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Abstract

This paper demonstrates the feasibility of a word-based ge-
netic algorithm (GA) for solving short substitution cryp-
tograms such as the kind found in newspapers and puzzle
books. Although GA’s based on analysis of letter, digram,
or trigram frequencies have been used on substitution cryp-
tograms, they are not able to solve short (10-30 word) cryp-
tograms of the sort we address. By using a relatively small
dictionary of frequent words to initialize a set of substitution
keys, and by employing a word-based crossing mechanism,
the GA achieves performance that is comparable to determin-
istic word-based algorithms.

Introduction
This paper describes a word-based genetic algorithm for
solving simple substitution cryptograms such as the kind
found in newspapers and in puzzle books. These are rel-
atively short (10-30 word) cryptograms with word bound-
aries and punctuation. The ciphertext is created by choosing
a permutation of the 26-character alphabet and using it to
replace each letter in the plaintext message:

• Cryptogram: pkji oexn agnxn x gh tjxit oj nejr vjp ejr g
apide jy amxteo vjpit yjfcn sxs yxis g deghkxji; g hgi rxoe
ajvn gis txmfn jy exn jri.

A solution to this cryptogram must successfully choose the
correct permutation from among 26! (around 4 × 1026)
possible permutations. In the solution shown here, the GA
found all words except bunch and champion:

• Plaintext : upon this basis i am going to show you how a
bunxh of bright young folks did find a xhampion; a man
with boys and girls of his own.

Most approaches for automatic cryptanalysis of simple
substitution ciphers are based on frequency analyses (see
(8), (5), (6), (7), (9), (4)). These approaches are quite effec-
tive – achieving nearly 100 percent accuracy – provided that
the ciphertext is long enough and contains a fairly normal
distribution of the English letters. Most frequency-based
approaches require between 400 to 1000 characters of ci-
phertext to be effective. However, since most puzzle cryp-
tograms are very short, frequency-based algorithms cannot
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be used successfully in their solution. Note, for example,
that the above cryptogram contains only 132 characters (in-
cluding spaces) and has no occurrences of the letter ’e’, the
most frequent English letter.

A successful approach for solving short cryptograms was
developed by Hart (2). This approach is based on word fre-
quencies rather than letter frequencies. What’s surprising
about the word-based approach is that one can perform a
successful analysis with a relatively small dictionary. As
Hart points out, although there are over 100,000 words in
English, a randomly selected word from an English text has
more than a 50 percent chance of occurring in a dictionary
consisting of the 135 most frequent words (2).

Hart’s algorithm uses a deterministic depth-first search
through a tree of word assignments, where each ciphertext
token is paired with a set of possible matching words from
the dictionary. As the search moves down the tree, a partial
substitution key is constructed. The tree is pruned when-
ever a new token-word pair would be incompatible with the
partial key. Hart is able to decode cryptograms containing
as few as 10 words with acceptable speed. The speed and
overall success of Hart’s algorithm varies with the size of
the dictionary. The larger the dictionary, the more words the
algorithm can find, although its speed will diminish dramat-
ically. If the message contains words not in the dictionary, a
complete solution may not be found.

Building on some of Hart’s ideas, this paper demonstrates
the feasibility of a word-based GA for solving short cryp-
tograms.

Related Work
Most algorithms for cryptanalyzing substitution ciphers are
based on frequency analysis. Peleg and Rosenfeld and King
and Bahler use a probabilistic relaxation algorithm to solve
simple substitution ciphers (8), (5). This is a classification
algorithm in which letters of the ciphertext are matched with
certain plaintext letters by analyzing the letter, digram or tri-
gram frequencies in the ciphertext. These algorithms are
very effective, provided that the ciphertext contains enough
characters. In Peleg and Rosenfeld’s study, which used texts
containing around 1000 characters, they were able to find the
correct key within 15 iterations. Using a similar approach,
King and Bahler found their algorithm was effective for texts
of 400 characters or longer. Their algorithm converged to
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the correct solution after only 2 or 3 iterations. King has ex-
tended this approach with success to polyalphabetic substi-
tution ciphers, achieving 100 percent success for texts with
at least 800 characters (5). A similar approach that incorpo-
rated various speed-up techniques, with comparable results,
was described by Jacobsen (4).

Genetic algorithms for analyzing substitution ciphers
have also been based on frequency analysis. Spillman et al.
used both single character frequencies and digram frequen-
cies to calculate the fitness of their population (9). Matthews
used a genetic algorithm based on frequency analysis to an-
alyze transposition ciphers, with similarly good results (7).

Genetic Algorithms
The basic idea behind genetic algorithms is to model the nat-
ural selection process, in which members are selected from
the population and mated to each other to create a new gen-
eration of individuals (3), (1). The process begins by cre-
ating a random initial generation of individuals, sometimes
called chromosomes, that in some way represent the prob-
lem being solved. Pairs of members of the current popu-
lation are selected and “mated” with each other by means
of a crossover operation to produce members for the suc-
ceeding generation. Randomly selected members of the cur-
rent generation also undergo mutation, in which random por-
tions of “genetic” material are exchanged. The fittest mem-
bers of each generation, as determined by a fitness function
are then selected for the succeeding generation (Figure 1).
The crossover and mutation operations are controlled by the
crossover rate and mutation rate parameters, which deter-
mine the proportion of the population that undergoes these
changes.

Figure 1: The basic genetic algorithm.

In a GA for breaking a substitution cryptogram, the mat-
ing and mutation processes are used to generate a search
through the cryptogram’s key space. The search is guided in
a nondeterministic way by the fitness function, which mea-
sures how well a given key succeeds in decrypting the mes-
sage. In our algorithm, the more words found in the evalua-
tion dictionary, the higher the fitness value.

Using the GA to Break Short Cryptograms
The purpose of this study was to determine how well a word-
based GA could solve short cryptograms. What attracted us
to the word-based approach is that it works well on short

cryptograms and it is closer to the way a human solves such
cryptograms. In this section we describe the main features
of our algorithm.

Representation of the Key
In our GA, the chromosomes correspond to the substitution
keys, with each chromosome representing a different key.
A key is represented as a permutation of the 26 letters of
the alphabet, arranged in an ordered sequence, with the first
letter representing the letter that would be substituted for A,
the second for B, and so on. For example, in the following
permutation,

SUQHCLADFGJKNOPTVWXZBEMRIY

the letter S would be substituted in the cryptogram for plain-
text A, U for B, and so on. For example, the word “CAB”
would be encrypted as “QSU.”

Our GA uses a pattern dictionary to construct a collec-
tion of token-word pairs in which every token in the cryp-
togram is paired with all dictionary words having the same
pattern. The token-word pairs are then used to seed the chro-
mosomes. For example, suppose the first word in the cryp-
togram is bzdyd. This matches dictionary words these, there,
and where. Therefore one of the chromosomes would be
based on the pair bzdyd=these, with b substituted for t, z for
h, and so on. Each chromosome is thus seeded with one or
more randomly selected token-word pairs.

The pattern dictionary is constructed from the machine-
readable Kucera-Francis word list of the N most frequent
words (10). We’ve experimented with dictionaries as small
as 50 words and as large as 3500. In the current implemen-
tation we use a dictionary of 50 words to seed the keys and
a dictionary of 3500 words to evaluate the keys.

Fitness Function
The function used to determine the fitness of a chromosome
is based on applying the key to the cryptogram and then
counting the number of dictionary words produced. The
more words produced, the better the key:

• Calculate the fitness of this chromosome:

1. Use the key to decrypt the message.
2. Fitness = the number of distinct words in the decrypted

message that are in the fitness dictionary.
3. Return fitness.

Even though it is somewhat coarse-grained – for a cryp-
togram containing 10 tokens the possible scores would range
from 0 to 10 – this simple metric works surprisingly well.

Mating and Mutation Processes
The mating process crosses two parent chromosomes to pro-
duce two children, where each child contains “genetic ma-
terial” (letters from the key) from both parents. For each
pair of parents, whether a cross takes place depends on the
crossover parameter. If set to 0.9, approximately 90% of
possible crosses will be performed in each generation. In
the current model, children compete with their parents for
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survival into the next generation, for which the fittest indi-
viduals are selected.

The crossover mechanism itself works as follows:

• For each parent, p1 and p2

1. Collect those letters that are used in words found in the
fitness dictionary.

2. Exchange those letters with the corresponding letters in
the other parent’s key to produce the child’s key.

For example, suppose we have the following pairs of chro-
mosomes.

Alpha: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Parent1: SUQHCLADFGJKNOPTVWXZBEMRIY
Parent2: AZBYXCWDEVUFGTSHRIQJPKLOMN

Suppose that parent1’s key is able to find only the word
AND and that parent2’s key is able to find only the word
BIG. The word AND corresponds to SOH in parent1 and
ATY in parent2. The word BIG corresponds to UFA in par-
ent1 and ZEW in parent2. If we use parent1’s key to ini-
tialize child1 (c1) and parent2’s key to initialize child2 (c2),
then the following swaps would be performed: .

swap(S,A) in c2 swap(U,Z) in c1
swap(O,T) in c2 swap(F,E) in c1
swap(H,Y) in c2 swap(A,W) in c1

It should be obvious that this mechanism preserves the va-
lidity of each key because each key is still a permutation of
the 26 letters of the alphabet.

Alpha: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Child1: SZQHCLWDEGJKNOPTVAXUBFMRIY
Child2: SZBHXCWDEVUFGOAYRIQJPKLTMN

Assuming that before the cross parent1 found only AND and
parent2 found only BIG, then both children benefit from the
swap because they both now find AND and BIG. This can
be seen by noting that both keys have the same letters asso-
ciated with AND (SOH) and BIG (ZEW). As a result of this
cross, the children’s score would increase from 1 to 2. The
children would replace the parents in the population.

Note that this mechanism is not guaranteed to improve the
children. Suppose in the preceding example that both par-
ents were able to find other words beside AND and BIG. In
that case while it is true that both children will decrypt AND
and BIG the changes might have messed up other words. For
example, suppose some of the letters in SOH were used by
child2 to find the word ART. Then by swapping SOH with
other letters, child2 is no longer be able to find ART. In that
case its score might actually decrease. On the other hand,
blocking child2 from finding ART might make it possible
for it to find RANT and NOT, thereby increasing its score.
However, even though it can produce children with lower
scores, our experiments have revealed that this mechanism
improves the fitness of the children roughly 3 times as of-
ten as it reduces their fitness. (Experimentally, a majority of
crosses result in no change in the fitness.)

By using an occurs check it would be a simple matter
to modify the crossing algorithm to guarantee that crosses

never decrease the child’s score. In the preceding exam-
ple, because swapping SOH would drop ART from child2
the occurs check would prevent that from happening. This
would guarantee that child2 could not be worse than its par-
ent. However, in our experiments use of the occurs check did
not improve the overall performance of the GA. It appears
to make it more likely that the algorithm gets stuck at a local
maximum rather than finding the true key. The fact that a
certain percentage of keys have (erroneous) words dropped
from found lists seems to act like a random perturbation that
jolts the GA out of that kind of rut.

The final element of the GA is the mutation process. This
process is controlled by the mutation rate, a parameter that
determines the proportion of individuals in each generation
that undergo mutation. In our experiments the mutation rate
has been varied between 0.1 and 1.0. The mutation mecha-
nism is simply to swap two characters chosen at random in
the key. In the current model, mutated individuals competes
with the rest of the population to survive into the next gen-
eration. This mechanism seems to play a role in the GA’s
ability to escape from local maxima.

Results
The algorithm described in the preceding sections is con-
trolled by a number of parameters. We’ve already mentioned
the crossover rate, mutation rate, and occurs check. Other
parameters that we’ve varied are population size, the num-
ber of individuals in the population, and dictionary size, the
number of frequent words used to construct the pattern dic-
tionary. We’ve run many experiments during development
and testing of the GA. Since we are mainly interested in the
overall feasibility of the GA approach to this problem, the
results we describe here use the settings given in Table 1.

Parameter Setting
Population Size 512 individuals
Seeding Dictionary Size 50 words
Fitness Dictionary Size 3500 words
Crossover Rate 0.9
Mutation Rate 0.2
Occurs Check Off

Table 1: Parameter settings for GA Cryptanalyzer.

We’ve tested the GA on a variety of plaintext messages,
ranging from extremely short messages (“to be or not to
be that is the question”), to messages missing the letter E
(“upon this basis i am going to show you how a ...”), from
messages whose words are all contained in the fitness dic-
tionary to messages with 1/4 or 1/2 of their words missing
from the dictionary. (Note that because the keys are initially
assigned random permutation of the alphabets, the plaintext
messages are no easier for the GA to solve than encrypted
messages.) Table 2 summarizes the results we achieved for a
representative sample of these messages. For each message
we show the number of distinct tokens (nToks) it contains,
the number of its tokens that decrypt to words in the evalua-
tion dictionary (nWds), the average number of words found
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per trial (nFound), the average number of generations (max-
imum 500) required to find all the words (nGens), and the
number of trial runs (nTrials).

msg nToks nWds nFound nGens nTrials
1 8 8 7.92 134.6 25
2 26 21 21 15.48 25
3 22 22 22 39.4 20
4 24 19 19 35.1 15
5 21 12 11.45 244.4 20

Table 2: Performance results for five plaintext messages.

Message 1 is the phrase “to be or not that is the ques-
tion”. Message 2 is the message shown in the introduction,
which is taken from Ernest Wright’s novel Gadsby, a 267-
page novel with no occurrences of the letter E. Message 5
is an example of a typical published cryptogram, which are
frequently chosen to be difficult to solve. This message con-
tains only 12 dictionary words out of 21 tokens:

I shoot the hippopotamous with bullets
made of platinum because if I use leaden
ones his hide is sure to flatten ’em.

Messages 1, 2, and 5 were also used in Hart’s study (2).
Message 3 is a combination of “the quick brown fox jumped
over the lazy dog” and “now is the time for all good men to
come to the aid of their country”. What’s interesting about
this message is the singleton occurrences of the infrequent
letters X, Z, Q, and K. Message 4 is a passage, picked more
or less at random from the Dorothy Sayers novel Have His
Carcase.

For this study we let the algorithm run for 500 generations
or until the top 3 individuals had all achieved scores equal to
nWds. This is the best score that the algorithm can achieve
given its current scoring dictionary. And this is our criterion
for success. The fact that the GA cannot always find all the
words – unless an extremely large dictionary is used – is a
tradeoff that we discuss below. However, even for message
5, which contained only 12 words out of 21 tokens, the algo-
rithm usually finds enough correct letter mappings to make
the rest of the cryptogram solvable by visual examination.

This set of results shows that the algorithm is both highly
successful at finding the key and highly efficient. Out of the
trials compiled here, the algorithm achieved complete suc-
cess – defined as finding all the words that could be found –
in 94 out of 105 trials, a 90% success rate. The average num-
ber of generations required for all 105 trials was 94. But this
average is somewhat misleading. It is skewed by the 15%
of the times that the algorithm got “stuck” at a local maxi-
mum. In the 105 trials, there were 15 trials which ran over
250 generations. In 69 out of 105 trials (66%), the algorithm
converged on the solution in fewer than 35 generations. One
of the challenges of further research in this area would be
to determine if the algorithm’s occasional propensity to “get
in a rut” is something that can be addressed by design or
parametric changes or is due purely to chance.

To test the relative contributions of mutation and
crossover in our algorithm we ran it on the original set of

messages with the mutation rate set to 1.0 and the crossover
rate set to 0. The algorithm repeatedly failed to converge to a
solution. This shows that both mechanisms – crossover and
mutation – play a significant role in the algorithm’s success.

This is not to downplay the significant role played by mu-
tation in our algorithm. Indeed, in further trials we found
that the algorithm converged quickest with a mutation rate
of 1.0. This means that mutation – the swapping of two ran-
dom characters in the key – is performed on every individual.
One possible explanation for this result is that our crossover
mechanism tends to preserve those portions of the key that
are associated with the words found by that key. With a low
mutation rate, a key that has found the wrong words is more
likely to get stuck in a rut. Alternatively, with a high mu-
tation rate those portions of the key that code for the wrong
words are more likely to get broken up. In any case, the
relative contributions made by our crossover and mutation
mechanisms is a question that we need to address in future
studies.

We also tested the algorithm with a very large (100,000+
word) evaluation dictionary. In these trials the algorithm in-
variably performed worse than with the 3500-word evalua-
tion dictionary. Our explanation for this somewhat surpris-
ing result is that using a large dictionary disproportionately
rewards keys containing wrong words. Obviously, this too
is an area for further study.

Finally, we have tested the algorithm on seven actual cryp-
tograms, all of which were published by Eliot Sperber in dif-
ferent editions of the Sunday Hartford Courant. For these
trials the only change in parameter settings from Table 1 is
that the mutation rate was set to 1.0. These results are sum-
marized in Table 3. For each message we show the number
of distinct tokens it contains (nToks), the number of its to-
kens that decrypt to words in the the evaluation dictionary
(nWds), the percentage of tokens that were correctly iden-
tified (%Found), the average number of generations (maxi-
mum 100) required to solve the message (nGens), and the
number of trial runs (nTrials).

msg nToks nWds %Found nGens nTrials
1 24 19 97.4 21.1 50
2 33 22 99.5 16.2 50
3 23 14 61.5 46.9 50
4 23 12 58.6 52.4 50
5 26 17 95.7 16.1 50
6 24 22 93.1 57.8 50
7 25 16 74.0 46.2 50

Table 3: Performance results for seven cryptograms.

As in our earlier experiments, these results show that the
algorithm is efficient and successful at finding the key. Out
of 350 runs, the algorithm terminated with a solution 338
times (96.6%). In 121 cases (34.6%) the algorithm got the
cryptogram 100% correct – that is, it decrypted every token
correctly. In 192 cases (54.8%), it got at least 90% of the
tokens correct. And in 236 cases (67.4%), it got at least 75%
of the tokens correct. Messages in which 75% of the tokens
were correct could usually be read directly. Messages with
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fewer correct tokens could often be solved with additional
visual analysis. Of course, for several of these messages
(numbers 2, 3, 4, 5, and 7), fewer than 66% of the tokens
were contained in the evaluation dictionary.

These results also show that the algorithm’s performance
varies considerably depending on the message itself. For
example, note that for messages 2 and 5, the algorithm was
highly successful even though only around two thirds of the
tokens in those messages were dictionary words. On the
other hand, the algorithm was less successful on message 6,
in which more than 90% of its tokens were words. In our
view, more analysis of these results is needed.

Discussion
There are several conclusions that can be drawn from this
study. The overall conclusion is that the word-based GA
compares favorably with results that have been reported in
the literature for both deterministic keys searches, such as
depth-first search (2), and with frequency-based GAs (9).
The following specific points are also worth noting.

• Our results indicate that a word-based genetic algorithm
can be highly successful at breaking short cryptograms.
In the great majority of our trials the GA found the key in
relatively few generations using an evaluation dictionary
of only 3500 words.

• Although the GA’s success rate is clearly dependent on the
size of the dictionary, because of the algorithm’s nonde-
terministic nature, its efficiency is not degraded as much
as a deterministic search when the dictionary size is in-
creased. However, its success rate does not appear to im-
prove dramatically when a very large evaluation dictio-
nary is used.

• Compared to frequency-based algorithms reported in the
literature, which require at least 400 characters to be ef-
fective, the word-based GA is highly successful at solving
short cryptograms and cryptograms with unusual charac-
ter distributions.

• The main weaknesses of this approach appears to be its
sensitivity to dictionary size and its heavy dependence on
randomness, as indicated by its good performance with a
high mutation rate. However, to some degree these are in-
herent tradeoffs that do not affect practical problem solv-
ing. If the GA fails on a given message on one trial, it is
likely to succeed on the next.

Plans for the Future
The results presented in this paper address only the overall
effectiveness of a word-based GA approach to solving short
cryptograms. There are a number of issues that we have not
yet examined that could be the focus for additional research.

• Is there any way to rescue the algorithm when its gets
stuck? The current system “tweaks” the algorithm by re-
placing the population with new individuals.

• What is the relationship between words in the message
and the dictionary size? Why does the algorithm succeed
so easily with some messages and not others with a com-
parable word-to-token ratio?

• Can the GA’s success with substitution ciphers be ex-
tended to other kinds of ciphers such as polyalphabetic
and transposition ciphers or to other applications?
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