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Abstract

Current rule base maintenance is wasting refinement and in-
ference performance. There are only few maintenance con-
cepts, which enjoy both (1) formal rule refinement and (2)
utilizing topical knowledge provided by experts within the
refinement process. The current state of the art in rule base
validation and refinement reveals that there is no generic val-
idation interface and no optimal rule trace refinement. This
paper characterizes two different retranslation approaches for
reduced rule bases and proposes a two–step validation pro-
cess, which combines a case–based approach with a rule trace
validation approach.

Introduction
In (Collet et al. 1990) the authors express a lack of main-
tenance concepts of the considered expert system develop-
ments for environmental protection. A study of the current
state of the art of rule validation and refinement reveals that
there is no generic validation interface and no optimal rule
trace refinement (Zlatareva and Preece 1994).

The validity statements that are the result of the validation
of rule–based systems are useful in refining these systems.
Thus, refinement technologies close thevalidation loopby
generating a modified rule base that obtains a better degree
of validity (Knauf 2000; Knauf et al. 2002b). Here, the re-
finement technology of Knauf is considered in the context
of former reduction approaches. The different and compet-
ing requirements to the refinement stage reveal the need of
a validation interface. As a result of this insight, the au-
thors propose a two–stage validation process that combines
both (1) the validation technique based on the evaluated val-
idators’ competences as introduced by Knauf (Knauf et al.
2002b) and (2) a trace validation approach that enables the
optimization of alternative and competing rule refinements
as introduced in (Kelbassa 2003).

To provide an overview on rule base maintenance, this
section sketches some historical milestones. The first rule
refinement/revision systems weresingle case analysis sys-
tems, which fix a rule base with respect to a concrete case.
The drawback of this approach is that the impact of rule re-
finements on other cases is not evaluated. This insight led to
the development of multiple case analysis systems.
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Single Case Analysis Systems
The first rule refinement system is TEIRESIAS (Davis and
Lenat 1982). In order to fix recognized reasoning failures,
it guides the domain expert through the rule trace interac-
tively and in a case–based manner. The domain expert has
the opportunity to modify rules that appeared to beguilty in
the incorrect processing of the considered case. The prob-
lem is that this debugging system is not able to determine
the impact of changes within the rule base on other cases.
Thus, it might happen that a case, which has been processed
correctly before such a modification, is mapped to a wrong
solution afterwards. TEIRESIAS does not check for unde-
sired side effects of rule changes and it does not use any
rule performance statistics. In particular, the expert is not
informed, whether he/she is actually modifying a rule that
never failed in the past or a bad one that failed frequently.

In the 1980’s, the knowledge acquisition research focused
also the development ofintelligent rule editorslike MORE,
MOLE SALT , and KNACK (Marcus 1988). MORE, for in-
stance, inspects its current domain model for pairs of hy-
potheses that do not have any differentiating symptom, i.e.
different outputs that are mapped from the same input. If
it finds such a pair, the domain expert is asked for a symp-
tom that is able to distinguish both hypotheses (Kahn et al.
1985). There is no proof that these intelligent rule editors
control undesired side effects sufficiently.

Multiple Case Analysis Systems
A pioneer system for this class is the rule refinement sys-
tem SEEK2 (Ginsberg 1988c), which gathers statistical in-
formation on all rules of the validated rule base in order to
suggest special refinements to the user. This meta knowl-
edge is processed by heuristics, which enable it to determine
whether a rule should be generalized or specialized. SEEK2
can run in either automatic or interactive mode: In the au-
tomatic mode, it produces a refined rule base with a better
expert system performance. In the interactive mode, SEEK2
gives rule refinement advise to be accepted or rejected by
the validator. However, it has been shown, that the refine-
ment dichotomy is incomplete. Besides generalization and
specialization there is a third refinement class calledcon-
text refinement(Kelbassa 2002). SEEK2 does not validate
the correctness of refined intermediate reasoning chains, but
just the right input – output behavior of the system. Thus,
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the intermediate conclusions might be incorrect. Therefore,
this pure single rule validation might not ensure that all re-
fined intermediate rule traces are valid. Since SEEK2 is not
a rule trace validation system like TEIRESIAS, it has been
proposed to develop a generic validation interface, which
can acquire validation information from the evaluating ex-
pert(s), for example, knowledge about missing conditions or
wrong conclusions in a present rule trace (Kelbassa 1990)1.

A well-known milestone is theReduced Theory Learning
System(RTLS) by GINSBERG (Ginsberg 1988b; Ginsberg
1990). Here,reducedmeans that the RTLS does not refine
original rules that also generate intermediate conclusions.
Instead, it refines a converted version, which is obtained by
a knowledge–base reduction step (Ginsberg 1988a). The re-
duced knowledge base infers the final conclusions directly
from the case inputs without any intermediate conclusions.
The RTLS looks for the right input–output mapping without
checking the validity of the retranslated intermediate rules
by any domain expert. Despite the fact that RTLS gener-
ates correct final outputs for the validated cases, the outcome
does not guarantee that the expert system yields the correct
conclusions because there is no accurate retranslation. The
retranslation is necessary, because the RTLS output is a re-
duced rule base, which is difficult to interpret by humans
as there are no intermediate conclusions. Thus, it cannot
be assumed that the retranslated RTLS rule base yields al-
ways the same solutions as the refined rules found by RTLS2.
As far as known by the authors, there is noexactretrans-
lation approach for reduced rule bases yet (Boswell 1999;
Knauf et al. 2002a). Surprisingly, GINSBERGstated that his
RTLS approach is (only) suited for medium size rule bases:
“For large scale problems it will undoubtedly be necessary
to employ heuristic strategies in order to pinpoint selected
portions of the theory for reduction or partial reduction”3.

GINSBERG’s work didn’t find a complete agreement: “Al-
though the retranslation algorithm presented in (Ginsberg
1990) has been tested on a small size medical expert system
. . . , there are several open questions about it. For example,
are the new rules introduced as a result of the retranslation
process acceptable from the semantic point of view? Can
they introduce new structural anomalies in the knowledge
base (for example, redundancies)?”4. Based on this insight,
ZLATAREVA developed the retranslation–free revision sys-
tem VVR (Zlatareva 1994).

There are two other refinement approaches that should be
mentioned in this context: (1) KRUSTWORKS/KRUSTTOOL,
and (2) STALKER. KRUSTWORKStargets the development
of generic refinement operators that can be assembled in-
dividually so that the toolkit KRUSTTOOL can cope with a
certain refinement problem (Boswell and Craw 2000). A

1Dieses Paper hat leider Druckfehler auf S. 281, Zeilen 3 und
7: Richtig ist∆I := {Ik

0 ∆Ik
1 } und∆Rk := {Rk

0∆Rk
1}, wobei

∆ die symmertische Differenz ist.
2Ginsberg 1990, p. 782: “This means that the new theory gen-

erated by this method may, and generally will, correspond to a re-
duction that is not identical to the input from RTLS.”

3Ginsberg 1988b, p. 595
4Zlatareva and Preece 1994, p. 159

KRUSTTOOL performs a three stage process: (1) blame al-
location (to identify faulty rules), (2) refinement creation,
and (3) rule refinement selection. It creates many alterna-
tive refinements, but employs hill climbing procedures for
the selection of the best rule refinements. Several systems
employ a so–calledradicality orderingwith respect to the
sequence among the available refinement operators. For ex-
ample, a refinement operationcomponent additioncannot be
executed before an on–target refinement operationcompo-
nent deletiontook place (Boswell 1999). This hill climbing
approach is typical for the current state of the art. There is
no satisfactory methodical standard concerning the selection
of rule refinements. The distinctive feature of the refinement
system STALKER is a Truth Maintenance System (TMS)
for speeding up the refinement and testing. For medium size
rule bases, it has been shown that STALKER (Carbonara and
Sleeman 1999) is about 50 times faster than KRUST.

In (Knauf 2000), a new case–based reduction approach
has been presented in the context of a novel validation
methodology. A discussion of this reduction approach in the
context of the ones mentioned above is the focus of the fol-
lowing sections. A characteristic of this approach is the case
associated competence estimation for each validator which
is utilized to judge the system’s validity. This is because the
experts’ knowledge is also validated.

The current multiple case analysis systems are executing
input–output validation only. Unlike rule trace validation,
the input–output validation is not facing the validity of in-
termediate inference results. Actually, there is no multiple
case analysis system that faces the validity of the reasoning
traces, in particular the intermediate conclusions. Further-
more, there is no mathematical optimization for the selec-
tion of the best rule refinements. Currently, hill climbing
methods are used for this purpose. In (Ginsberg 1988c),
the author states that mathematical optimization cannot be
applied for the optimal selection of rule refinements. For-
tunately, this is not true, since (Kelbassa 2003) introduces
an operations research approach to the optimal selection of
alternative and competing rule refinements.

However, as upcoming results the authors expect the de-
velopment of a generic validation interface for rule retrans-
lation. This could be managed by remote validation via the
Internet. That increases the chance to recruit a competent
international topical expert panel.

The Retranslation Problem

GINSBERG’s Retranslation Approach
GINSBERG’s approach performs rule retranslation in a re-
laxed manner. The basic idea of this approach is to start with
the reasoning endpoints (final conclusions) and to retranslate
first the maximal leveln, and then the levelsn− 1 down to
the input level0 (Ginsberg 1990). This retranslation step
uses the rules of the unreducedold rule base and looks for
modifications that are compatible with the revised theory. If
the rules for the endpoint level have been retranslated, then
theback–propagatingsucceeds. Important for retranslation
are several relations aseigen–terms, i.e. hypotheses, which
support one final conclusion only, and so–calledrule corre-
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lated theoretical terms, andtheory correlated observables.
If there are two cases, which have the same observables at
the input level, but different final conclusions, then GINS-
BERG’s approach is looking for other observables in order
to come up with rules that distinguish both final outputs in
the new rule base.

However, the relaxed retranslation is lacking trace valida-
tion. In GINSBERG’s approach there is no final validation of
the obtained reasoning path despite it is being known that the
retranslated rule base does not yield the same performance
as the revised reduced one does. In principle, the processing
of relations likeeigen–terms5 and theory–correlated theoret-
ical terms cannot ensure that the generated conclusions are
semantically valid with respect to the cases that are subject
to examination respectively validation. Therefore, the au-
thors propose a validation step, which examines the multi–
level reasoning trace after rule refinement is performed.

K NAUF ’s Retranslation Approach

KNAUF’s retranslation approach is a part of a test case–
based methodology for the validation of rule based systems
(Knauf 2000; Knauf et al. 2002b). The developed technol-
ogy covers five steps: (1) test case generation, (2) test case
experimentation, (3) evaluation, (4) validity assessment, and
(5) system refinement. The validity assessment leads to dif-
ferent validity degrees, which are associated with outputs,
rules, and test data. Based on these validities, the last step
leads to a new, restructured rule base that maps the test case
set exactly to the solution that obtained the best rating from
the expert panel in the validation session.

The system refinement based onbetter knowledgepro-
vided by experts has to be considered in the context oflearn-
ing by examples. There are plenty of formal learning ap-
proaches that solve tasks like this. Usually, they aim at de-
veloping rules that map test data withknownsolutions to
their correct solution.6 Unfortunately, these formal methods
lead to rules that might reflect reality fairly well, but are not
readableor interpretableby domain experts. Even worse,
these refinement systems might construct rules that reflect
the cases (examples) correctly, but are wrong with respect to
the causal connection they express.

KNAUF’s refinement idea is to come up with a formal rule
reconstruction procedure based on the validation results: va-
lidity degrees associated with test cases, rules, and outputs.
The result of the refinement is a reduced rule base, which
consists ofone–shoot rules, which infer directly the right
output from the input given by the considered cases without
intermediate conclusions (hypotheses). Therefore, this re-
duced rule base must be retranslated to make the rules eas-
ier to understand and to interpret by human experts because
of their shorterif –parts. For retranslation, pre–compiled
knowledge is utilized, which occurs as rules with an inter-
mediate conclusion (hypothesis) as theirthen–parts.

5If there is significant scientific progress in the domain under
evaluation, then eigen–terms may become useless or obsolete.

6This property is usually called consistency.

Validation of Rule Retranslations
In the previous sections the functions that should be per-
formed by a generic rule validation interface have been in-
troduced. For a summary and overview, they are listed here:
• Approval or rejection of final rule–based system outputs

(Ginsberg 1988c; Knauf 2000; Knauf et al. 2002b).
• Evaluation of all conclusions, i.e. all intermediate and fi-

nal ones (Kelbassa 1990, 2003).
• Acquisition of validation knowledge from human do-

main experts by validation technologies like (Knauf 2000;
Knauf et al. 2002b).

• Acquisition of reasoning faults and target rule trace
knowledge (Kelbassa 1990, 2002, 2003).

• Acceptance or rejection of rule revisions suggested by
the validation system (Ginsberg 1988c; Davis and Lenat
1982; Kelbassa 1990; Boswell 1999).

• Detach the identification of invalidities from the final de-
termination of the effective refinements (Kelbassa 1990).

• Acceptance or rejection of rule refinements suggested by
the rule retranslation system.

It turned out that coping with the rule retranslation problem
yields the need for evaluation of alternative rule retransla-
tions. Similar to the TURING Test - like validation interface
(Knauf 2000) the validation system should provide a generic
interface for the evaluation of the retranslated rules in the
generated rule trace. Thus, we need two different validation
modes (1) a multi–level reasoning evaluation mode and (2) a
single rule evaluation mode. Themulti–level reasoning eval-
uation modepresents the case–related reasoning trace with
intermediate and final conclusions. From the input level, it
leads via intermediate conclusions to the final outputs.

Figure 1 shows a generic multi–level validation interface
for intermediate and final conclusions. The conclusions are
mouse–sensitiveso that the validator can mark a certain in-
termediate or final conclusion that is not valid in his eyes.
In the example of figure 1, the hypothesesh12, h122, and
the outputo17 are marked as invalid. Based on these marks
provided by the validator, the validation system is able to
identify the invalid rules.

If •A ◦AND •NOT B
Then•Z

refined into↪→
If •A •OR •NOT B
Then•Z

Figure 2: Single rule validation example

Figure 2 shows an example for thesingle rule evaluation
mode. Here, the conditions and the single final conclusion
are presented to the validator who can change avalidity flag
• (valid) respectively◦ (invalid) by mouse–click, so that in-
valid conditions are revealed. As shown above, the multi–
level validation interface offers a top–down approach: first,
invalid conclusions are marked and second, the particular
guilty rule can be inspected by the validator.
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Symbol Meaning:
• := valid inference
◦ := invalid inference

input
level

inputs1 −→· · ·
inputs7 −→· · ·
inputsn −→

• hypothesish1· · ·◦ hypothesish12· · ·• hypothesish79

intermediate
conclusion
level

• hypothesish80· · ·• hypothesish94· · ·• hypothesish121

◦ hypothesish122· · ·• hypothesish164· · ·• hypothesish240

output
level

• final conclusiono1· · ·◦ final conclusiono17· · ·• final conclusiono188

Figure 1: Generic validation interface for intermediate and final conclusions

The two Stage Validation Process
The discussion so far provided an overview on the state of
the art of rule validation and refinement. Here, we intro-
duce a two stage validation process, which combines the
approaches of KNAUF (Knauf 2000; Knauf et al. 2002b)
and KELBASSA (Kelbassa 1990; Kelbassa 2003) and enjoys
the advantages of both. The process suggested here covers
KNAUF’s approach in a first stage that is continued by KEL-
BASSA’s approach as the second stage. The objective of this
combination is to perform a reasoning trace validation with
the best available validators as illustrated in figure 3.

The first stage of the proposed combined validation pro-
cess realizes KNAUF’s approach and yields three main re-
sults: (1) a case–related competence estimation for the in-
volved validators (2) the valid input–output mapping7, and
(3) the revised rule base (after a relaxed retranslation step).
As we are able to identify the validator(s), who is (are) most
competent for a test case, the second stage can be performed
by presenting each case to the most competent validator(s).

However, this revised rule baseRB1∗ is just utilizing pre–
defined knowledge, which contributes to the valid input–
output behavior but which is not validated itself. We call it a
relaxed resultconcerning the reasoning trace and the inter-
mediate inferences. Therefore, the second validation stage
is focussing the validity of the reasoning path for all cases
under examination. The validation expertise obtained in the
second validation stage is the subject of mathematical opti-
mization as described in (Kelbassa 2003). Thus, the overall
result is a refined rule baseRB2∗ obtained by the optimal
selection of the best rule refinements.

Conclusion
Formal refinement approaches like the one in (Knauf 2000;
Knauf et al. 2002b) aim at the total validity of the input–
output behavior of the rule–based expert system. A little
(formal, not topical) retranslation is performed by utilizing

7Valid, in this context means the mapping that met the maximal
experts’ approval

the intermediate conclusions that have been a part of the
knowledge base before refinement. These intermediate con-
clusions itself are not validated and might be wrong. Topical
refinement processes like the one in (Kelbassa 2003), on the
other hand, aim at the validation of the inference path and
optimal rule base refinement.

Here, we proposed a useful combination of both: A two
stage validation interface. In a first stage KNAUF’s approach
is performed. One result of applying this approach is a case–
associated competence estimation of each involved valida-
tor. This is a useful basis to apply KELBASSA’s approach
that forms the second stage. By utilizing the competence es-
timation this second stage is performed within an interactive
dialogue with the most competent human expert(s) for the
considered (sub–) domain of expertise.

On a first view there seems to be a remaining problem: A
rule might be used to infer different input–output cases that
have differentmost competentexperts. KNAUF’s refinement
aims at inferring anoptimal solutionfor each case. If a rule
produces different optimal solutions provided by different
experts for different inputs, this rule issplit into several rules
that have the samebest experteach. This rather accidental
feature of KNAUF’s refinement idea became important for
the compatibility with KELBASSA’s approach.
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