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Abstract 
 
Data mining is the process of extracting implicit, previously 
unknown, and potentially useful information from data in 
databases.  It is widely recognized as a useful tool for decision 
making and knowledge discovery. Rule mining, however, is 
computationally expensive.  Moreover, certain mathematical 
properties of mined rules have been given little attention. This 
paper applies logical identities to mined rules thereby 
producing additional rules that are much more efficiently 
acquired.  We use simple properties of set theory to present a 
set of theorems applicable to association rules, and by using 
the support and confidence of mined association rules, we 
produce new association rules, each with its own support and 
confidence. 
 
Keywords: Association Rule, Data Mining, Formal Logic, 
Knowledge Discovery, Negation 
 

 
Introduction 

 
Data mining is the nontrivial extraction of implicit, 
previously unknown, and potentially useful information 
from data [Frawley 1991].  We are no longer looking 
for tabular answers or aggregations of the data; rather, 
we are looking for patterns within the data that reveal 
knowledge previously unknown.  One of the most 
common applications of data mining is to generate all 
significant association rules between items in a data set.  
We can employ algorithms to mine a large collection of 
basket data type transactions for association rules 
between sets of items with some minimum specified 
confidence [Agrawal 1993] [Brin 1997] [Zaki 1997].  
In this paper, we present some techniques to produce 

new rules more efficiently by manipulating mined 
association rules using logic and set theory. 

The power of these rewrite rules is twofold.  
First, rules can be implicitly discovered by applying 
one or more of the identities to a set of mined rules.  
Some of these newly discovered rules may be difficult 
or impossible to determine using traditional data mining 
software.  Secondly, the newly discovered rules can be 
done in O(1) time complexity.  This is of particular 
importance for those rules that involve negation and 
whose time complexity would be much greater.  The 
logical identities allow for the automatic and implicit 
discovery of new rules in an optimal amount of time. 
 

 
Logical Identity Operations On Association 

Rules 
 

In this work, we attempt to produce new rules from 
mined association rules by applying logical properties 
to them.  It is interesting to examine the operations of 
confidence and support, which help quantify the 
strength of association rules.  By using set theoretical 
operations on the involved sets of an association rule, 
along with confidence and support operations, we can 
increase the number of association rules relating to 
these sets..  For example, if we run a traditional data 
mining program, we will generate a set of association 
rules, T  We can then apply logical identities to 
determine a new set of association rules, T’.  It is 
important to note that T’ can be achieved in time O(1).   
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Properties of association rules 
 
In association rule mining, we use a database of sales 
transactions to discover relationships among items.  We 
do this so that the presence of some items in a 
transaction will imply the presence of other items in the 
same transaction. To mine association rules, we extract 
a subset of items that demonstrate such a relationship.  
We then partition the subset into two, disjoint parts, the 
antecedent and consequent, generating a rule of the 
form X→Y, where X and Y are the respective parts. 
 
We use and augment a traditional mathematical model 
proposed in [Agrawal 1993] to formalize the problem 
of data mining association rules. We also assume the 
closed world assumption holds.  Let I={i1, i2,…,in}be a 
set of all items. Let D be a set of transactions, where 
each transaction T is a set of items such that T is a 
subset of I. Let X, Y⊂ I be sets of items and X∩Y = ∅ . 
An association rule is an implication of the form X→Y, 
meaning X implies Y. We say that the rule X→Y holds 
in the transaction set D with confidence c if c% of 
transactions in D that contain X also contain Y. The 
rule X→Y has support s in D if s% of transactions in D 
contain both X and Y.  Thus, confidence denotes the 
strength of implication, and support indicates the 
frequencies of the occurring patterns in the rule 
[Ramakrishnan 1998] [Chen 1996].  
 
In part of our work, we extract certain items from the 
antecedent (X) and consequent (Y) sets, and observe 
the relationships involving the remaining sets.   We 
denote these extracted subsets as X’⊂⊂⊂⊂ X and Y’⊂⊂⊂⊂ Y, 
respectively.  All possible subsets of the extracted 
elements can be represented by the set 2X’ (2Y’ 

respectively).  Notice, all elements of 2X’ (2Y’ ) are also 
elements of  2 I, thus, 2X’  ⊂⊂⊂⊂  2 I.  A transaction that is 
devoid of any extracted item is denoted T’⊂⊂⊂⊂ I.  To 
depict the collection of all such transactions (i.e., 
containing no extracted items), we introduce the new 
operator,  ‘tilde’.   
 
Definition 1 
The tilde, ~, operator depicts any transaction not 
containing any element of X’ or Y’.   That is,  
 

~T’   =    2I  —  2X’ U Y’  

 

where 2I  represents the set of all possible transactions. 
 

Identity Properties.  Let A be a set of items, then the 
confidence and the support of the rule A→A are given 
as follows: 
 

Con(A →→→→ A) = 1 

 
Proof. By definition of confidence and our generalized 
concept for rules (transaction relative), the item set A 
implies A is always true. The confidence of the rule 
A→A is 100% which is 1. 
 

Sup(A →→→→ A) = N(A) / N 
 
Proof. By definition of support and our generalized 
concept for rules (transaction relative), the support of 
the rule A→A is the fraction of transactions in the 
database that contain all the items in the item set A.  
This is N(A)/N. 
 
Converse Properties.  Let A and B be sets of items.  
The confidence and support of the rule A→B are given 
as follows: 
 

Sup(B →→→→ A) = Sup(A →→→→ B) 
 
Proof. This formula is true since all items in item sets 
A and B are exactly all those items in item sets B and 
A. 
  
We now present four more properties.  As these 
properties are more intuitive and are similar to those 
found in standard set theory, we do not provide proofs. 
 
Commutative Properties.  The commutative 
properties hold because the definition of support simply 
combines the antecedent and consequent sets and 
divides by the total number of transactions.  Let A, B 
and C be item sets.  Then, we can specify the following 
four formulas: 
 

Sup(A ∩∩∩∩ B →→→→ C) = Sup(B ∩∩∩∩ A →→→→ C) 
 

Sup(A ∪∪∪∪  B →→→→ C) = Sup(B ∪∪∪∪  A→→→→C) 
 

Con(A ∩∩∩∩ B →→→→ C) = Con(B ∩∩∩∩ A →→→→ C) 
 

Con(A ∪∪∪∪  B →→→→ C) = Con(B ∪∪∪∪  A →→→→ C) 
 
Associative Properties.  Here, we appeal to the 
associativity of union and intersection.  Let A, B, C and 
D be item sets.  Then, we can specify the following four 
formulas: 
 

Sup((A ∩∩∩∩ B) ∩∩∩∩ C →→→→ D) = Sup(A ∩∩∩∩ (B ∩∩∩∩ C) →→→→ D) 
 

Sup((A ∪∪∪∪  B) ∪∪∪∪  C →→→→ D) = Sup(A ∪∪∪∪  (B ∪∪∪∪  C) →→→→ D) 
 

Con((A ∩∩∩∩ B) ∩∩∩∩ C →→→→ D) = Con(A ∩∩∩∩ (B ∩∩∩∩ C) →→→→ D) 
 

Con((A ∪∪∪∪  B) ∪∪∪∪  C →→→→ D) = Con(A ∪∪∪∪  (B ∪∪∪∪  C) →→→→ D) 
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Distributive Properties.  Let A, B, C and D be item 
sets.  Then, we can specify the following four formulas: 
 

Sup(A ∪∪∪∪  (B ∩∩∩∩ C) →→→→ D) = Sup((A ∪∪∪∪  B) ∩∩∩∩ (A ∪∪∪∪  C) →→→→ D) 
 

Sup(A ∩∩∩∩ (B ∪∪∪∪  C) →→→→ D) = Sup((A ∩∩∩∩ B) ∪∪∪∪  (A ∩∩∩∩ C) →→→→ D) 
 

Con(A ∪∪∪∪  (B ∩∩∩∩ C) →→→→ D) = Con((A ∪∪∪∪  B) ∩∩∩∩ (A ∪∪∪∪  C) →→→→ D) 
 

Con(A ∩∩∩∩ (B ∪∪∪∪  C) →→→→ D) = Con((A ∩∩∩∩ B) ∪∪∪∪  (A ∩∩∩∩ C) →→→→ D) 
 

De Morgan’s Laws. We use ¬ to denote 
complementation.  Recall, the universe of transaction 
items is the set of all possible items, I.  The 
complement ¬A is simply I-A.  Let A, B, and C be 
item sets.  Then, we can specify the following four 
formulas: 
Sup(¬ (A ∪∪∪∪  B) →→→→ C) = Sup(¬A ∩∩∩∩ ¬B →→→→ C) 
Sup(¬ (A ∩∩∩∩ B) →→→→ C) = Sup(¬A ∪∪∪∪  ¬B →→→→ C). 
Con(¬ (A ∪∪∪∪  B) →→→→ C) = Con(¬A ∩∩∩∩ ¬B →→→→ C) 
Con(¬ (A ∩∩∩∩ B) →→→→ C) = Con(¬A ∪∪∪∪  ¬B →→→→ C). 
 
Complement Properties.  Let A, B, and C be item sets.  
Then, we can specify the following four formulas: 
 
 Sup(A ∩∩∩∩ ¬A →→→→ C) = 0 
 Sup(A ∪∪∪∪  ¬A →→→→ C) = N(C) / N 
 
Proof. By the closed world assumption, it is obvious 
that the item set A∩¬A = ∅ . Hence, the support of 
A∩¬A → C is zero. Again, by the closed world 
assumption, T = A∪ ¬A is every itemset, thus we have: 
 
  Sup(A ∪  ~A → C)  
            = N(T ∩ C) / N  
            = N(C) / N.  
 
Contrapositive Properties.  In traditional set theory, 
by the contrapositive property, we have    
 

(¬B→→→→ ¬A) ↔↔↔↔ (A→→→→ B) 
 
We will now illustrate how, in data mining, the 
contrapositive property holds via the mathematical 
relations of support and confidence. 
 
Let A B be item sets.  We can specify the following two 
theorems. 
 
Theorem 1  

Con(¬B →→→→ ¬A) = 1 –  kc * (1 - Con(A →→→→ B))    
  
where kc = N(A)/(N-N(B)), and N is the total number 
of transactions. 
Proof. By definition, and by the fact that N(¬B) = N - 
N(B) is the total number of transactions that DO NOT 
contain B, we have  
 
 Con(¬B→¬A) 
           = N(¬B ∩ ¬A) / N(¬B) (by definition) 
           = N(¬A ∩ ¬B) / N(¬B) (commute∩) 
           = N(¬A ∩ ¬B) / (N - N(B)) (substitution) 
 
Notice that, by the closed world assumption, the total 
number of transactions in the item set ¬A ∩ ¬B 
equals the total number of transactions in the entire 
dataset, minus N(A) + N(B) and less the overlapping 
part which is N(A ∩ B). So, we have:    
 
        N(¬A ∩ ¬B) / (N - N(B)) 
   = (N - (N(A) + N(B) - N(A ∩ B))) / (N - N(B)) 
 (substitution) 
   =((N - (N(B) + N(A) - N(A ∩ B))) / (N - N(B)) 
 (reorder) 
   =(N - N(B) - (N(A) - N(A ∩ B))) / (N-N(B)) 
   =(N - N(B)) / (N - N(B)) – (N(A) - N(A ∩ B)) / (N - 
N(B)) 
   =1 – (N(A) - N(A ∩ B)) / (N - N(B))  
  (equivalence) 
   =1 - N(A) * (1 - N(A ∩ B) / N(A)) / (N - N(B)) 
 (factor N(A) out) 
   =1 - (N(A) / (N - N(B)) * (1 - N(A ∩ B) / N(A))      
   =1 - kc(1 - Con(A → B)) 
  (by definition)  
 
Theorem 2  
Sup(~B →→→→ ~A) = 1 –  ks + Sup(A →→→→ B))                                         
 
where ks = (N(A)+N(B))/N. 
 
Proof. Similarly, by definition, we have 
 
 Sup(~B → ~A) 
           = N(~B  ∩ ~A) / N  (by definition) 
           = N(~A  ∩ ~B) / N  (commute ∩) 
           = (N - (N(A) + N(B) - N(A ∩ B))) / N                  
 (substitution) 
           =N / N - (N(A) + N(B)) / N + N(A ∩ B) / N(A)     
 (partition sum) 
           =1 - ks + Sup(A → B).           (by definition) 
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Principles of Inclusion and Exclusion.  Let A, B, and 
C be item sets.  We can specify the following four 
theorems: 
 
Theorem 3  
Con(A →→→→ (B ∪∪∪∪  C)) =Con(A →→→→ B) + Con(A →→→→ C)  - 
Con(A →→→→ (B ∩ C))              
 
Theorem 4 Sup(A →→→→ (B ∪∪∪∪  C)) = Sup(A →→→→ B) + 
Sup(A →→→→C) - Sup(A →→→→ (B ∩∩∩∩ C))   
  
Theorem 5 Con((A ∪∪∪∪  B)  →→→→C) = k * (Con(C →→→→ 
A) + Con(C →→→→ B) - Con(C →→→→(A ∩∩∩∩ B)))        

where k = N(C) / N(A ∪  B). 
 

Theorem 6 Sup((A ∪∪∪∪  B) →→→→C) = Sup(C →→→→A) + 
Sup(C →→→→B) - Sup(C →→→→ (A ∩∩∩∩ B))               
. 

 
An Example 

 
Introduction 
 
A simple transaction database is shown in Table 1.  
There are four item sets: A = Milk, B = Cereal, C = 
Spoon, Bowl, and D = Soap.  The transaction number is 
labeled in the leftmost column and the items are labeled 
as column headings.  
 
 

 Milk Cereal Spoon, 
Bowl 

Soap 

1 x x x  
2 x x x x 
3   x  
4 x  x x 
5  x   
6 x  x x 
7 x x  x 

 
             Table 1. A simple transaction database 
 
From Table 1, we can determine the following: 
 N = 7 
 N(Milk) = 5 
 N(Cereal) = 4 
 Con(Milk → Cereal) = .6 
 Sup(Milk → Cereal) = .43 
 
Illustration of logical identities.  We first examine the 
contrapositive properties: 
 
 Con(~Cereal → ~Milk)  

           = 1 – kc * (1 - Con(Milk → Cereal)) 
           = 1 - (5 / (7 - 4)) * (1 – .6)            = .3 
 
 Sup(~Cereal → ~Milk)  
           = 1 –  ks  +  Sup(Milk → Cereal))  
           = 1 - (5 + 4) / 7 + .43            = .14    
 
Next, we examine the principles of inclusion and 
exclusion.  We additionally find that Con(Milk → 
Spoon, Bowl) = .8 and Con(Milk → (Cereal ∩ Spoon, 
Bowl)) = .4. Hence: 
 
 Con(Milk → (Cereal ∪  Spoon, Bowl)) 
           = Con(Milk → Cereal) + Con(Milk → Spoon, 
Bowl) - Con(Milk → (Cereal ∩ Spoon, Bowl))  
           = .6 + .8 – .4            = 1 
 

Sup(Milk →  (Cereal ∪  Spoon, Bowl))  
           = Sup(Milk → Cereal) + Sup(Milk → Spoon, 
Bowl) - Sup(Milk → (Cereal ∩ Spoon, Bowl)) 
           = .43 + .57 – .29           = .71 
 
Again, in Table 1, we find that Con(Spoon, Bowl → 
Milk) = .8, Con(Spoon, Bowl → Cereal) = .4, 
Con(Spoon, Bowl → (Milk ∩ Cereal)) = .4 and k = .83. 
Hence: 

 
Con((Milk ∪  Cereal) → Spoon, Bowl) 

           = k (Con(Spoon, Bowl → Milk) + Con(Spoon, 
Bowl → Cereal) - Con(Spoon, Bowl →  (Milk ∩ 
Cereal))) 
           = .83 (.8 + .4 – .4)            = .66 
 
Similarly,  

 
Sup((Milk ∪  Cereal)  → Spoon, Bowl) 

    = .57 + .29 – .29     = .57 
 
Lastly, we examine De Morgan’s laws: 

 
Sup(~(Milk ∪  Cereal)  → Spoon, Bowl)  

    = Sup(~Milk ∩ ~Cereal → Spoon, Bowl)   = .14 
 
Sup(~(Milk ∩ Cereal)  → Spoon, Bowl)  

    = Sup(~Milk ∪  ~Cereal → Spoon, Bowl)   = .43 
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Conclusions And Future Work 
 
Conclusion 
 
In this work, we produced new rules from mined 
association rules by applying logical identities.  Various 
properties of rules were defined and proved, thus 
providing the framework for a system of logical 
identities.  A new operator, tilde, was defined that 
differentiates the concepts of set complementation and 
negation.  If we run a traditional data mining program, 
we will generate a set of association rules, T  We can 
then apply logical identities to determine a new set of 
association rules, T’.  It is important to note that T’ can 
be achieved in time O(1).    
 
Future Work 
 
The authors would like to expand upon the previously 
described work by examining the potential for 
generating predictive data mining rules that would be 
based upon the probabilistic nature of the database 
combined with transitivity of the identity rules.  The 
concept of negation in association rules is a novel 
aspect of our work and we would like to continue to 
investigate the generation and usefulness of such rules.  
Lastly, the authors would like to examine the 
incorporation of fuzzy logic concepts into the logical 
identities to produce fuzzy association rules. 
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