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Abstract

Neural-symbolic integration concerns the integration of sym-
bolic and connectionist systems. Distributed knowledge rep-
resentation is traditionally seen under a purely symbolic per-
spective. In this paper, we show how neural networks can
represent symbolic distributed knowledge, acting as multi-
agent systems with learning capability (a key feature of neu-
ral networks). We then apply our approach to the well-known
muddy children puzzle, a problem used as a testbed for dis-
tributed knowledge representation formalisms. Finally, we
sketch a full solution to this problem by extending our ap-
proach to deal with knowledge evolution over time.

Introduction

Neural-Symbolic integration concerns the application of
problem-specific symbolic knowledge within the neurocom-
puting paradigm. So far, neural-symbolic systems have not
been shown to fully represent and learn more expressive lan-
guages such as modal and predicate logics (Cloete & Zu-
rada 2000). In this paper, we investigate the effectiveness
of a new connectionist framework for the representation and
learning of propositional modal logics by applying it to the
well-known muddy children puzzle (Fagin et al. 1995).
The framework uses Modal Logic Programming (Sakak-
ibara 1986) extended to allow modalities such as necessity
and possibility in the head of clauses (Orgun & Ma 1994)
as hypothesis language. A Modalities Algorithm (d’Avila
Garcez, Lamb, & Gabbay 2002) is used to set up an en-
semble of Connectionist Inductive Learning and Logic Pro-

gramming ( C-ILZP) networks (d’Avila Garcez, Broda, &
Gabbay 2002; d’ Avila Garcez & Zaverucha 1999), each net-
work being an extension of Holldobler and Kalinke’s mas-
sively parallel model for Logic Programming (Holldobler,
Kalinke, & Storr 1999). The network obtained is an ensem-

ble of simple C-IL?P networks, each representing a learn-
able possible world. As shown in (d’Avila Garcez, Lamb,
& Gabbay 2002), the resulting ensemble computes a fixed-
point semantics of the original modal theory. As a result,
the network ensemble can be seen as a massively parallel
system for modal logic programming.
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In this paper, we validate the system by applying it to a
distributed knowledge representation problem, the muddy
children puzzle (Fagin et al. 1995). Moreover, we point out
the way towards a full solution of the muddy children puzzle
by catering for the representation of time in neural networks.
Section 2 briefly presents the basic concepts of connection-
ist modal logic used in this paper. Section 3 describes the
Modalities Algorithm that translates extended modal pro-
grams into artificial neural networks. In Section 4, we ap-
ply the system to the muddy children puzzle and extend the
approach in order to consider knowledge evolution through
time. In Section 5, we conclude and discuss directions for
future work.

Connectionist Modal Logic

Modal logic began with the analysis of concepts such as
necessity and possibility under a philosophical perspective
(Hughes & Cresswell 1996). A main feature of modal log-
ics is the use of (Kripke) possible world semantics. In modal
logic, a proposition is necessary in a world if it is true in all
worlds which are possible in relation to that world, whereas
itis possible in a world if it is true in at least one world which
is possible in relation to that same world. This is expressed
in the semantics formalisation by a (binary) relation between
possible worlds. Modal logic was found to be appropri-
ate to study mathematical necessity (in the logic of prov-
ability), time, knowledge and other modalities (Chagrov &
Zakharyaschev 1997). In artificial intelligence, modal log-
ics are amongst the most employed formalisms to analyse
and represent reasoning in multi-agent systems (Fagin et al.
1995). Formally, the language of propositional modal logic
extends the language of propositional logic with the [ and
{ operators. Moreover, we assume that any clause is ground
over a finite domain (i.e. they contain no variables). Essen-
tial definitions are then stated.

Definition 1 A modal atom is of the form M A where M €
{0, 0} and A is an atom. A modal literal is of the form
ML where L is a literal. A modal program is a finite set of
clauses of the form M A4, ..., M A, — A.

OThis work was carried out when the second author was an Hon-
ourary Visiting Research Fellow at City University London, Fall
2002.
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We define extended modal programs as modal programs
extended with modalities [ and ¢ in the head of clauses, and
default negation ~ in the body of clauses. In addition, each
clause is labelled by the possible world in which they hold,
similarly to Gabbay’s Labelled Deductive Systems (Gabbay
).

Definition 2 An extended modal program is a finite set of
clauses C of the form w; : M Ly,.... ML, — MA, where
w; is a label representing a world in which the associated
clause holds, and a finite set of relations R(w;,w;) between
worlds w; and wj in C.

Example: P = {wy : r — Og, w1 : Os — 1, wy : 8,
w3 : q — Op, R(w1,ws), R(wy,ws)} is an extended modal
program. Formulas in modal logic will be interpreted in
Kripke models, i.e. a set of worlds €2, related by a binary
relation R and an assignment v of worlds to formulas. A
modal formula « is said to be true at a possible world w of a
model M, written (M, w) = a, if @ holds in w. « is said to
be true at a model M if it is true in every world in M. The

rules we shall represent using C _IL? P are similar to the ones
presented in (Russo 1996) and are reproduced in Table 1:

Table 1: Rules for modality operators
[R(w, ga ()] ga(w) : @
ar

w: Ha wa

w1 : Do, R(w1,w2)

w: Qa

Ja(w) : @, R(w, fa(w))

ws : a, R(w1,w?)
OF S —

w1 : Qo

Semantics for Extended Modal Logic Programs When
computing the semantics of a modal program, we have to
consider both the fixed-point of a particular world, and the
fixed-point of the program as a whole. When computing the
fixed-point in each world, we have to consider the conse-
quences derived locally and the consequences derived from
the interaction between worlds. Locally, fixed-points are
computed as in the stable model semantics for logic pro-
gramming, by simply renaming each modal literal M L; by
a new literal L; not in the language £, and applying the
Gelfond-Lifschitz Transformation (Brewka & Eiter 1999)
to it. When considering interacting worlds, there are two
cases to be addressed, according to the (17 and {1 rules in
Table 1, together with the accessibility relation R, which
might render additional consequences in each world. In
(d’ Avila Garcez, Lamb, & Gabbay 2002) it has been proved

that C-IL? P ensembles compute a fixed point semantics of
the modal theory P (according to the modal fixpoint oper-
ator MT’p of P), providing the semantics for connectionist
modal logic programs. !

Theorem 3 (d’Avila Garcez, Lamb, & Gabbay 2002) For
any extended modal program ‘P there exists an ensemble of

'In this semantics, the choice of an arbitrary world for ¢ elimi-
nation (made before the computation of MT’») may lead to differ-
ent fixed-points of a given extended modal program. Such a choice
is similar to the approach adopted by Gabbay in (Gabbay 1989)
in which one chooses a point in the future for execution and then
backtracks if judged necessary (and at all possible).
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single hidden layer neural networks N such that N' com-
putes the modal fixed-point operator M'T’p of P.

Any extended modal program (P) can be translated into
an ensemble of C-ILZP networks (') with the use of the

Modalities Algorithm presented below. C-IL?P (d’Avila
Garcez & Zaverucha 1999) is a massively parallel system
based on artificial neural networks that integrates inductive
learning from examples and background knowledge with de-
ductive learning from logic programming. Its Translation
Algorithm maps any general logic program p into a sin-
gle hidden layer neural network n such that n computes the

fixed-point of p. As a generalisation of C-IL? P, the Modal-

ities Algorithm is used to interconnect the different C-IL?P
networks n, which will correspond to possible worlds of an
extended modal program P, into the ensemble A that will
compute the modal fixed-point of P. By using ensembles of

C-IL?P networks, we enhance the expressive power of the
system, yet maintaining the simplicity needed to perform

inductive learning efficiently. More details on the C-IL?P
system can be found in (d’Avila Garcez, Broda, & Gabbay
2002).

The Modalities Algorithm

1. Let P; C P be the set of clauses labelled by w; in P. Let N;
be the neural network that denotes P;. Let W™ &  be such
that W™ > b= (Amin) + W 4 6.4, where p;, W and 6.4 are
obtained from C-IL2 P’s Translation Algorithm®

2. For each P; do: (a) Rename each M L; in P; by a new literal
not occurring in P of the form LL-:I if M =, or L;? itM =07

(b) Call C-IL2 P’s Translation Algorithm,

3. For each output neuron Lf in \V;, do: (a) Add a hidden neuron
L} to an arbitrary N, (0 < k < n) such that R(w;, wy); (b)
Set the step function s(z) as the activation function of L}’; (c)
Connect L;? in \V; to L;-” and set the connection weight to 1;
(d) Set the threshold OM of L;V such that —1 < M < Anmin;
(e) Connect L;VI to L; in Ny and set the connection weight to
wM,

4. For each output neuron LJIv:I in \V;, do: (a) Add a hidden neuron
LY to each Nj, (0 < k < n) such that R(w;, wx); (b) Set the
step function s(x) as the activation function of L;” ; (¢) Connect
L]-D in \V; to L;-W and set the connection weight to 1; (d) Set the
threshold 8™ of L;-” such that —1 < 6™ < A,.in; (e) Connect
L;” to L; in N and set the connection weight to wM,

5. For each output neuron L; in N such that R(w;,wk) (0 <
i < m), do: (a) Add a hidden neuron LJV to NV;; (b) Set the
step function s(x) as the activation function of L} ; (c) For each
output neuron LjO in AV;, do: (i) Connect L; in NV} to L} and
set the connection weight to 1; (ii) Set the threshold 6" of L]v

211, denotes the number of connections to output neuron /. Amin
€ [0, 1] denotes the (pre-defined) activation value for a neuron to
be considered active (or equivalently for its corresponding literal to
be considered true).

3This allows us to treat each M L; as a literal and apply the
Translation Algorithm directly to P;, by labelling neurons as L1L;,
<>L]', or L]' .



such that —nAmin < 6" < Amin — (n — 1); (iii) Connect L}
to L;? in V; and set the connection weight to W

6. For each output neuron L, in A} such that R(w;,wk) (0 <
i < m), do: (a) Add a hidden neuron LJA to NV;; (b) Set the
step function s(z) as the activation function of L}; (c) For each
output neuron L]D in \V;, do: (i) Connect L; in N to L]A and
set the connection weight to 1; (ii) Set the threshold 6" of LJA
such that n — (1 + Amin) < 0" < nApin; (iii) Connect L} to
LJI-:I in V; and set the connection weight to wM,

Example: Let P = {w; : r — Ogq, w1 : O0s — r, wy : s,
w3 : ¢ — Op, R(wi,ws), R(wy,ws)}. We start by applying
C-IL2 P’s Translation Algorithm, which creates three neural
networks to represent the worlds w1, wo, and w3 (see Figure
1). Then, we apply the Modalities Algorithm. Hidden neu-
rons labelled by { M, V, A} are created using the Modalities
Algorithm. The remaining neurons are all created using the
Translation Algorithm. For the sake of clarity, unconnected
input and output neurons are not shown in Figure 1.

Figure 1: Ensemble {N7, N2, N3} that represents P.

Case Study: Muddy Children Puzzle

In this section, we apply the modal C-IL’P system to the
muddy children puzzle, a classic example of reasoning in
multi-agent environments. The situation in the puzzle is de-
scribed as follows. There is a group of n (truthful and in-
telligent) children playing in a garden. A certain number of
children k (k < n) has mud on their faces. Each child can
see if the others are muddy, but not herself. Now, consider
the following: A caretaker announces that at least one child
is muddy (k > 1) and asks “does any of you know if you
have mud on your own face?” To help understanding the
puzzle, let us consider the cases in which k = 1, k = 2
and k = 3. If k = 1 (only one child is muddy), the muddy
child answers yes at the first instance since she cannot see
any other muddy child. All the other children answer no
at the first instance. If k = 2, suppose children 1 and 2 are
muddy. At first, all children can only answer no. This allows
1 to reason as follows: “if 2 had said yes the first time, she

would have been the only muddy child. Since 2 said no, she
must be seeing someone else muddy; and since I cannot see
anyone else muddy apart from 2, I myself must be muddy!”
Child 2 can reason analogously, and also answers yes the
second time round. If k = 3, suppose children 1, 2 and 3
are muddy. Every children can only answer no the first two
times. Again, this allows 1 to reason as follows: “if 2 or 3
had said yes the second time, they would have been the only
two muddy children. Thus, there must be a third person with
mud. Since I can see only 2 and 3 with mud, this third per-
son must be me!” Children 2 and 3 can reason analogously
to conclude as well that yes, they are muddy.

The above cases clearly illustrate the need to distin-
guish between an agent’s individual knowledge and common
knowledge about the world. For example, when k = 2, after
everybody says no in the first round, it becomes common
knowledge that at least two children are muddy. Similarly,
when k£ = 3, after everybody says no twice, it becomes com-
mon knowledge that at least three children are muddy, and so
on. In other words, when it is common knowledge that there
are at least £ — 1 muddy children; after the announcement
that nobody knows if they are muddy or not, then it becomes
common knowledge that there are at least £ muddy children,
for if there were k — 1 muddy children all of them would
know that they had mud in their faces. Notice that this rea-
soning process can only start once it is common knowledge
that at least one child is muddy, as announced.

Distributed Representation

In our formalisation, a K; modality that represents the
knowledge of an agent j is used analogously to a [ modality.
In addition, we use p; to denote that proposition p is true for
agent ¢. For example, K;p; means that agent j knows that p
is true for agent . We omit the subscript j of K whenever
it is clear from the context. We use p; to say that child ¢
is muddy, and gy to say that at least &k children are muddy
(k < n). Let us consider the case in which three children
are playing in the garden (n = 3). Rule 7] below states that
when child 1 knows that at least one child is muddy and that
neither child 2 nor child 3 are muddy then child 1 knows that
she herself is muddy. Similarly, rule rJ states that if child 1
knows that there are at least two muddy children and she
knows that child 2 is not muddy then she must also be able
to know that she herself is muddy, and so on. The rules for
children 2 and 3 are constructed analogously.

Rules for Agent(child) 1:

7’1: Klql/\Kl_‘pg/\Kl_'pg HKlpl
r3: K12 AK;1—p2 —Kipy

7‘%2 Klqg/\Kl—\p3 —>K1p1

Ti: K1q3 *)Klpl

Each set of rules rﬁn (1 <1< n,m e NT)is implemented
in a C-IL2 P network. Figure 2 shows the implementation of
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rules 71 to r} (for agent 1)*. In addition, it contains p;° and
Kq1, Kgo and Kgs, all represented as facts (highlighted in
grey in Figure 2). This setting complies with the presenta-
tion of the puzzle given in (Huth & Ryan 2000), in which
snapshots of the knowledge evolution along time rounds are
taken to logically deduce the solution of the problem with-
out the addition of a time variable. In contrast with p; and
Kgr (1 < k < 3), K-p2 and K—p3 must be obtained from
agents 2 and 3, respectively, whenever agent 1 does not see
mud on their foreheads.

Agent 1

Figure 2: Implementation of rules {r}, ..., 75 }.

Figure 3 illustrates the interaction between three agents in

the muddy children puzzle. The arrows connecting C-IL?P
networks implement the fact that when a child is muddy, the
other children can see it. For the sake of clarity, the rules r#,
corresponding to neuron Kjp;, are shown only in Figure 2.
Analogously, the rules 72, and 73, for Kop, and K3ps would

be represented in similar C-IL? P networks. This is indicated
in Figure 3 by neurons highlighted in black. In addition,
Figure 3 only shows positive information about the problem.
Recall that negative information such as —p;, K—p;, K—ps
is to be added explicitly to the network, as shown in Figure
2. This completes the translation of a snapshot of the muddy
children puzzle in a neural network.

Learning

Experiments we have performed have shown that using
the Modalities Algorithm to translate a modal background
knowledge to the initial ensemble is an effective way of
performing learning from examples and background knowl-
edge. We have checked whether particular agents i were

“Note that with the use of classical negation, Kp; and K—p;
should be represented as two different input neurons (d’Avila
Garcez 2002). Negative weights in the network would then rep-
resent default negation, allowing one to differentiate between Kp;
and ~Kp;, and between K—p; and ~K-p;, respectively. This can
be easily verified by renaming K—p; by a new literal Kpj.

Note the difference between p; (child 1 is muddy) and Kp;
(child 1 knows that she is muddy).
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Figure 3: Interaction between agents in the puzzle.

able to learn the rules /. We have run two sets of ex-

periments comparing learning with and without background
knowledge. Without background knowledge, the networks
presented an accuracy of 84.37%, whereas with the addi-
tion of the rules 7/, to the networks, an average accuracy
of 93.75% was achieved, corroborating the importance of
adding background knowledge.

Towards Temporal Reasoning

The addition of a temporal variable to the muddy children
puzzle would allow one to reason about knowledge acquired
after each time round. For example, assume as before that
three muddy children are playing in the garden. Firstly,
they all answer no when asked if they know whether they
are muddy or not. Moreover, as each muddy child can see
the other children, they will reason as previously described,
and answer no the second time round, reaching the correct
conclusion in time round three. This solution requires, at

each round, that the C-IL2 P networks be expanded with the
knowledge acquired from reasoning about what is seen and
what is heard by each agent. This clearly requires each agent
to reason about time. The snapshot solution should then be
seen as representing the knowledge held by the agents at an
arbitrary time ¢. The knowledge held by the agents at time

t + 1 would then be represented by another set of C-IL?P
networks, appropriately connected to the original set of net-
works. This can be visualised in Figure 4 where each dotted
box contains the knowledge of a number of agents at a par-
ticular time point ¢; (such as in Figure 3).

Knowledge evolution over time as presented in Figure 4
allows us to explicitly represent the fact that when it is com-
mon knowledge that there are at least £ — 1 muddy children
at time ¢; after the announcement that nobody knows if they
are muddy or not, then it becomes common knowledge that



there are at least kK muddy children at time ¢+ 1. This is done
by interconnecting a number s of network ensembles similar
to that depicted in Figure 3. For example, the knowledge of
child 1 about the number of muddy children would evolve
in time as follows: at time t;, child 1 knows that there is
at least one muddy child (Kgq;) since the caretaker had an-
nounced so. At time to, child 1 will know that there are at
least two muddy children (Kg5), provided that no child knew
that she was muddy at time ¢, (~K;p; for any child ¢), and
so on. It is clear that the knowledge of child 1 is evolving
through time until she reaches the conclusion that she helself
is muddy at time ¢3. Note that at each time transition, child
1 learns whether both children 2 and 3 had answered no to
the caretaker, allowing her to conclude whether there is yet
another muddy child in the garden (Kg;, 1 < 5 < 3).

Agent | Agent 2 Agent 3

Figure 4: Evolving knowledge through time.

The definition of the number of ensembles s that are nec-
essary to solve a given problem clearly depends on the prob-
lem domain, and on the number of time points that are rele-
vant for reasoning about the problem. For example, in the
case of the muddy children puzzle, we know that it suf-
fices to have s equals to the number of children that are
muddy. The definition of s in a different domain might
not be as straightforward, possibly requiring a fine-tuning
process similar to that performed during learning but with a
varying network architecture.

Conclusion
The connectionist modal logic framework presented here
renders Neural-Symbolic Learning Systems with the abil-
ity to provide a more expressive representation language. It
contributes to the integration of both research programmes
- neural networks and modal logics - into a unified foun-
dation. In this paper, we have proposed a solution to the

muddy children puzzle where agents can reason about their
knowledge of the situation at each time step. In addition, we
have seen that the provision of a Temporal Algorithm, simi-
lar to the Modalities Algorithm above, would require knowl-
edge about the problem domain to define the number s of
relevant time points. As an alternative, a formalisation of
the full solution to the muddy children puzzle would require
the addition of a modality to deal with the notion of next
time in a linear timeflow. This notion of a temporal modal-
ity could be implemented in the connectionist modal logic
system with the use of both the [J-like modality and the ¢-
like modality. In this case, the network of Figure 4 should
be seen as the unfolded version of a recurrent network. We
believe that the connectionist modal logic framework inves-
tigated here opens several interesting research avenues in the
domain of neural-symbolic learning systems, as it allows for
the representation and learning of expressive languages of
non-classical logics in hybrid systems.
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