be effi-
cient, Peter and Alan need to present their work to Michael
and Michael needs to present his work to Alan and Peter
(actually Peter and Alan work in the same lab). Those pre-
sentations are scheduled for a whole half-day each. Michael
wants to know what Peter and Alan have done before pre-
senting his own work. Moreover, Michael would prefer not
to come the afternoon of the second day because he has got
a very long ride home. Finally, Michael would really prefer
not to present his work to Peter and Alan at the same time.

A constraint model for that problem is described as fol-
lows : letMa, Mp, Am,Pm the variables representing four
presentations (M andm are respectively for Michael as a
speaker and as an auditor). Their domain will be[1, 2, 3, 4]
(1 is for the morning of the first day and4 for the afternoon
of the second day). Several constraints are contained in the
problem: implicit constraints regarding the organization of
presentations and the constraints expressed by Michael.

The implicit constraints can be stated:

• A speaker cannot be an auditor in the same half-day. This
constraint is modelled as:Ma 6= Am, Mp 6= Pm,
Ma 6= Pm andMp 6= Am.

• No one can attend two presentations at the same time.
This is modelled asc1 : Am 6= Pm.

Michael constraints can be modelled:

• Michael wants to speak after Peter and Alan:c2 : Ma >
Am, c3 : Ma > Pm, c4 : Mp > Am andc5 : Mp >
Pm.

• Michael does not want to come on the fourth half-day:
c6 : Ma 6= 4, c7 : Mp 6= 4, c8 : Am 6= 4 andc9 : Pm 6=
4.

• Michael does not want to present to Peter and Alan at the
same time:c10 : Ma 6= Mp.

Table 1 presents the1-relevant explanations associated
with every removal after we have removed the redundant
explanations like{c5, c6} for the removalPm 6= 4. But
as the second approach proposes several explanations, we
can deduce several conflict-sets. In our case, we obtain two
conflict-sets :{c1, c3, c4, c5, c6} and{c1, c4, c5, c6}.

194 FLAIRS 2003

The second conflict-set is more precise since it is included
in the first one. There is a quite important difference be-
tween the conflict-set provided by the first approach which
contains all the constraints that do not help the user and the
conflict-sets provided by the1-relevant approach.

Table 1: Final set of explanations
Var Value Explanation 1-relevance present
Pm 1 {c1, c2, c4, c6} {c1, c4, c6} no
Pm 2 {c5, c6} {c5, c6} no
Pm 3 {c5, c6} {c5, c6} no
Pm 4 {c3} {c3}, {c5} no
Am 1 ∅ ∅ yes
Am 2 {c4, c6} {c4, c6} no
Am 3 {c4, c6} {c4, c6} no
Am 4 {c2} {c2}, {c4} no
Mp 1 {c4} {c4}, {c5}, {c6} no
Mp 2 ∅ ∅ yes
Mp 3 {c6} {c6} no
Mp 4 {c6} {c6} no
Ma 1 {c2} {c2}, {c3} no
Ma 2 ∅ ∅ yes
Ma 3 ∅ ∅ yes
Ma 4 ∅ ∅ yes

Exploiting k-relevant explanations
k-relevance provides more interesting explanations and al-
lows to obtain a better diagnosis. In this section, we present
several concrete situations which the user is frequently con-
fronted to in the case of failure. We show howk-relevant
explanations enable to build more efficient interactive and
diagnosis tools.

Diagnosis tools
k-relevant explanations, as regular ones, are obviously use-
able for diagnosis purposes.

Providing more precise explanations If there are two ex-
planations for the same removale1 ande2 such ase1 (e2,
then constraints which belong toe2 \ e1 are not responsible
for that removal. We say thate1 is more precise thane2.

Consequently, constraints belonging toe2 \ e1 are not re-
sponsible for the incoherence if they do not appear in the
other removals.k-relevance is, of course, not the panacea
(see constraintc6 which is not responsible for the removal
Pm 6= 4 but intervenes in the removalPm 6= 1 – it ap-
pears in the conflict-set). But, the multiplicity of explana-
tions leads to more precise explanations and conflict-sets.

Analyzing the impact of a constraint An interesting fea-
ture when debugging is to know whether a given constraint
belongs to a conflict-set or not.k-relevant explanations help
answer that question.

Let us suppose that the cause of incoherence is the vari-
able Am (see table 2). As there is a failure (the domain
of variableAm is empty), the user wants to know ifcon-
straint c5 belongs to a conflict-setby only referring to ta-
ble 2. Based on the classical approach, the alone conflict-set
would be{c2, c3, c4, c6}. Indeed, the answer will be nega-
tive (c5 6∈ {c2, c3, c4, c6}). 1-relevant explanations provide
8 conflict-sets and indicate that constraintc5 is strongly re-
sponsible for the incoherence (it removes 3 values out of 4
in Am).

Table 2: New state of the variableAm
Var Value Explanation 1-relevance present
Am 1 {c3} {c3}, {c5} no
Am 2 {c4, c6} {c4, c6}, {c5} no
Am 3 {c4, c6} {c4, c6}, {c5} no
Am 4 {c2} {c2}, {c4} no

Providing error diagnosis Imagine now that after some
relaxations, the user wants to know why variableMp

cannot take the value1? Classical explanations provide the
explanation{c6}, while 1-relevant explanations give a more
precise set of explanations:{{c4}, {c5}, {c6}}. 1-relevance
provides a better diagnosis than the classical approach.

User interaction As we can see in our examples, expla-
nations (and thusk-relevant explanations) are sets of low-
level constraints. Only a specialist can understand and cor-
rectly interpret the provided information because those con-
straints are very far from the end-user’s vision of the solved
problem. So, we have introduced in (Jussien & Ouis 2001)
a way of providing user-readable explanations by using a
tree-based representation of the user’s understanding of the
solved problem.

Interaction-based tools

k-relevance allows the simulation of constraint addi-
tion/retraction with a negligible computational cost.

Simulating constraint relaxation Determining if a given
constraint belongs to a conflict-set or not may lead to spend-
ing a lot of time by relaxing each suspected constraint. For
that reason, we propose a tool which allows to simulate a
relaxation (without any propagation) only by updating the
k-relevant explanations.

For example, let us suppose that the user suspects that
constraintc3 belongs to a conflict-set and that the constraint-
checking tool confirms it. The relaxation of this constraint
will put back all the valuesa such asc3 ∈ expl(Am 6= a).
According to table 2, the constraintc3 is partly responsible
for the removalAm 6= 1. The classical approach would
have put back the value1 in the domain ofAm and launched
the propagation phase. Unfortunately, the problem is always
over-constrained because the removalAm 6= 1 is justified
by the constraintc5 and the domain ofAm becomes empty
again.

1-relevant explanations allow to know that the relaxation
of constraintc3 will lead to another failure due to the re-
movalAm 6= 1 which will be justified by another explana-
tion: {c5}. Thus, our tool is able to indicate to the user if
relaxing a given constraint will lead to anotherimmediate
failure with a neglectful computational cost.

Simulating constraint addition To solve a dynamic prob-
lem, re-execution from scratch is too expensive for every
modification introduced by the user. Some tools allowing
to incrementally solve the problem from the current solution
do not allow to know if the addition of a previously relaxed
constraint will lead to a future immediate failure.

FLAIRS 2003 195

Table 3: New state of the variableAm after relaxation ofc3

andc5
Var Value Explanation 1-relevance 2-relevance present
Am 1 {c3}, {c5} yes
Am 2 {c4, c6} {c4, c6}, {c5} no
Am 3 {c4, c6} {c4, c6}, {c5} no
Am 4 {c2} {c2}, {c4} no

It is helpful to take advantage of the information stored
during the resolution of the previous problem in order to
avoid adding constraints leading toimmediatefailures. For
this reason, we propose a tool simulating the re-introduction
of an already relaxed constraint without any propagation.
This tool will tell the user if the addition of a relaxed con-
straint will lead to a failure or not.

For example, let us suppose now that the user have re-
moved the constraints{c3, c5} to put back the value 1 in
the domain ofAm (see table 3). Later, the user wants to
put back the relaxed constraintc3. The classical approach
would have put back the constraintc3 and naively launched
the propagation phase leading to a contradiction. However,
thek-relevance approach can simulate this constraint come-
back by updating the2-relevant explanations and verifying
at the same time if a domain becomes empty or not. In our
case, if we addc3, the2-relevant explanation{c3} becomes
valid (i.e. 1-relevant) and it will remove the only remaining
value 1 in the domain ofAm. Therefore, thek-relevance
approach tells the user that the addition of constraintc3 will
lead to a contradiction.

For implementing such a tool, we must decrease the rel-
evance of thek-relevant explanations which contain the re-
laxed constraintc. If we add constraintc, some of them can
become valid (i.e. 1-relevant). This will imply the removal
of some values. Thus, we can easily verify if any domain be-
comes empty (i.e. a contradiction is identified) when adding
constraintc.

Improving explanation-based search algorithms

We have also experimented the use ofk-relevant explana-
tions for explanation-based search algorithms such asMAC-
DBT (Jussien, Debruyne, & Boizumault 2000). Preliminary
results seem to show that whenk increases, the performance
of k-relevance decreases. Moreover, fork = 1 andk = 2,
we obtain the same temporal performances asMAC-DBT.
Precisely, fork = 1 andk = 2, the time required to manage
k-relevant explanations is compensated by the time gained
by avoiding failures. Fork ≥ 3, too much time is spent
for managing explanations which will seldom let us avoid
future failures. Especially, we will have to update explana-
tions which could never become valid (i.e. 1-relevant).

Therefore, a good compromise would be to usek = 1
or k = 2, even if we will have to pay a small penalty for
of memory space. However, further experiments need to
be done for a more in-depth analysis of the interest ofk-
relevant explanations for improving search algorithms.

Conclusion
In this paper, we have proposed the foundations of several
interactive tools which are of great help for a user to de-
velop CP applications. We have shown the effectiveness of
k-relevance explanations for building interactive and diag-
nosis tools. This effectiveness comes from the fact thatk-
relevance provides more numerous and precise explanations.

Notice that (Amilhastre, Fargier, & Marquis 2002) are
also interested in the design of interactive and diagnosis
tools in decision support systems for configuration prob-
lems. There are two main differences with our proposal:
i) the CSP representing the initial problem is considered to
be persistent and compiled into an automaton, ii) as a con-
sequence, a user can only interact by retracting/adding de-
cision constraints. Our proposal does not impose such a re-
striction.

Our current work includes designing algorithms which
can compute efficientlybestconflict-sets. For this, we plan
to introduce user-based comparators (Borninget al. 1989) in
order to compare solutions. Also, we are trying to decrease
the space required to managek-relevant explanations.

References
Amilhastre, J.; Fargier, H.; and Marquis, P. 2002. Consistency restoration and explanations in
dynamic csps - application to configuration.Artificial Intelligence135(2002):199–234.

Bayardo Jr., R. J., and Miranker, D. P. 1996. A complexity analysis of space-bounded learning
algorithms for the constraint satisfaction problem. InAAAI’96.

Bessìere, C. 1991. Arc consistency in dynamic constraint satisfaction problems. InProceedings
AAAI’91.

Borning, A.; Maher, M.; Martindale, A.; and Wilson, M. 1989. Constraint hierarchies and logic
programming. In Levi, G., and Martelli, M., eds.,ICLP’89: Proceedings 6th International Con-
ference on Logic Programming, 149–164. Lisbon, Portugal: MIT Press.

Debruyne, R. 1996. Arc-consistency in dynamic CSPs is no more prohibitive. In8th Conference
on Tools with Artificial Intelligence (TAI’96), 299–306.

Freuder, E. C.; Likitvivatanavong, C.; and Wallace, R. J. 2000. A case study in explanation and
implication. In In CP2000 Workshop on Analysis and Visualization of Constraint Programs and
Solvers.

Ginsberg, M. 1993. Dynamic backtracking.Journal of Artificial Intelligence Research1:25–46.

Glover, F., and Laguna, M. 1993.Modern heuristic Techniques for Combinatorial Problems,
chapter Tabu Search, C. Reeves. Blackwell Scientific Publishing.

Junker, U. 2001. QUICKXPLAIN: Conflict detection for arbitrary constraint propagation algo-
rithms. InIJCAI’01 Workshop on Modelling and Solving problems with constraints.

Jussien, N., and Boizumault, P. 1996. Implementing constraint relaxation over finite domains
using ATMS. In Jampel, M.; Freuder, E.; and Maher, M., eds.,Over-Constrained Systems, number
1106 in Lecture Notes in Computer Science, 265–280. Springer-Verlag.

Jussien, N., and Ouis, S. 2001. User-friendly explanations for constraint programming. InICLP’01
11th Workshop on Logic Programming Environments (WLPE’01).

Jussien, N.; Debruyne, R.; and Boizumault, P. 2000. Maintaining arc-consistency within dynamic
backtracking. InPrinciples and Practice of Constraint Programming (CP 2000), number 1894 in
Lecture Notes in Computer Science, 249–261. Singapore: Springer-Verlag.

Jussien, N. 2001. e-constraints: explanation-based constraint programming. InCP01 Workshop
on User-Interaction in Constraint Satisfaction.

Prosser, P. 1995. MAC-CBJ: maintaining arc-consistency with conflict-directed backjumping.
Research Report 95/177, Department of Computer Science – University of Strathclyde.

Schiex, T., and Verfaillie, G. 1994. Nogood Recording fot Static and Dynamic Constraint Satis-
faction Problems.International Journal of Artificial Intelligence Tools3(2):187–207.

Squali, M. H., and Freuder, E. C. 1996. Inference-based constraint satisfaction supports explana-
tion. In Proceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI ’96),
volume 1, 318–324. Portland, Oregon.

Stallman, R. M., and Sussman, G. J. 1977. Forward reasoning and dependency directed back-
tracking in a system for computer-aided circuit analysis.Artificial Intelligence9:135–196.

196 FLAIRS 2003

