
A Graph Based Synthesis Algorithm for Solving CSPs

Wanlin Pang ∗

Institute for Information Technology
National Research Council of Canada

Ottawa, Ontario, Canada K1A 0R6
Email: wpang@email.arc.nasa.gov

Scott D. Goodwin
School of Computer Science

University of Windsor
Windsor, Ontario, Canada N9B 3P4

Email: sgoodwin@uwindsor.ca

Abstract

Many AI tasks can be formalized as constraint satisfaction
problems (CSPs), which involve finding values for variables
subject to a set of constraints. While solving a CSP is an
NP-complete task in general, it is believed that efficiency
can be significantly improved by exploiting the characteris-
tics of the problem. In this paper, we present a solution syn-
thesis algorithm called ω-CDGT which is an existing algo-
rithm named CDGT augmented with a constraint representa-
tive graph called ω-graph. We show that the worst-case com-
plexity of the ω-CDGT algorithm is better than other related
algorithms.

Introduction
Constraint satisfaction problems (CSPs) involve finding val-
ues for variables subject to constraints which permit or ex-
clude certain combinations of values. Since many problems
in AI and other areas of computer science can be formu-
lated as CSPs, it has been a research subject for a long time
and researchers have approached the subject in different di-
rections: searching for the CSP’s solutions from the possi-
ble solution space ((Haralick & Elliott 1980; Freuder 1988;
Dechter & Pearl 1988)), reducing a CSP to a simpler and
equivalent CSP ((Mackworth 1977; McGregor 1979; Mohr
& Henderson 1986; Han & Lee 1988; Chen 1991)), and syn-
thesizing solutions from partial solutions ((Freuder 1978;
Seidel 1981; Tsang 1993; Pang & Goodwin 1996)).

Solution synthesis finds all solutions for a given CSP. It
can also be used to find all partial solutions with respect to
a particular subset of variables. This is useful for solving
structured CSPs, where enforcing local consistency is inter-
leaved with a search method. In addition, solution synthesis
has inherent parallelism so it is suitable for parallel imple-
mentation. The basic idea of solution synthesis is to per-
form join and test continuously on the selected constraints
until an n-ary constraint for a problem with n variables is
constructed which contains all solutions. The selected con-
straints mentioned above are chosen according to a given
constraint selection scheme. This scheme determines the
subset of constraints selected for joining and the order in

∗Current Address: QSS Group Inc., NASA Ames Research
Center, Moffett Field, CA 94035
Copyright c© 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

which they are to be joined. The remaining constraints are
used for testing. It is well known that the constraint selection
scheme has significant effects on overall efficiency. Since
the total number of solutions to a problem may be exponen-
tial in the problem size, in general, the space required and
the time needed to find all these solutions are also expected
to be exponential. The ultimate goal of solution synthesis is
perhaps to find the optimal constraint selection strategy with
which the time needed and the space required for solving a
problem are optimal; that is, the number of total synthesized
tuples is minimal and the number of tuples in the largest
synthesized constraint is minimal. It is likely that the task
of finding an optimal constraint selection is NP-complete.
As an alternative, we argue that the ω-graph, a constraint
representative graph introduced in (Pang 1998), provides a
natural constraint selection strategy for solution synthesis:
select a subset of constraints according to the node set of
the ω-graph and select them in an order complying with the
structure of the ω-graph. In this paper, we propose an ω-
graph based synthesis algorithm called ω-CDGT and show
that combining ω-graph with a synthesis algorithm can lead
to a significant improvement in efficiency.

The paper is organized as follows. We first give def-
initions of constraint satisfaction problems and constraint
graphs. We then present the ω-CDGT algorithm and discuss
its complexity. Lastly we briefly compare ω-CDGT with
other related synthesis algorithms.

Preliminaries
Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) is a structure
(X, D, V, S). Here, X = {X1, X2, . . ., Xn} is a set of
variables that may take on values from a set of domains
D = {D1, D2, . . ., Dn}, and V = {V1, V2, . . . , Vm} is
a family of ordered subsets of X called constraint schemes.
Each Vi = {Xi1 , Xi2 , . . . , Xiri} is associated with a set of
tuples Si ⊆ Di1×Di2×. . .×Diri called constraint instance,
and S = {S1, S2, . . . , Sm} is a family of such constraint in-
stances. Together, an ordered pair (Vi, Si) is a constraint or
relation which permits the variables in Vi to take only value
combinations in Si.

Let (X, D, V, S) be a CSP, VK = {Xk1 , Xk2 , . . ., Xkl
}

a subset of X . A tuple (xk1 , xk2 , . . ., xkl
) in Dk1 × Dk2 ×

FLAIRS 2003 197

. . .×Dkl
is called an instantiation of variables in VK . An in-

stantiation is said to be consistent if it satisfies all constraints
restricted in VK . A consistent instantiation of all variables in
X is a solution to the CSP (X,D, V, S). The task of solving
a CSP is to find one or all solutions. The set of all solution
is denoted by ρ(X).

A constraint (Vh, Sh) in a CSP (X,D, V, S) is minimal
if every tuple in Sh can be extended to a solution. A CSP
(X,D, V, S) is minimal if every constraint is minimal.

A binary CSP is a CSP with unary and binary constraints
only, that is, every constraint scheme contains at most two
variables. A CSP with constraints not limited to unary and
binary is referred to as a general CSP.

We will also use some relational operators, specifically,
join and projection. Let Ci = (Vi, Si) and Cj = (Vj , Sj)
be two constraints. The join of Ci and Cj is a constraint
denoted by Ci � Cj . The projection of Ci = (Vi, Si) on
Vh ⊆ Vi is a constraint denoted by ΠVh

(Ci). The projection
of ti on Vh, denoted by ti[Vh], is a tuple consisting of only
the components of ti that correspond to variables in Vh.

Graph Theory Background

In this section, we review some graph theoretic terms
we will need later and we define constraint representative
graphs, namely, the line graph, the join graph, and the ω-
graph.

A graph G is a structure (V, E), where X is a set of nodes
and E is a set of edges, with each edge joining one node to
another. A subgraph of G induced by V ′ ⊂ V is a graph
(V ′, E′) where E′ ⊂ E contains all edges that have both
their endpoints in V ′. A partial graph of G induced by E′ ⊂
E is a graph (V, E′).

A path or a chain is a sequence of edges E1, E2, . . . , Eq

such that each Ei shares one of its endpoints with Ei−1 and
the other with Ei+1. A cycle is a chain such that no edge
appears twice in the sequence, and the two endpoints of the
chain are the same node. A graph is connected if it contains
a chain for each pair of nodes. A connected component of
a graph is a connected subgraph. A graph is acyclic if it
contains no cycle. A connected acyclic graph is a tree.

Let G = (V, E) be a connected graph. A node Vi is called
a cut node if the subgraph induced by V − {Vi} is not con-
nected. A block (or nonseparable component) of a graph is a
connected component that contains no cut nodes of its own.
An O(|E|) algorithm exits for finding all the blocks and cut
nodes (Even 1979).

Let G = (V, E) be a connected graph. The degree of
cyclicity of G is defined as the number of nodes in its largest
block. A graph is k-cyclic if its degree of cyclicity is at most
k.

A graph G = (V, E) can be decomposed into a
tree of blocks TB = (VB , EB). For example, give
a graph G = (V, E) as shown in Figure 1 (A), we
can have a block tree as in Figure 1 (B), where B1 =
{V1, V2, V3, V4}, B2 = {V2, V5, V6}, B3 = {V5, V7, V8},
B4 = {V6, V9, V10}, B5 = {V3, V11, V12}, B6 =
{V3, V13, V14}, B7 = {V4, V15, V16}. The cut nodes in this
graph are V2, V3, V4, V5, and V6

A block tree determines an order on the block set. For
example, block set B = {B1, B2, B3, B4, B5, B6, B7} is in
the depth-first order. For each block Bk (2 ≤ k) there is a
cut node Vak

of the graph that separates this block from its
parent block, and there is a node Va1 in B1 which is not in
any other blocks. These nodes are called separating nodes.
For example, the separating nodes of the graph in Figure 1
(A) are V1, V2, V3, V4, V5, and V6

Figure 1: A graph and its block tree

A binary CSP is associated with a simple constraint graph,
which has been well studied and widely used for analyzing
and solving binary CSPs (Freuder 1988; Dechter & Pearl
1989).A general CSP is associated with a constraint hy-
pergraph, but the topological properties of the hypergraph
have not been well studied in the area of constraint satis-
faction problems. Instead, constraint representative graphs
such as the line graph, the join graph, and the ω-graph
have been studied and used to analyzing and solving gen-
eral CSPs (Jegou 1993; Gyssens, Jeavons, & Cohen 1994;
Pang & Goodwin 1998; 2000).

Given a CSP (X,D, V, S) and its hypergraph H =
(X, V), the line-graph (also called inter graph in (Jegou
1993) and dual-graph in (Dechter & Pearl 1989)) is a sim-
ple graph l(H) = (V, L) in which nodes are hyperedges
of the hypergraph and with two nodes joined with an edge
if these two nodes share common variables. A join graph
j(H) = (V, J) is a partial linegraph in which some redun-
dant edges are removed. An edge in a linegraph is redundant
if the variables shared by its two end nodes are also shared
by every nodes along an alternative path between the two
end nodes. An ω-graph ω(H) = (W,F) is another con-
straint representative graph. The node set of an ω-graph is
a subset of nodes in the dual graph such that any node in
V − W is covered by two nodes in W . There is an edge
joining two nodes if either the two nodes share common
variables or they cover a node that is not in W .

For example, given a hypergraph H = (X, V) as in Fig-
ure 2 (A) with node set X = {X1,X2,X3,X4,X5,X6,X7}
and edge set V = {V1,V2,V3,V4,V5,V6}, where V1 =
{X1, X2}, V2 = {X1, X4, X7}, V3 = {V2, V3}, V4 =
{X2, X4, X7}, V5 = {X3, X5, X7}, V6 = {X3, X6}. Its
line graph l(H) = (V,L) is in Figure 2 (B). There is an
edge, for example, between V1 and V2 because these two
nodes share a common variable X1. Edge (V5, V6) is re-
dundant because the variable X3 shared by V5 and V6 is also
shared by every nodes on an alternative path between V5 and
V6, that is, path (V5, V3, V6). A join graph resulting from re-

 V

 V

 V

 V

 V

 V

 V

 V

 V

 V V

 V

 V

 V

 V

 V

1

2

3

4

5

6 7

8

9

10

11

12 13

14

15

16

B3 B4

 B5 B6

 B7

B1

 B2

(A) A connected graph (B) A block tree

198 FLAIRS 2003

moving redundant edges is in Figure 2 (C), and an ω-graph
is in (D) in which there is only 4 nodes, since node V1 is
covered by V2 and V4, and node V3 by V5 and V6.

Figure 2: A hypergraph and its representative graphs

Since constraint representative graphs are simple graphs,
all of those graph concepts mentioned previously are appli-
cable. For example, an ω-graph (or a join graph) is k-cyclic
if the number of nodes in its largest block is at most k. An
ω-graph can be decomposed into a block tree.

Notice that the line graph or a join graph is also an ω-
graph, but in general, an ω-graph is simpler than the line or
join graph in terms of the number of nodes, the degree of
cyclicity and the width. In particular, (Pang 1998) gives an
O(|V |3) algorithm for constructing an ω-graph for a hyper-
graph with the following property:

Proposition 1 Given a hypergraph H = (X, V), there ex-
ists an ω-graph whose degree of cyclicity is less than or
equal to the degree of cyclicity of any join graph.

It is shown in (Dechter & Pearl 1988; 1989; Gyssens,
Jeavons, & Cohen 1994) that combining the constraint graph
with existing CSP algorithms can lead to a significant im-
provement in efficiency. Based on this proposition, the ω-
graph could be the best choice among other graphs. In the
next section, we present an ω-graph based synthesis algo-
rithm.

Graph Based Synthesis
A solution synthesis algorithm called constraint-directed
generate and test (CDGT) is given in (Pang & Goodwin
1996). In CDGT, a constraint on a subset of variables rep-
resents a set of partial solutions with respect to that sub-
set of variables. By selecting and joining two lower ar-
ity constraints, a possible constraint of higher arity is ob-
tained. This constraint is tightened by testing it against
relevant constraints. The tightened constraint represents
all the partial solutions with respect to the subset of vari-
ables that is the union of the original two variable sub-
sets. This join and test process is repeated until a constraint
on the whole set of variables is obtained, which contains
all solutions. The advantage of this join and test proce-
dure over other synthesis procedures, as discussed in (Pang

& Goodwin 1996), is that it produces only necessary in-
termediate constraints, and thus finds all solutions more
efficiently than other synthesis algorithms (Freuder 1978;
Tsang 1993). However, the question of how to select two
lower arity constraints is left for the user, which actually
has a significant impact on the performance. In the follow-
ing, we augment CDGT with a constraint selection strategy
based on the ω-graph and present an algorithm called ω-
CDGT. ω-CDGT performs joins on constraints that corre-
spond to the nodes of the ω-graph and tests the joined con-
straints against the other constraints that are not in the node
set. The ordering of joins performed is determined by the
depth-first order on the block tree of the ω-graph.

The ω-CDGT Algorithm
Let IP = (X,D, V, S) be a CSP and C = {Ci =
(Vi, Si)|Vi ∈ V, Si ∈ S} a set of constraints. Let ω(H) =
(W,F) be an ω-graph, B = {B1, B2, . . . , Bl} a set of
blocks in the depth-first order according to the block tree,
and each block Bk = {Vk1 , Vk2 , . . . , Vk|Bk|} a set of nodes
in which the first one is the separating node. Let cks de-
note the set of constraints on V − W , that is, cks = {Ch =
(Vh, Sh)|Vh ∈ V −W}. The ω-CDGT algorithm is given as
follows.

ω-CDGT(IP , CV)

1. begin
2. for each k from l to 1 do
3. CBk

← Ck1 ;
4. for each j from 2 to |Bk| do
5. CBk

← join-test(CBk
, Ckj

, cks);
6. if |SBk

| = 0 then return CV ← (V, ∅);
7. delete Ckj ;
8. end for
9. Ck1 ← Ck1 ∩ ΠVk1

(CBk
);

10. end for
11. CV ← CB1 ;
12. for each k from 2 to l do CV ← CV � CBk

;
13. return CV ;
14. end

Let rK = |Vi ∪ Vj |. Function join-test(Ci, Cj , cks) gen-
erates an rK-ary constraint CK on Vi ∪ Vj by enumerating
those rK-ary tuples from every tuple in Si and every tuple
in Sj that satisfy all the constraints in cks. In terms of rela-
tional algebra, CK is the relation that results from perform-
ing a join operation on relations Ci and Cj with the condi-
tion that every constraint Ch ∈ cks must be satisfied.

join-test(Ci, Cj , cks)
1. begin
2. for each tupi ∈ Si, tupj ∈ Sj do
3. if tupi[Vi ∩ Vj] = tupj [Vi ∩ Vj] then
4. tupK ← tupi � tupj ;
5. if test(tupK , cks) then add tupK to SK ;
6. return CK = (Vi ∪ Vj , SK);
7. end

Function test(tupK , cks) returns true if tuple tupK sat-
isfies all the constraints in cks, and false otherwise.

test(tupI , cks))

 V6 V5

 V4

 V2

 V6

 V1 V3

 V5

 V4

 V2

 X1

 X4 X5

X7

X6

X2 X3

 (D) An -graph ω

 V6

 V1 V3

 V5

 V4

 V2

 (A) An hypergraph (B) The line graph

 (C) A join graph

FLAIRS 2003 199

1. begin
2. for each Ch = (Vh, Sh) in cks do
3. if tupI [Vh] 	∈ Sh then return false;
4. return true;
5. end

Algorithm ω-CDGT differs from the original CDGT in
that it selects constraints to be synthesized in a predeter-
mined order which is based mainly on the ω-graph. The
inner for loop (from the 4th to the 8th line) computes a
synthesized constraint CBj = (VBj , SBj) which contains
all consistent instantiations of variables involved in block
Bj = {Vj1 , Vj2 , . . . , Vj|Bj |}. The operation at the 9th line
tries to minimize the constraint corresponding to the cut
node that separates this block Bj from its parent Bi and en-
sures that the to-be-synthesized constraint CBi

will be direc-
tionally consistent with constraint CBj

. The outer for loop
(from the 2nd to the 10th line) computes synthesized con-
straints for all blocks in a reversed order on B so that this
set of newly synthesized constraints is directionally consis-
tent with respect to the ordering defined on B. By joining
the synthesized constraints one by one along the ordering,
we have all solutions to the given CSP.

Analysis
Given a CSP (X, D, V, S), its ω-graph ω(H) = (W, F)
with a set of blocks B = {B1, B2, . . . , Bl}. Let n be the
number of variables, a the size of the largest domain, r the
arity of the CSP, and |ρ(X)| the number of solutions. Sup-
pose that the ω-graph is k-cyclic.

Proposition 2 The number of tuples in the largest con-
straint synthesized by the algorithm ω-CDGT is at most
max(amin(rk,n), |ρ(X)|). The number of total synthesized
tuples is in the order of O(l(amin(rk,n) + |ρ(X)|)).

Since the number of solutions is a fixed parameter of
the problem which is independent of any CSP solver, this
proposition indicates that the complexity of algorithm ω-
CDGT depends on the number of tuples produced within
each block. This implies that if this number is bounded,
more specifically, if the ω-graph constructed for an r-ary
CSP is k-cyclic where k is less than a fixed number, then the
CSP can be solved by using ω-CDGT in polynomial time.
Otherwise, for any CSP where rk < n, the complexity of
solving the CPS with ω-CDGT is better than using other re-
lated synthesis algorithms, which will be discussed in the
next section.

Comparison with Related Synthesis
Algorithms

We review some related synthesis algorithms, namely,
Freuder’s algorithm FA (Freuder 1978), Tsang’s algorithm
AB (Tsang 1993), and Pang’s CDGT algorithm (Pang &
Goodwin 1996). We then briefly compare them with ω-
CDGT. The detailed analytical and empirical evaluation can
be found in (Pang & Goodwin 1996; Pang 1998).

Freuder’s synthesis algorithm FA is designed to achieve
any level of consistency for a given n-variable CSP. The nth
level of consistency ultimately obtained by FA contains all

solutions. The basic idea of FA is to incrementally construct
k-ary constraints for 1 < k ≤ n, where a k-ary constraint is
a join of two or more k − 1-ary constraints. In general, FA
considers all k-ary constraints for all k where 1 ≤ k ≤ n;
that is, for each k, it produces Ck

n k-ary constraints, and
totally it constructs 2n − 1 constraints. FA is suitable for
achieving k-ary consistency but it produces many unneces-
sary intermediate constraints when it is used for finding all
solutions.

Tsang’s algorithm AB is an improvement of FA. F each
k where 1 < k ≤ n, instead of constructing all of the Ck

n
k-ary constraints as FA does, FA constructs only n−k+1 k-
ary constraints by joining two adjacent k−1-ary constraints
(according to a predefined variable partial ordering), and in
total it produces (n(n + 1)/2) constraints.

Pang’s algorithm CDGT improves FA and AB in three
ways: (i) CDGT does not necessarily produces k-ary con-
straints for every 1 < k; (ii) if it is necessary to produce
k-ary constraints, only one k-ary constraint is synthesized;
(iii) each synthesized constraint in CDGT is tighter than that
synthesized in FA and AB due to its join and test procedure.

CDGT outperforms FA and AB in terms of both time and
space cost (see details in (Pang & Goodwin 1996)). If the
ω-graph associated with a CSP is not separable (only one
block) ω-CDGT degenerates to CDGT, which means that
ω-CDGT still outperforms FA and AB. In general, based
on proposition 2, the worst-case time and space complex-
ity of ω-CDGT depends on the degree of cyclicity of the
ω-graph while the worst-case complexity of other synthe-
sis algorithms depends on the number of variables. Fur-
ther, according to proposition 1, the worst-case complexity
of ω-CDGT is even better than a decomposition algorithm
presented in (Gyssens, Jeavons, & Cohen 1994) which is
claimed better than other graph based algorithms (Dechter
& Pearl 1988).

Another well-known synthesis algorithm is Seidel’s inva-
sion algorithm (Seidel 1981) which finds all solutions to a
given binary CSPs. It is similar to decomposition methods
in a way that it decomposes the given CSP into a set of sub-
CSPs which are linearly connected (a special tree structure).
On the other hand, the invasion algorithm is also similar
to the synthesis method in a way that when a sub-CSP is
formed, all its solutions are synthesize immediately, and this
set of solutions is made consistent with the preceding sub-
CSP. Therefore, when the decomposition process is com-
pleted, all solutions to each sub-CSP have been obtained,
and these sub-CSPs are directionally consistent. By joining
them one by one in a reverse order, the set of all solution to
the original CSP is obtained.

For example, suppose that the given binary CSP has a
constraint graph as shown in Figure 3 (A). The CSP has 7
variables (each corresponds to a node) and 10 constraints
(each corresponds to an edge). The invasion algorithm de-
composes this CSP into 5 sub-CSPs as in Figure 3 (B).

At the beginning, the algorithm finds all solutions (de-
noted by C123), with respect to variables 1, 2, 3, by join-
ing constraints C12 and C23. Then it joins constraints C24

and C34 to obtain C234. At the same time, those tuples in
C234 that are not consistent with C123 are deleted. There-

200 FLAIRS 2003

Figure 3: An example of invasion algorithm

fore, these two new synthesized constraints are directionally
consistent. When C567 is obtained, the algorithm joins them
from C567 to C123. The resulting constraint contains all so-
lutions.

Like any other decomposition method, the efficiency of
the invasion algorithm depends on the maximum size of sub-
CSPs. For some problems like n-queens problem, the maxi-
mum size of sub-CSPs will be n.

The ω-graph based synthesis algorithm can be described
in the similar way so that these two algorithms can be com-
pared. Based on the ω-graph, the ω-CDGT algorithm finds
all solutions with respect to the variables in each block and
enforce directionally consistency at the same time. When
every block is processed, ω-CDGT joins these new con-
straints one by one in the reverse order which produces all
solutions to the original problem.

Regardless of the detailed decomposition techniques used
in both algorithms, ω-graph based synthesis algorithm has
two advantages: first, ω-CDGT can be used to solve general
CSPs; second, the tree structure in which the sub-CSPs are
connected is more general than the linear structure, which
implies that the maximum size of sub-CSPs in ω-CDGT is
expected to be less than that in the invasion algorithm.

Conclusion
Since finding solutions to a CSP is an NP-complete task in
general, an optimal CSP algorithm is the one that best ex-
ploits the characteristics of the problem which we believe
are determined by the underlying constraint graph. The ω-
graph provides a more precise characterization of the CSP
than other graphs such as the line and join graph, and com-
bining the ω-graph with existing algorithm should lead to
improvements in efficiency. In this paper, we present a so-
lution synthesis algorithm which is an existing synthesis al-
gorithm CDGT augmented with the ω-graph and we showed
that the worst-case complexity of this new algorithm is bet-
ter than related synthesis and decomposition algorithms.

However, ω-CDGT is not optimal because the number of
tuples produced within each block may be affected by the or-
dering of joins performed within each block and we do not
have an ordering of joins within each block that produces
an optimal result. If we consider that an ultimate goal of
constraint solving is to find an optimal algorithm (not neces-
sarily a polynomial one) for solving CSPs, we may say that
ω-graph based algorithm ω-CDGT bring us one step closer
towards achieving this goal; that is, we need only to find
an optimal algorithm for solving sub-CSPs associated with
the blocks in the ω-graph. If the ω-graph is k-cyclic and if
k << |W |, it may not be that difficult to find an optimal

ordering of joins within each block. Needless to say, this is
left for future investigation.

References
Chen, Y. 1991. Improving Han and Lee’s path consistency
algorithm. In Proceedings of the 3rd IEEE International
Conference on Tools for AI, 346–350.
Dechter, R., and Pearl, J. 1988. Network-based heuristics
for constraint-satisfaction problems. Artificial Intelligence
34:1–38.
Dechter, R., and Pearl, J. 1989. Tree clustering for con-
straint networks. Artificial Intelligence 38:353–366.
Even, S. 1979. Graph Algorithms. Potomac, Maryland:
Computer Science Press.
Freuder, E. 1978. Synthesizing constraint expressions.
Communications of the ACM 21(11):958–966.
Freuder, E. 1988. Backtrack-free and backtrack-bounded
search. In Kanal, L., and Kumar, V., eds., Search in Artifi-
cial Intelligence. New York: Springer-Verlag. 343–369.
Gyssens, M.; Jeavons, P.; and Cohen, D. 1994. Decompos-
ing constraint satisfaction problems using database tech-
niques. Artificial Intelligence 66:57–89.
Han, C., and Lee, C. 1988. Comments on Mohr and Hen-
derson’s path consistency algorithm. Artificial Intelligence
36:125–130.
Haralick, R., and Elliott, G. 1980. Increasing tree search
efficiency for constraint satisfaction problems. Artificial
Intelligence 14:263–313.
Jegou, P. 1993. On some partial line graphs of a hyper-
graph and the associated matroid. Discrete Mathematics
111:333–344.
Mackworth, A. 1977. Consistency in networks of relations.
Artificial Intelligence 8(1):99–118.
McGregor, U. 1979. Relational consistency algorithms
and their application in finding subgraph and graph isomor-
phisms. Information Science 19:229–250.
Mohr, R., and Henderson, T. 1986. Arc and path consis-
tency revisited. Artificial Intelligence 28:225–233.
Pang, W., and Goodwin, S. D. 1996. A new synthesis al-
gorithm for solving CSPs. In Proceedings of the 2nd Inter-
national Workshop on Constraint-Based Reasoning, 1–10.
Pang, W., and Goodwin, S. D. 1998. Characterizing
tractable CSPs. In The 12th Canadian Conference on AI,
259–272.
Pang, W., and Goodwin, S. D. 2000. Consistency in gen-
eral CSPs. In The 6th Pacific Rim International Conference
on AI, 469–479.
Pang, W. 1998. Constraint Structure in Constraint
Satisfaction Problems. Ph.D. Dissertation, University of
Regina, Canada.
Seidel, R. 1981. A new method for solving constraint
satisfaction problems. In Proceedings of IJCAI-81, 338–
342.
Tsang, E. 1993. Foundations of Constraint Satisfaction.
San Diego, CA: Academic Press.

C123 C234 C345 C456 C567 X1

X2

 X3

 X4

 X5

 X6

 X7

(B) A linear decomposition(A) The constraint graph

FLAIRS 2003 201

