
A Proposed Model for Effective Verification of Natural Language Generation
Systems

Dr. Valerie Barr
Computer Science Department

Hofstra University
Hempstead, NY 11549-1030

vbarr@hofstra.edu

Introduction
Natural language processing (NLP) research is carried out
in areas such as speech recognition, natural language under-
standing (NLU), natural language generation (NLG), speech
synthesis, information retrieval, information extraction, and
inference (Jurafsky & Martin 2000). NLP components are
being incorporated into a variety of systems, and NLP meth-
ods are being used in new application areas. There is in-
creasing interest in dialogue systems and language gener-
ation systems (e.g. the ELVIS system for voice access to
email and voicemail (Walker 2000), the embodied conver-
sational agent REA (Cassell, Stone, & Yan 2000; Cassell
2000), as well as (Litman & Pan 1999; McKeown et al.
1997)), text analysis systems (Klavans & Wacholder 1997),
summarization systems (McKeown & Klavans 1997), in-
formation extraction systems (Declerk, Klein, & Neumann
1998), and text-to-speech systems (Sproat 1997).

In practice these activities require building systems that
model human activities in various language processing
tasks. Therefore, we can view language processing systems
as intelligent systems. These uses, furthermore, increase the
need for thorough testing of NLP systems and individual
NLP components that are embedded in larger systems.

Language processing researchers have not generally car-
ried out the sorts of verification and validation activities that
are typically attempted in the intelligent systems research
area. The research presented here is part of a larger project
that is considering how verification and validation can be
carried out for language processing systems in different ap-
plication areas. In specific, research is needed to achieve the
following:
• develop a clear definition of what is encompassed by the

verification task for language processing software, build-
ing on foundations in both the intelligent systems and
software engineering/software testing areas.

• develop techniques and tools for carrying out verification
of language processing software, as appropriate for vari-
ous application areas within language processing (such as
generation, understanding, dialogue).

• develop a theory of how to apply the results of verification
of language processing software to the task of validating

Copyright c© 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

of language processing systems, which will facilitate the
development of more robust and predictable systems.

In this paper we present a first stage for effective verification
of natural language generation (NLG) systems, focusing on
a specific strategy for the verification of tree adjoining gram-
mars (TAGs) as used in NLG systems.

Overview of Verification and Software Testing
Earlier research (Barr 2001; Barr & Klavans 2001) showed
that software testing, as it is usually carried out, and eval-
uation, as typically carried out within the context of NLP
systems development, are largely distinct activities that can
both be used during the development of NLP systems.
We propose to combine traditional NLP system evaluation
methods with new verification approaches that are based on
traditional software testing approaches as well as the verifi-
cation and validation of intelligent systems.

In the intelligent systems community the overall goal of
verification is to ensure that the system conforms to speci-
fications and is consistent and complete within itself (Gon-
zalez & Barr 2000). In the software engineering community
testing activities are incorporated into the verification pro-
cess (Voas & Miller 1995). Verification is defined as com-
prising three general activities: dynamic software testing,
software testability, and formal verification (typically using
a static theorem prover). Here we focus primarily on dy-
namic software testing. We use the term “testing” to refer
only to those testing activities that are a part of the larger
verification process.

Dynamic software testing is made up of black-box (func-
tional) testing and white box (structural) testing. Black-box
testing consists of a testing-debugging cycle, where the in-
ternals of a system are considered only to the extent neces-
sary to determine how to correct faulty behavior on some
test case. Typical evaluation of NLP systems is essentially
black box testing, as it is highly functional in nature, with
test data based solely on the application domain.

By contrast, white-box testing uses test-adequacy criteria
(based on coverage of code or system properties) to assess
the quality of the test suite and the thoroughness of the test-
ing. A complete approach to software testing will incorpo-
rate both black-box and white-box analysis of a program,
which allows us to identify incompleteness in the test data
and potential errors in the program itself.

208 FLAIRS 2003

Typical NLP system evaluation does not include the ad-
equacy criteria that are commonly part of a systematic ver-
ification process. Furthermore, the nature of NLP systems
introduces additional complexity into the verification prob-
lem. For language processing systems it is not easy to spec-
ify what should and should not be acceptable input, and what
should and should not be acceptable output. In addition, an
NLP system can potentially be used in multiple user con-
texts, and must be judged accordingly in order to gauge ap-
plication dependent usability.

Verification of NLP Systems
We would like to derive the benefits of white-box testing
within the context of verification of NLP systems. The tasks
undertaken by NLP systems differ from those undertaken
by other kinds of software systems, and the operation of
NLP systems is different as well, which limits the appli-
cability of programming language dependent testing tools.
With conventional software a dataflow scheme can be used
to determine the precise set of operations that lead to a par-
ticular computation or result. However, in NLP systems it is
not always clear to the designers a priori what information
is relevant for a particular decision. In fact, understanding
this may be an intended side effect of building the system.
Moreover, in some situations, there may be multiple correct
results that a system could produce. This is particularly the
case in language generation systems where there may be nu-
merous correct realizations of a text specification.

Certainly for all software systems we would like to de-
termine whether each possible input leads to some output,
which can be determined by a black-box testing approach.
In the realm of language processing we are also interested
in determining if, for a given output, there is a single input
or set of inputs that can produce it. This task corresponds to
the creation of equivalence classes among the input domain,
as might be done within the context of software reliability
engineering (Lyu 1996).

A point of concern in the language processing realm is
whether the system will place into the same equivalence
class entities that should not generate the same output re-
alization. How we view this issue also depends on which
aspect of NLP we are considering. For example, in lan-
guage generation a given input to a system comprises several
parts: the knowledge source, the communicative goal, the
user model, and the discourse history (Reiter & Dale 2000).
The knowledge source will remain fixed over all uses of the
NLG system (though it should be verified separately). The
user model may be fixed or not, depending on whether the
system is designed to generate text for multiple user groups
or only a single monolithic user. However, the communica-
tive goal and discourse history change for each invocation
of the system. Therefore, the set of possible input configura-
tions is based on the set of communicative goals that the sys-
tem can handle as well as the different interaction sequences
that can be represented by the discourse history.

There are additional questions of interest about the rela-
tionship of input to output in the language processing realm
that do not occur in other areas of software systems. For
example, can we determine whether there will be more than

one possible output for a given input, and do the multiple
outputs form an equivalence class? How we view this also
depends on whether the system is doing analysis, as in lan-
guage understanding, or synthesis, as in language genera-
tion. In an analysis situation the existence of multiple out-
puts for a single input usually implies ambiguity on the part
of the input. In synthesis multiple outputs can be equally
acceptable. In language generation, multiple outputs could
represent equivalent acceptable paraphrases generated from
a single input, based on a single set of underlying concepts
from the knowledge source and the discourse history. We
would also like to be able to determine which parts of a
structured input actually play a role in producing the cor-
responding output, which parts play no role, and what we
can infer about system quality from that information.

Developing a Model For Effective Verification
of NLG Systems

Dale and Mellish (Dale & Mellish 1998) have focused on
the problem of natural language generation (NLG), as dis-
tinct from natural language understanding (NLU), and sug-
gest a direction for improving evaluation of NLG systems.
Their proposal is that, rather than attempt to evaluate a com-
plete system, the evaluation effort address the component
tasks of the NLG process. They suggest a breakdown of the
NLG process (Reiter & Dale 2000; Dale & Mellish 1998)
into the six tasks of content determination, document struc-
turing, lexical selection, referring expression generation, ag-
gregation, and surface realization.

This breakdown, combined with traditional approaches to
verification, leads to several sub-areas in which we can ad-
dress the issue of effective verification of NLG systems. We
note that the task of surface realization involves language-
specific linearization of a representation, and will not be
considered in the context of this work on verification.

Content determination
Dale and Mellish suggest that the area of content determina-
tion may well benefit from work done on the evaluation of
expert systems. The fundamental question of content deter-
mination is that of what information should be conveyed in
a generated text, which is really the question of what an ex-
pert in the domain area would convey in the given situation.
In many respects this is a validation task, not a verification
task, and it may benefit from work done on validation of
intelligent systems.

Document structuring
In document structuring we are concerned with the extent
to which the coherence of generated texts reflects the coher-
ence found in human generated text. The document struc-
turing component of a generation system represents an im-
plementation of a theory of text coherence. The verification
task is to determine whether the implementation of the co-
herence theory is correct. This cannot be set up as a com-
pletely mechanical task, as it must also take into account the
discourse relations between elements of text, and the hier-
archical relations that hold between more general and more

FLAIRS 2003 209

specific elements within the knowledge source of the system
input.

Lexical selection

Lexical selection is the component of NLG that most di-
rectly leads to the possibility of an output equivalence class,
multiple acceptable outputs for a given input. The process
of choosing the words that convey intended content can also
involve linguistic structures and the user model. From the
verification standpoint, we must determine whether all pos-
sible lexicalizations of the selected content for a commu-
nicative goal form an equivalence class, associated with the
same set of underlying concepts from the knowledge source
and responding to the same collocation factors within the
discourse history.

Generation of Referring Expressions (GRE)

At issue in GRE is how the system uses information about an
entity to refer to it in order to generate text that is not unnec-
essarily awkward or redundant. As with lexical selection,
GRE involves discourse history as well as the knowledge
source. While it is important in this case, as well, to ensure
that all possible referring expressions for an entity form an
equivalence class, it is also important that the referring ex-
pression(s) chosen is sufficiently unambiguous and brief.

Aggregation

Aggregation involves developing and ordering linguistic
structures and textual elements based on the information
provided from the document structuring task. In many NLG
system architectures, aggregation is combined with lexical
selection and referring expression generation to form a sin-
gle sentence planning task. Certainly it is the case that
there are multiple ways that information can be aggregated
to form a coherent text that meets the communicative goal.
Dale and Mellish argue (Dale & Mellish 1998) that the in-
teractions between these three subtasks are so poorly under-
stood that researchers are not yet ready to do evaluation of
the separate subtasks. However, precisely because all three
subtasks involve the knowledge source, discourse history, as
well as the communicative goal, it may be possible to de-
velop a verification approach for each of them, based on
the concept of equivalence classes of results. Verification
of sentence planning as a higher level task may be compu-
tationally complex because it effectively involves the cross
product of all possible lexicalizations, referring expressions,
and aggregations (recognizing that not all combinations are
possible but that each lexicalization allows for certain refer-
ring expressions, and each allowable lexicalization-referring
expression pair then allows certain aggregations).

Resource Use

Another area of interest, which cannot be directly assessed
by traditional testing approaches, is that of how linguistic re-
sources are utilized by a language processing system. Typi-
cally a language processing system has numerous resources
within it, such as a lexicon, a grammar, morphological rules,

a pragmatics component, and semantic knowledge (both for-
mal and lexical). We would like to assess completeness and
consistency of the grammar alone. Beyond the grammar, we
are interested in the role of other linguistic resources as well.
Ultimately we intend to define what it means to evaluate all
the linguistic resources for completeness and consistency.
For example, it would be useful to clarify exactly how an
incomplete lexicon affects system behavior. There may be
sub-processes, within a language generation system, for ex-
ample, that should be verified separately because they utilize
only a subset of the available resources. We are also inter-
ested in how the various resources participate in the input-
output relationship. For example, can we determine which
of a system’s linguistic resources contributes to the transfor-
mation of an input to an output? Can we pinpoint exactly
how each element of an output is affected by each linguistic
resource? If the grammar in a generation system is capa-
ble of parsing a sentence, is there some context in which the
system will generate that sentence? Developing mechanisms
for addressing these issues will enable us to more accurately
assess the overarching verification issue, which is whether
the system does the task, and only the task, for which it was
intended.

Grammar Verification
As a first concrete step in developing a verification approach,
we address the verification of a grammar, analyzing for con-
sistency and completeness. We cannot necessarily do this
by applying existing methods. How we do it depends on
the kind of grammar used. We have, from the expert sys-
tems’ realm, methods and tools that are suitable for rule-
based systems (for example, the TRUBAC tool (Barr 1999)).
However, the rule formalism, while used in some aspects of
NLP, is frequently not used for grammar representation. Yet
adapting to the grammar of an NLP system the underlying
approach used for rule-based systems may give us the abil-
ity to determine which parts of a grammar have not been
exercised by a given input test set, and also to generate input
that will exercise parts of the grammar and combinations of
grammatical constructions that were not exploited by a par-
ticular test suite.

We focus on the use of Lexicalized Tree Adjoining Gram-
mars (LTAG), based on the original TAG formalism (Joshi,
Levy, & Takahashi 1975; Joshi 1987; Joshi & Schabes
1997). TAG is a mathematical formalism that can be used,
in conjunction with a linguistic theory, for linguistic descrip-
tions. TAG was developed as a more powerful formalism
than context free grammars (CFGs), and is based on tree
rewriting, not string rewriting. In a TAG the elementary
structure is a tree, not the flat rules found in CFGs. TAG al-
lows for an extended domain of locality, thereby facilitating
agreement between different parts of a tree structure (such as
subject-verb agreement) that cannot be easily enforced with
a CFG.

Formally, a TAG (Joshi & Schabes 1997) consists of a
quintuple (Σ, NT, I, A, S), made up, respectively, of a fi-
nite set of terminal symbols, a finite set of nonterminal sym-
bols, a finite set of finite initial trees, a finite set of finite
auxiliary trees, and a distinguished nonterminal symbol S.

210 FLAIRS 2003

An auxiliary tree has nonterminal symbols labeling interior
nodes and one “foot node” on the frontier which allows for
adjunction (other nonterminal frontier nodes are marked for
substitution). An initial tree has interior nodes labeled by
nonterminal symbols, and nonterminal nodes on the frontier
are labeled for substitution.

When an LTAG is used, each lexical item (a word and
its part-of-speech) has an associated family of LTAG trees,
each of which has the lexical item as its “anchor”, and each
elementary structure in the grammar is associated with a lex-
ical item (terminal item, or word of the language). The TAG
rules for adjunction and substitution operations determine
the ways in which these trees can be combined together to
make complex structures that represent sentences. The ad-
junction operation builds a new tree from an auxiliary tree
and another tree (of any type). This operation is used to
add modifiers that provide syntactically-optional elabora-
tions. Substitution takes place only at nonterminal nodes of
the frontier of a tree and provides complements or arguments
that are syntactically required. In a language generation sys-
tem, at each step the generation algorithm will choose one
out of the adjunction or substitution possibilities.

In natural language generation the goal is to go from an
internal representation to a string of text. The input to the
system will include a knowledge source, a communicative
goal, a user model and the discourse history. LTAG is a good
choice for generation systems because of the way the gram-
mar is organized, the full lexicalization, and the extended
domain of locality. These features allow the LTAG to be a
factor in word choice and the mapping of semantic relations
to syntactic relations. It is also possible, as is the case in the
SPUD system (Stone et al. 2001), to use the LTAG to handle
lexical choice, referring expression generation, and sentence
planning. Therefore, if we can verify the LTAG in some way
then we will gain valuable information about the quality of
several steps of the generation process.

There are numerous questions that we hope to eventu-
ally address as part of the verification of generation systems,
particularly those based on LTAGs. Initially, we propose
analyzing the grammar for consistency and completeness.
Given a grammar made up of trees (rather than rules), we
cannot directly use the characteristics that are used in evalu-
ating rule-bases for consistency and completeness (conflict,
redundancy, circularity, subsumption, unreachability, dead-
ends, etc.), but rather must adapt the concepts of complete-
ness and consistency for the LTAG realm. We propose the
analysis of the consistency and completeness of an LTAG as
a suitable first step to carrying out verification and validation
of the generation system in which the LTAG is used.

We propose checking the following characteristics of an
LTAG:

• all trees have an anchor (the LTAG is properly lexicalized)

• there are no adjunction points in initial trees

• every auxiliary tree can participate in some adjunction op-
eration with other tree(s) in the LTAG

• every initial tree can participate in some substitution op-
eration

• every tree has a use in some adjunction or substitution
operation

This set of checks will serve as the first stage of verifi-
cation analysis for an LTAG. We note, however, that all of
these checks are strictly structural in nature, and do not in
any way guarantee semantic coherence in the sentences that
could be generated by the LTAG under analysis. In the next
stage of this work we will extend the approach to feature-
based LTAG, where elements of semantic coherence are en-
forced within the structure of the grammar components, so
that a verified grammar is more likely to generate semanti-
cally coherent sentences.

We are currently pursuing this approach in the context of
the SPUD language generation system(Stone et al. 2001).
We will start with a simple grammar, and then move on to a
grammar that includes generation of text combined with ges-
tures for an embodied conversational agent(Cassell, Stone,
& Yan 2000).

Conclusion
In this paper we proposed an approach for effective verifi-
cation of NLG systems, based on conventional evaluation of
language processing systems combined with software test-
ing and system verification concepts drawn from the intel-
ligent systems community. We presented a first step in the
implementation of the verification strategy in the form of a
specific strategy for the verification of lexicalized tree ad-
joining grammars (LTAGs) as used in natural language gen-
eration systems. In future work we will determine the use-
fulness of this approach by testing it on a number of LTAGs
that have been used in conjunction with a specific language
generation system.

Acknowledgments
Thanks to Bonnie Webber and Matthew Stone for their
thoughts about and comments on this work, and their con-
tinued interest in it.

References
Barr, V., and Klavans, J. 2001. Verification and valida-
tion of language processing systems: Is it evaluation? In
Proceedings of the Workshop on Evaluation Methodologies
for Language and Dialogue Systems, ACL2001. Toulouse,
France: Association of Computational Linguists.
Barr, V. 1999. Applications of rule-base coverage measures
to expert system evaluation. Journal of Knowledge Based
Systems 12:27–35.
Barr, V. 2001. A quagmire of terminology: Verification
& validation, testing, and evaluation. In Proceedings of
Florida Artificial Intelligence Research Symposium 2001.
Cassell, J.; Stone, M.; and Yan, H. 2000. Coordination and
context-dependence in the generation of embodied conver-
sation. In Proceedings of First International Conference
on Natural Language Generation, 171–178.
Cassell, J. 2000. Nudge nudge wink wink: Ele-
ments of face-to-face conversation for embodied conver-
sational agents. In Cassell, J.; Sullivan, J.; Prevost, S.;

FLAIRS 2003 211

and Churchill, E., eds., Embodied Conversational Agents.
Cambridge, MA: MIT Press. 1–27.

Dale, R., and Mellish, C. 1998. Towards evaluation in
natural language generation. In Proceedings of the 1st In-
ternational Conference on Language Resources and Eval-
uation.

Declerk, T.; Klein, J.; and Neumann, G. 1998. Evaluation
of the nlp components of an information extraction system
for german. In Proceedings of the 1st International Con-
ference on Language Resources and Evaluation, 293–297.

Gonzalez, A., and Barr, V. 2000. Validation and verifi-
cation of intelligent systems - what are they and how are
they different? Journal of Experimental and Theoretical
Artificial Intelligence 12(4).

Joshi, A., and Schabes, Y. 1997. Tree-adjoining gram-
mars. In Rozenberg, G., and Salomaa, A., eds., Handbook
of Formal Languages, volume 3. Berlin: Springer. 69–124.

Joshi, A. K.; Levy, L. S.; and Takahashi, M. 1975. Tree ad-
junct grammars. Journal of Computer and System Sciences
10:136–163.

Joshi, A. 1987. An introduction to tree adjoining gram-
mars. In ManasterRamer, A., ed., Mathematics of Lan-
guage. Amsterdam: John Benjamins. 87–113.

Jurafsky, D., and Martin, J. 2000. Speech and Language
Processing. New Jersey: Prentice-Hall.

Klavans, J. L., and Wacholder, N. 1997. Automatic iden-
tification of significant topics in domain independent full
text analysis. Technical report, Columbia University Dept.
of Computer Science.

Litman, D., and Pan, S. 1999. Empirically evaluating an
adaptable spoken dialogue system. In Proceedings of the
International Conference on User Modeling.

Lyu, M. 1996. Software Reliability Engineering. New
York, NY: McGraw-Hill.

McKeown, K. R., and Klavans, J. L. 1997. Stimulate: Gen-
erating coherent summaries of on-line documents: Com-
bining statistical and symbolic techniques. Technical re-
port, Columbia University Dept. of Computer Science.

McKeown, K.; Pan, S.; Shaw, J.; Jordan, D.; and Allen,
B. 1997. Language generation for multimedia healthcare
briefings. In Proceedings of the Applied Natural Language
Processing Conference (ANLP’97).

Reiter, E., and Dale, R. 2000. Building Natural Language
Generation Systems. Cambridge, UK: Cambridge Univer-
sity Press.

Sproat, R. 1997. Multilingual Text-to-Speech Synthesis:
The Bell Labs Approach. New York: Kluwer.

Stone, M.; Doran, C.; Webber, B.; Bleam, T.; and Palmer,
M. 2001. Microplanning with communicative intentions:
The spud system. Technical report, arXiv:cs.CL/0104022.

Voas, J. M., and Miller, K. W. 1995. Software testability:
The new verification. IEEE Software 12(3):17–28.

Walker, M. 2000. An application of reinforcement learn-
ing to dialogue strategy selection in a spoken dialogue sys-

tem for email. Journal of Artificial Intelligence Research
12:387–416.

212 FLAIRS 2003

