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Abstract

Refinement systems currently select the best rule refinements
from a set of conflicting and alternative refinements by us-
ing heuristics. This paper presents a new operations research
approach for the selection of optimal rule refinements. The
problem analysis and the description of the optimization are
performed using two well-defined examples. The analysis of
the refinement selection problem leads to the conclusion that
a binary linear maximization problem is to be solved by a
operations research procedure. The mathematical solution of
the refinement selection problem is a milestone in the history
of rule refinement.

Introduction
At present the available commercial tools for the develop-
ment of rule bases do not provide a validation system. A
study of the current state of the art in the area of rule valida-
tion and rule refinement reveals that there is no generic vali-
dation interface and no optimal selection of rule refinements.
Concerning the selection of rule refinements no methodical
standard so far existed, i.e. current refinement systems se-
lect the best rule refinements out of a set of conflicting and
alternative ones by hill-climbing procedures.

Rule trace validation can ideally be subdivided into the
initial rule base evaluation step (case-based validation), the
identification of faulty rules, the generation of suitable
rule refinements, the selection of the best rule refinements
and, finally, the execution of the selected rule refinements.
This article deals with the selection of the best rule refine-
ments, which, in current refinement systems, is performed
in a heuristic manner (Craw 1991, Ginsberg 1988, Boswell
1999, Carbonara and Sleeman 1999), and presents a mathe-
matical formalization of the rule refinement selection prob-
lem. The reader who is interested in how to come up with
suitable rule refinement heuristics is referred to (Kelbassa
and Knauf 2003). The focus of this paper is the selection
of optimal refinement heuristics out of a given set of con-
flicting, normal, and alternative rule refinement heuristics.
The mathematical outcome is a binary maximization prob-
lem solvable by operations research procedures, i.e. a novel
approach for the optimal selection of rule refinements.
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In the next section we present a rule refinement example
which has already been analyzed in (Kelbassa 2003). The
result of this conflict analysis is a set of one-of disjunctions
which state the conflicting nature of the rule refinements
considered, and enables an operations research formaliza-
tion for the rule refinement selection problem. After the op-
erations research solution for the rule refinement example
with conflicting refinements has been presented, the simul-
taneous selection of conflicting, normal, and alternative rule
refinement heuristics is discussed by using a second working
example.

Rule Refinement Example

For the elaboration of the refinement selection problem
an higher order refinement example with three refinement
classes is discussed now (Kelbassa 2002a, 2002b). Con-
sider the following rules contained in a rule base RB0 of
a forward-chaining inference system:

RB0 := {.., R18, ., R42, ., R46, R47, .., R54, ., R64, ., R66, .}
R18 := IF (A ∧ B) THEN Hypothesis 1
R42 := IF (C ∨ D) THEN Hypothesis 3
R46 := IF (Hypothesis 1 ∧ ¬Hypothesis 3) THEN I8

R54 := IF (Hypothesis 3 ∧ E) THEN I2

R64 := IF (A ∧ ¬K) THEN Hypothesis 7
Here I2 and I8 are two different final conclusions; the let-

ter I means interpretation, i.e., any proposition. Assume
that the production rules in this RB0 processed different
problem cases and that the domain expert has entered his
evaluation for every case by validation interface. Suppose
the rule refinement heuristics listed below have been ob-
tained by the validation system according to the validators
rule trace evaluation. These refinement heuristics are rule
refinement expertise – the above rules became refinement
candidates:

RH1 := IF rule R46 is generalized by φ2
G,

THEN case set C1 gets valid reasoning
paths (rule traces): |C1| = 4

RH1/2 := IF rule R64 is contextualized by φ1
C ,

THEN case set C2 gets valid reasoning
paths (rule traces): |C1/2| = 9
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RH2 := IF rule R18 is contextualized by φ2
C ,

and
rule R42 is specialized by φ1

S ,
THEN case set C2 gets valid reasoning

paths (rule traces): |C2| = 1

RH3 := IF rule R46 is generalized by φ1
G,

and
rule R54 is generalized by φ1

G,
and
rule R64 is contextualized by φ2

C ,
THEN case set C3 gets valid reasoning

paths (rule traces): |C3| = 8

RH3/2 := IF rule R46 is specialized by φ1
S ,

and
rule R54 is specialized by φ2

S ,
and
rule R64 is generalized by φ3

G,
THEN case set C3/2 gets valid reasoning

paths (rule traces): |C3/2| = 15
In these refinement heuristics the symbols

φ1
C , φ2

C , φ1
G, φ2

G, φ3
G, φ1

S , φ2
S characterize elemen-

tary rule refinement operations (Kelbassa 2003). The
index C means contextualization (φC), the index G means
generalization (φG), and the index S means specialization
(φS); the superscript is the class index. The set of all rule
refinements is Φ := {φC , φG, φS}.

It is to be emphasized that the above refinement heuris-
tics are not alternative ones, because every case appears
once only: C1 ∩ C1/2 ∩ C2 ∩ C3 ∩ C3/2 = ∅. If refine-
ment heuristics are alternative ones, so, for example, that we
should apply either heuristic RH4 or RH5 in order to vali-
date a certain case set, then this case set intersection is not
empty: C4 ∩ C5 �= ∅. The optimal selection of alternative
rule refinement heuristics is formalized in a section below.

Rule Refinement Conflict Analysis
The elementary refinement operations above are stated with
regard to the reference rule Rx, i.e. the refinements all are
referring to an unrefined faulty rule Rx ∈ RB0 of the same
rule base. Thus there are difficulties if we try to get a good
sequence of elementary refinements for the refinement of
any rule Rx which failed in several cases. This sequence
problem or refinement reference problem is not sufficiently
solved yet (Boswell 1999).

Let CS(Rx) be the refinement conflict set for rule Rx ∈
RB0, which contains all demanded refinements the rule Rx

is subject to, i.e. every required refinement operation for
this rule. Accordingly the conflict sets CS for our specific
problem are the following:

CS(R18) = {φ2
C} Comment: no conflict

CS(R42) = {φ1
S} Comment: no conflict

CS(R46) = {φ1
G, φ2

G, φ1
S}

CS(R54) = {φ1
G, φ2

S}
CS(R64) = {φ1

C , φ2
C , φ3

G}

The conflict sets CS(R18) and CS(R42) do not reveal
any refinement conflict, because these sets both have one
element only. The example conflict sets to be investigated
are the CS(R46), the CS(R54), and the CS(R64).

Altogether the conflict analysis regarding the refinement
candidates R18, R42, R46, R54, R64 leads to the recognition
that the conflict sets of the latter three rules have to be de-
scribed by ONE-OF DISJUNCTIONS. A detailed analysis of
this sample is presented in (Kelbassa 2003); due to space
limit this analysis cannot be repeated here. The resulting
ONE-OF restrictions for CS(R46), CS(R54), and CS(R64)
have the following form:

ONE-OF(RH1(R46), RH3/2(R46), RH3(R46)),
[ ONE-OF(RH3(R54), RH3/2(R54)), ]

ONE-OF(RH1/2(R64), RH3(R64), RH3/2(R64)).
The optimization will be on the heuristic level. It is not

relevant for the following which rules occur in ONE-OF
DISJUNCTIONS so that the second ONE-OF is discarded
(stated by [...]), because the third ONE-OF is more restric-
tive. These constraints can be converted into linear inequal-
ities which are the basis of an operations research solution.

Operations Research Approach
In the scientific world the discipline which is research-
ing mathematical optimization is called operations research
(acronym: OR). As far as it is known to the author the op-
timal selection of conflicting or alternative rule refinements
has not been solved and published by other scientists yet.

The various heuristics have different success in the val-
idation of cases, hence the expected total case gain of the
heuristics is maximized. The question whether a certain
heuristic is an element of the optimal heuristic set can be
answered by a binary decision variable x ∈ {0, 1}. Accord-
ingly the optimization result xj = 1 (j ∈ IN) means that the
j-th heuristic is optimal; wherby the result xj = 0 (j ∈ IN)
means that the j-th refinement heuristic is suboptimal and
therefore not to be executed. With respect to our special rule
refinement problem we define the following variables:

x1 ∈ {0, 1} := Decision variable for heuristic RH1

x2 ∈ {0, 1} := Decision variable for heuristic RH1/2

x3 ∈ {0, 1} := Decision variable for heuristic RH2

x4 ∈ {0, 1} := Decision variable for heuristic RH3

x5 ∈ {0, 1} := Decision variable for heuristic RH3/2

The gain gj ∈ IR of the refinement heuristics here are the
number of debugged cases (THEN-part); hence we assign the
following gain values: g1 = |C1| = 4 , g2 = |C1/2| = 9 ,
g3 = |C2| = 1 , g4 = |C3| = 8 , g5 = |C3/2| = 15.

Using the gain values gj (j = 1,...,n) we can also take into
account that different cases have different weights. So, for
example, if any gain variable g42 is referring to a refinement
heuristic which validates three cases C42 := {c4, c21, c36}
having the weights w4 = 17, w21 = 25, and w36 = 44, then
the gain is g42 = 17 + 25 + 44 = 86. For the sake of clarity
different case weights are not used in our specific refinement
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example. Different case weights are mentioned here, since
uniform case weights are a drawback of several refinement
systems (Carbonara and Sleeman 1999, Ginsberg 1988).

The objective function for the rule refinement selection
problem RSP is:

n∑
j=1

gjxj → maximum!

xj ∈ {0, 1}; gj ∈ IR; j = 1, ..., n (n ∈ IN).

Although in our sample all gain values are positive, it is
stated that gj ∈ IR (– relevant in the case of side effects).

Next we come up with the linear inequalities for the ONE-
OF DISJUNCTIONS. Let x1, ..., xn be binary decision vari-
ables involved in any one-of conflict, then for a ONE-OF
DISJUNCTION the follwing inequality holds:

x1 + ... + xn ≤ 1 (n ∈ IN).
Solving our refinement problem we process the above two

ONE-OF DISJUNCTIONS:

ONE-OF(RH1, RH3, RH3/2)
ONE-OF(RH1/2, RH3, RH3/2)

Based on the problem specific definition of the binary de-
cision variables xj(j = 1, ..., 5) the one-of inequalities are:

x1 + x4 + x5 ≤ 1 (I)
x2 + x4 + x5 ≤ 1 (II)

Thus the optimization approch for our special rule refine-
ment selection problem is:

4x1 + 9x2 + 1x3 + 8x4 + 15x5 → maximum!
x1 + x4 + x5 ≤ 1 (I)

x2 + x4 + x5 ≤ 1 (II)
x1, x2, x3, x4, x5 ∈ {0, 1}

The mathematical approach for the conflicting rule refine-
ment selection problem RSP is:

RSP :=




n∑
j=1

gjxj → maximum!

subject to
n∑

j=1

aijxj ≤ bi (i = 1, ..., m)

gj ∈ IR , xj ∈ {0, 1} (j = 1, ..., n)

aij ∈ {1, 0,−1}, bi ∈ {1, 0} (i = 1, ..., m)

Due to the restriction xj ∈ {0, 1} this optimization prob-
lem is called a binary integer problem. In our numeric ex-
ample m = 2 holds since finally there are only two one-of
constraints. As there are no predefined dependencies be-
tween the decision variables here aij ∈ {0, 1} and bi ∈ {1}
holds, else aij ∈ {1, 0,−1} and bi ∈ {0, 1} can be present.

This refinement selection problem RSP is solvable by sev-
eral well known OR procedures; in particular a RSP can be
solved by using the

• ADDITIVE BALAS’ ALGORITHM (Balas 1967, Burkhard
1972, Neumann 1975);

• BRANCH AND BOUND PROCEDURE (Neumann and
Morlock 2002, Hillier and Lieberman 2001);

• GOMORY PROCEDURE (Neumann 1975, Neumann and
Morlock 2002, Schrijver 2000);

• BRANCH AND CUT PROCEDURE (Hoffman and Padberg
1991, Hillier and Lieberman 2001, Jünger and Naddef
2001).

Due to scientific progress, predictions about the future roles
of the above OR procedures are risky 1 (Joseph 2002).

The matrix representation of the RSP is:
max {gx|Ax ≤ b , x ∈ {0 , 1}n, n ∈ IN}.

For GOMORYS PROCEDURE A must be an integral m×n
matrix (A ∈ Zm×n), b an integral m-vector (m ∈ IN), and
g an integral n-vector (g ∈ Zn).

For the BRANCH AND CUT PROCEDURE A must be a
rational m × n matrix (A ∈ Qm×n) and b an m-vector of
rationals (m ∈ IN).

The optimal solution for our specific RSP is
Gopt(0, 0, 1, 0, 1) = 16 cases. As the outcome is
x3 = x5 = 1, the heuristics RH2 and RH3/2 are optimal.

Alternative Refinements
Concerning RSP no alternative refinement heuristics have
been considered here yet. However, this topic is crucial for
the optimization of rule base refinement. The simplest form
of alternative refinements is present if there are two rule re-
finement heuristics validating the same case set. In this situ-
ation we have to ensure that maximal one of them is realized.
Let x8 and x9 be the binary decision variables for the alter-
native heuristics RH4 and RH5, then the ONE-OF constraint
for these alternative refinements is: x8 + x9 ≤ 1.

A powerful refinement optimization should combine the
selection of conflicting refinements with the selection of al-
ternative refinements. As not all five refinement heuristics
of our first example are optimal ones, we have to find alter-
natives for the heuristics RH1, RH1/2, and RH3, after the
optimal refinements RH2 and RH3/2 have been executed.
Assume that this is done side effect free and that these refine-
ments are listed in a revision protocol which ensures that the
rules just refined not become refinement candidates in the
following refinement stage(s) again (pendulum problem).

When we start to find out alternative refinement heuris-
tics for the remaining case sets, we are going to solve the
alternative rule trace problem for a part of the entire refine-
ment problem. In general it should be possible to find all
the alternatives for every refinement heuristic (by using a re-
finement generator (Carbonara and Sleeman 1999)) so that it
is possible to compute the optimal refinement set for known
competing and alternative refinement heuristics at the begin-
ning. However, this requires more work to be done by the
validator and larger financial and time expenditures for rule
base development.

1Hillier and Lieberman 2001, p. 167
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Hence we prefer to solve a remainder problem instead of
determining alternatives for all refinement heuristics. The
complexity of the refinement problems discussed here is
not high. Though industrial rule bases can have more than
13 000 rules with many conditions and therefore it can be
difficult and time consuming to develop all refinement alter-
natives for large scale knowledge bases (Puppe et al. 2001).
However, for small real-world refinement problems it is pos-
sible to optimize a set of alternative and competing rule re-
finements at the beginning. This will be elucidated now.

In order to come up with a refinement solution for the re-
maining falsified case sets associated with heuristics RH1,
RH1/2, and RH3, recall that the refinement of the rule base
RB0 → RB1 yields improved inferences, so that we can
suppose that the number of suboptimal elementary rule re-
finement operations (here: 5) is larger than the number
of alternative elementary refinement operations needed still
(Ginsberg 1988). Facing this situation the following two re-
finement heuristics are presented, which correct rules having
the same conclusion as two of the rules just refined:

RH1/3 := IF rule R47 is generalized (φ4
G),

THEN case set C1 gets a valid reasoning
path (rule trace): |C1| = 4

R47 := IF (W ∧ Hypothesis 1) THEN I8

φ4
G(R47) := Insertion of a disjunct into a given conjunc-

tion; here: W ∧ (Hypothesis 1 ∨ K)

RH1/4 := IF rule R66 is generalized (φ3
G),

THEN case sets C1/2 and C3 gets valid
reasoning paths: |C1/2| + |C3| = 17

R66 := IF (K ∧ L) THEN Hypothesis 7
φ3

G(R66) := Enlargement of an interval in a
numerical threshold condition;
here: L := (l > 25) → L∗ := (l > 10)

As there is no conflict between these two refinement
heuristics (different rules), these heuristics can be consid-
ered as optimal ones which validate all remaining cases. Al-
though our special refinement problem is completely solved
now, we show here how to come up with an OR solution
for the selection between alternative, normal, and com-
peting rule refinement heuristics. Assuming we have to
solve a selection problem in which the five heuristics of our
conflict example are involved, and furthermore the alterna-
tive heuristics RH1/3 and RH1/4 together with the alterna-
tive heuristics RH4 and RH5, which both realize the gain
g8 = |C4| = 18. All heuristics involved in this second ex-
ample are presented in table 1.

Supposed that these alternative heuristics will not cause a
new refinement conflict, hence concerning CS analysis it is
sufficient to state the above constraints (I, II). The columns
in table 1 reveal that for the case sets C2 and C3/2 there are
no alternative refinements. So we can make a preselection,
for example, represented by x3 = 1. As heuristic RH2 is
neither a conflicting one nor an alternative one, we classify
it as a normal heuristic. If one refinement heuristic appears
in more than one case set column, as RH1/4 does, every one
of these columns can yield a single ONE-OF DISJUNCTION;
here we have two:

Table 1: Selection table for conflicting, normal, and
alternative rule refinement heuristics.

Cases Cases Cases Cases Cases Cases
C1 C1/2 C2 C3 C3/2 C4

RH1 RH1/2 RH2 RH3 RH3/2 RH4
(x1) (x2) (x3) (x4) (x5) (x8)

RH1/3 RH1/4 RH1/4 RH5
(x6) (x7) (x7) (x9)

ONE-OF(RH1/2, RH1/4) and ONE-OF(RH1/4, RH3).
But these two restrictions enable redundant results as
x2 = x7 = 1 and x4 = x7 = 1, although it is sufficient
to generate x7 = 1 and x2 = x4 = 0. This minimal re-
finement outcome can be ensured by the following either-or
constraints which are mutually exclusive:

(either) x2 + x4 < x7 , i.e., x2 = x4 = 0 , x7 = 1;
(or) x7 = 0 .

Let M ∈ IN be any large integer and y ∈ {0, 1} a binary
auxiliary variable, then the above either-or-constraints are
represented by the inequalities (V I) to (XI) as shown in
the extended RSP∗ approach stated below.

In our first example it is not assumed that any decision
variable xl depends on another decision variable xj (xl �=
xj ; l, j ∈ {1, ..., 5}). This situation may arise when the val-
idation of the case(s) associated with decision variable xj

gets a higher priority than the validation of the case(s) asso-
ciated with decision variable xl; a priority can be stated by
the binary constraint xl ≤ xj . Assume that for our second
specific RSP∗ the preference x8 ≤ x1 holds.

Then according to table 1 the OR approach for our ex-
tended (second) specific RSP∗ is:

4x1 + 9x2 + 1x3 + 8x4 + 15x5 + 4x6 +
+ 17x7 + 18x8 + 18x9 → maximum!

x1 + x4 + x5 ≤ 1 (I)
x2 + x4 + x5 ≤ 1 (II)

x1 + x6 ≤ 1 (III)
x8 + x9 ≤ 1 (IV )

x3 = 1 (V )
x7 − My ≤ 1 (V I)

−x7 − My ≤ −1 (V II)
x2 + x4 − My ≤ 0 (V III)

−x2 − x4 − My ≤ 0 (IX)
x7 + My ≤ M (X)

−x7 + My ≤ M (XI)
−x1 + x8 ≤ 0 (XII)

M ∈ IN must be a large integer
x1, x2, x3, x4, x5, x6, x7, x8, x9, y ∈ {0, 1}

The optimal solution for this specific RSP∗ is
G∗(0, 0, 1, 0, 1, 1, 1, 0, 1) = 55 cases. As this opti-
mum is x3 = x5 = x6 = x7 = x9 = 1, the heuristics RH2,
RH3/2, RH1/3, RH1/4, and RH5 are the optimal ones. This
means, for example, that again as in the first sample the
heuristics RH1 and RH1/2 are suboptimal. Regarding the
preference neither x1 nor x8 is optimal: 0 ≤ 0.
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REVISION. Rule refinement means that the cardinality of
the refined rule base is kept constant: |RB0| = |RB1|. If
there is no possibility to fix one or more present bugs by
contextualizations, by generalizations or by specializations,
then we should apply revision operations: |RB0| �= |RB1|.
This means that new knowledge is integrated by new rules
and that obsolete rules are deleted.

Conclusion
At present the selection of alternative and conflicting rule
refinements by refinement systems is performed without
global optimization by greedy heuristics. The novel opti-
mization approach described in this article enables a new
generation of powerful refinement systems.

Evaluating the current state of the art we cannot ascertain
whether reduction approaches or reasoning path validation
approaches will prove most relevant for future expert system
developments, since progress is being made in both valida-
tion research domains (Knauf 2000, Carbonara and Sleeman
1999, Boswell and Craw 2000, Kelbassa and Knauf 2003).

A. GINSBERG asserted that SEEK2’s rule representation
would not be amenable to the application of mathematical
optimization; he did not believe that global optimization is
possible in the domain of rule refinement. 2 It has been
shown in this article that the opposite is true. The result of
every rule refinement conflict analysis is amenable to math-
ematical optimization by OR procedures. The foundation
of the mathematical optimization as presented in this paper
is an analysis of conflicting and alternative rule refinement
restrictions, and the possibility of assigning validation gain
values to rule refinement heuristics. It has been shown by
discussing two defined examples that the outcome of the
formal analysis of the rule refinement selection problem is
a binary linear maximization problem solvable by a binary
OR procedure. The application of exact procedures for cop-
ing with special rule refinement selection problems is inno-
vative, since refinement systems usually employ heuristics
and hill-climbing procedures. This article reveals that the
selection of rule refinements can be optimized, so that large
high-performance rule bases can be developed more rapidly,
and, moreover, suboptimal techniques for rule refinement
and rule validation are becoming obsolete.
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