

Hybrid Intelligence for Driver Assistance
Chung Hee Hwang†, Noel Massey, Bradford W. Miller†, Kari Torkkola

Motorola Labs

7700 S. River Parkway
Tempe, AZ 85284, U. S. A.

{chunghee.hwang, noel.massey, bradford.w.miller, kari.torkkola}@motorola.com

Abstract
We report on our on-going effort to build an adaptive driver
support system, Driver AdvocateTM, merging various AI
techniques, in particular, agents, ontology, production
systems and machine learning technologies. The goal of DA
is to help drivers have a safer, more enjoyable, and more
productive driving experience, by managing their attention
and workload. This paper describes the overall architecture
of the DA system, focusing on how we integrate agent and
machine learning technologies to make it support the driver
intelligently and unobtrusively. The architecture has been
partially implemented in a prototype system built upon a
high-fidelity driving simulator, letting us run human
experiments. The human driving data collected from the
simulator are used as input to machine learning tools to
make DA learn to adapt to the unique driving behavior of
each driver. Once the DA demonstrates the desired
capabilities, it will be tested in a real car in an actual driving
environment.

Introduction
With the growing number of telematic devices found inside
the cockpit – cell phones, navigators, internet access tools
and PDAs, to name a few – the problem of driver
distraction is becoming more and more serious. This has
resulted in the acceleration of research in the area of
intelligent transportation. In this vein, we are building a
driver support system that is capable of monitoring the
driver and the driving situation and intelligently assisting
her to have safer, more enjoyable and more productive
driving experiences.

Before discussing our approach to building the driver
support system, let us briefly review the current research in
the intelligent transportation domain. The goals of research
effort in this area may be divided into autonomous
vehicles, intelligent vehicles, and smart highways.
Autonomous vehicles are automobiles that are equipped
with sensors, computers and a control system to drive by
themselves. The sensors allow the autonomous vehicles to
perceive the environment – roads, pedestrians, other
vehicles, potential hazards, etc. – as well as the driver,
passengers and various components of the vehicle itself.

Copyright © 2003, Motorola, Inc. All rights reserved.
†Current email addresses: {chwang, bradfordmiller}@mac.com

The computers process the information from the sensors
and determine actions to take, which are then executed by
the control system. Although certain autonomous vehicles
have shown impressive performance (e.g., Franke, et al.,
1999; Thorpe, et al., 2002), we believe it will be some time
before autonomous vehicles became practical. In the
meantime, however, intelligent vehicles with the human in
control appear to be more promising; these observe the
traffic situation and support the driver by providing
warnings and advice as needed (as discussed in, e.g., Dagli
and Reichardt, 2002; Malec and Österling, 1996).
Intelligent vehicles are also equipped with computers and
sensors so they can perceive the environment, model and
predict the driver’s behavior, and take appropriate actions,
e.g., issuing a warning when the driver dangerously
deviates from her lane. The goal of smart highways or
automated highway systems (Abreu et al., 2000; Ünsal,
1997; Varaiya, 1993) on the other hand is to make
highways safer and more efficient through communication
between vehicles and the control center. Intelligent vehicles
could provide similar benefits through cooperation among
themselves.

The goal of our project is to build an intelligent driver
assistance system, the Driver AdvocateTM (henceforth,
DA), to deploy in a car, as a step toward building an
intelligent vehicle. Building an intelligent vehicle requires
much of the same technology required to build autonomous
vehicles, including the technologies in sensor, vision and
image processing, context and situation awareness, task
modeling, and inference and decision making capability.
That is, an intelligent vehicle may be considered an
‘autonomous vehicle that lacks control of the vehicle.’ In
addition, constructing the DA requires work in user
modeling, intention recognition and an understanding of
human factors.

In designing the DA, we have adopted an agent
architecture, integrating it with an ontology-based
knowledge representation system, production system-based
decision making system, and technologies in adaptive
learning. At this time, we skip the sensor and vision issues
as we use a driving simulator that provides high-level
environmental information for free, unlike the situation in
an actual vehicle. We have partially implemented the
design in a prototype system using a high-fidelity driving

FLAIRS 2003 281

simulator (Figure 1). We have begun human experiments,
and are collecting driving data as input to the machine
learning tools to learn to adapt to the unique driving
behavior of each driver.

The rest of the paper is organized as follows. We first
provide a conceptual view of the DA system and its overall
architecture. We then discuss the agent architecture and its
interaction with machine learning tools, followed by further
discussion on how machine learning techniques may be
used to build an adaptive driver assistance system. A brief
description of remaining issues and our plan for future
work concludes the paper.

Figure 1. The Driving Simulator

The Driver Assistance System
As shown in Figure 2, the Driver AdvocateTM needs to
perform three core classes of tasks to successfully assist the
driver: monitoring the driver (‘Human Driver’),
establishing the driver model (‘User Model’) and
interacting with the driver (‘Driver Interaction’). More
specifically,
• Monitoring the Human Driver: This involves making

assumptions about what information the driver is paying
attention to (by monitoring her actions and behavior,
such as eye gaze), in order to understand what she is
reacting to, as well as inferring her intentions.

• “User” Modeling: The model of the driver is established
and continuously updated. The DA will make predictions
of what the driver should be doing, in terms of her
attention, actions, mental state, etc., based on this model
and the observations of the world (from the sensors in
the car), in the context of the current situation.

• Driver Interaction: When the DA needs to communicate
with the driver, the information should be presented in a
timely manner so she could immediately act upon it. I.e.,
the DA has hard real-time constraints related to control
of the vehicle especially when the vehicle is in motion.
Also, the DA should present the information in a manner
that is both clear and non-distracting to the driver. For
example, it should not pull the driver’s attention from a
high priority task to a lower priority one.

Figure 2 further explains how these core tasks are related.
The key to our design is the comparison between the
prediction the DA makes of the driver action and the actual
driver action (shown in the figure by the diamond
indicating comparison). Because the DA’s user model is
not going to be completely accurate, its prediction may be
probabilistic as well as involving timeframes. For instance,
the DA may infer that, since the driver has looked at the
bicycle that is 10 meters ahead, there is a 60% probability
she will reduce speed and a 40% probability she will
change lanes within the next second (the action must be
taken within 3 seconds). If neither action has been taken
after a second, the DA must assume that either the driver is
in error and needs to be prompted to take a corrective
action or that its user model is in error. Currently, the DA
assumes that all errors identified are driver errors. We
isolate model errors and revise the user model during a
separate, off-line training phase. Online adaptation is our
ultimate goal, but as (Miller, et al., 2002) point out,
maintaining system safety will require additional effort in
the face of such adaptation, which we are not prepared to
address at this time.

Given that a prediction has not obtained, we send the failed
prediction to the Driver Interaction core, where it is used
along with the information about the general situation and
the current environmental information to select a
communication operation to perform. This may be
implemented using a variety of modalities, e.g., visual,
audible, or even haptic. The core representation of such
interactions is a speech act, which can also be used to
update the user model in a reinterpretation stage.

Figure 2. Conceptual view of the Driver AdvocateTM System

The basis of our system architecture is intelligent agents,
for reasons to be discussed later.1 At the center is an upper
and domain ontology shared by the agents which can be
used for service advertisements and in agent negotiation to

1 In fact, the agent architecture has been used in many systems in
the intelligent transportation domain, e.g., see (Abreu et al., 2000;
Shapiro, 2001; Sukthankar, et al., 1998).

282 FLAIRS 2003

select the best service provider that meets service
requirements (e.g., of response time, quality of result, etc.).
Our agent system can support agents written in any
language because only the agent communication language
(ACL) and the ontology for message content are
prescribed. Our ACL includes enough pragmatics to assure
that the response to a particular speech act message will
have the desired effect on the agents state and future
performance. Some of our agents can encapsulate formal
logical reasoning systems, some machine learning
algorithms, and some are just purely reactive (particularly
those critical to real-time response).

For the Driver Interaction core, we have adopted the Soar
architecture (Lehman, et al., 1996). It has been used in
flexible cooperative team-based agent applications such as
(Tambe, 1997) and in building driving agents (Aasman,
1995; Aasman and Michon, 1992). We plan on using the
architecture as at least part of the User Modeling core as
well.2 Soar is capable of proposing and evaluating
operations on the environment using a “psychologically
plausible” architecture – which may be useful in creating
better user models. At the present moment, however, our
user model consists primarily of a model derived from
supervised learning. We use our driving simulator to
collect driving data from human drivers and distill them
into a general driving model, which is used (when
connected to the proper agents, i.e., driving agents) to
effect driving the vehicle. In this fashion we are able to
check and correct our model, by examining (as an
observer) if the resultant driving is reasonable and natural,
and can take palliative actions when it is not.

The Agent Architecture
We selected the agent architecture as it provides the best
means to bridge together the various technologies and
components required to build an intelligent driver support
system. We first explain our choice of the agent
architecture and then discuss some of the DA agents of
particular interest.

There are several factors that drove the decision to choose
the agent architecture. First, the DA system must be robust
to unanticipated input and to dynamic reconfiguration. Due
to the unconstrained task of driving, it is clearly not
possible to predict all possible situations that drivers will
find themselves in. Also, the system must be robust to
sensor and component reconfiguration during its lifetime
(for instance, sensors may break or become ineffective
during driving). Unlike today’s cars that usually remain
configured the same as when they were manufactured
(except for maybe a new stereo) modern cars permit much
more flexibility in their configuration. The agent

2 Soar has also integrated a learning mechanism, i.e., chunking,
with rule-based symbolic reasoning, although we are not making
use of it in the DA system at this time.

architecture supports this need of dynamic configuration as
it allows agents to enter and leave the community
transparently and enlist or delist other agents based on their
capability and the quality of the service they provide.

Second, conflict resolution: An intelligent driver support
system should be able to deal with conflicting sensor
information (e.g., GPS and momentum-based sensors may
differ) and conflicting system recommendations (e.g.,
navigation system says turn left but collision avoidance
system says swerve right). BDI (Belief, Desire, Intention)-
type agents (Bratman, et al., 1988) can be used for conflict
resolution by reasoning over why the agents are making the
current suggestions using human cognitive models,
resulting in a system that resolves conflict similar to how
drivers resolve conflict. Additionally, there are conflicts
with run-time resource constraints that may affect the
quality of subsystem performance, which requires run-time
decision making capabilities. For example, a vehicle radar
system may be able to trade resolution for beam width.
Agents are suitable for determining this tradeoff by using
goal-based decisions to balance quality and frequency of
sensor updates with known resources.

Lastly, easy integration with multiple platforms: During the
development of the system, there will be multiple teams
creating components using different software tools and
languages. We also plan to move from a driving simulator
to an actual instrumented vehicle where hardware may
replace our simulation software. Since all agent
communication takes place via text messages, any
hardware or software components that can communicate
through a network port can be used in the system. We are
currently using TCP/IP with Java, C++, and Lisp code
running on multiple platforms, but it can be easily switched
to automotive bus protocol such as used by the CAN
standard (ISO-11898, 1993).

The DA Agents
Table 1 shows some of the DA agents that are unique to
our domain (Percept Agent, Soar Agent and Agenda Agent)
together with User Interface Agent and Machine Learning
Agent.

The User Model in Figure 2 is implemented with a Soar
Agent, which maintains prioritized rules, and a Machine
Learning agent, which generates probabilistic information
based on the driver model (see the following section). The
decision diamond in Figure 2 can be handled by the Soar
Agent, which will have access to the results of the Machine
Learning agent and may defer any decisions to the most
probable result as determined by the Machine Learning
agent. When the Soar Agent decides that the driver is in
error, it sends a message to an Agenda Agent who will
ultimately determine the best way (modality, timing,
intensity, etc.) to inform the driver of this error.

FLAIRS 2003 283

Agent Role
User
Interface
Agent

Converts user commands into speech acts for
other agents. Eventually these may act in
place of a user (for testing purposes) and be
able to self-configure to best elicit a response
from a user.

Machine
Learning
Agent

Receives data or rules, and generates predict-
ion or classification using a variety of ML
techniques.

Percept
Agent

Obtains driving parameters, e.g., speed,
heading, surrounding traffic, etc., from the
simulator (but eventually from sensors).

Soar
Agent

Wraps the Soar architecture. Also, translates
percept or parameter value changes into data
structures used by Soar and translates output
actions from Soar into speech acts.

Agenda
Agent

Alerts the driver to various problems using
visual, audio, or haptic channel.

Table 1. DA Agents

Machine Learning in Advising a Driver
To avoid having to program the responses of a system to
every imaginable situation, machine learning (ML)
techniques are often used in intelligent advising systems,
including the ones in automotive domain (see the survey by
Campbell and Torkkola, 2002). We also use ML
techniques to enable the DA to learn appropriate responses
from the driving data. In this section, we describe how we
apply ML technology to the DA, specifically, in learning
user models, detecting driving/ driver states, and learning
to interact with the driver.

User Modeling
Let us consider a simple scenario with a lane departure
warning system, which adapts to the current driver's habit
of driving within the lane. The system might be initially
very eager to warn the driver of drifting to the shoulder, if
she tends to drive close to the right lane edge. By adapting
the user model based on a few minutes of her driving, the
system demonstrates improved usability with reduced false
alarm rate.

Learning and adaptation of a user model require collected
or streaming data. The model could be, for example, a
Hidden Markov Model (HMM), or just a set of linear
regression coefficients, depending on the complexity of the
driver characteristic chosen to be modeled and adapted.
This direction will eventually be extended towards much
more faithful modeling of the human driver, including
many aspects of driving, as well as her intentions.

Recognizing the Driving States
The second direction is also closely tied to user modeling,
and could be characterized as learning models/detectors for
various driving situations, including the state of the driver.

This could include discovery of meaningful driving states
in an unsupervised fashion by means of clustering or
HMMs, or supervised learning of driving states based on
driving data that has been annotated with relevant labels.
The model/detector can be one of many possibilities, such
as a HMM, if history of the states is important, or any
classifier for static data, such as a decision tree or a neural
network. Annotation of the states should follow a
predefined ontology for driving situations. Recognition and
automatic labeling of these states can then loosely be
thought as grounding the symbols in the ontology.

We have experimented with unsupervised state
segmentation using a HMM. Figure 3 depicts a four-state
HMM segmenting a driving path into states. Input variables
to the HMM were physical parameters from the car, such as
location, speed, acceleration, and the positions of all the
controls in the car.

Figure 3. Unsupervised segmentation of driving states
using HMMs. x, y axes are (geographical) driving
coordinates, and z is the accelerator position (just to
illustrate a third variable on the same graph). Segmentation
is indicated by the color.

Learning to Interact with the Driver
One of the requirements of the DA system is to learn from
the environment and adapt to it. Since the adaptation will
mainly occur through user interaction - giving advice to the
driver, and driver reacting to it - it is not possible to work
with static collected databases only. Interaction may be
either real interaction with human drivers who are driving
the simulator or simulated interaction. (The state space in
driving is too large to learn by exploration with human
interaction only.) Our plan is to use simulated interaction
initially, and a driving agent is being used for this purpose.
We are envisioning the driving agent to be bootstrapped
from, and constrained by models describing human driving,
especially limitations of humans. This driving agent may
also learn the bulk of its driving capabilities through
interacting with the simulated world. Humanized driving
agents make it possible to test and develop suitable
learning methods in simulated worlds.

284 FLAIRS 2003

Concluding Remarks

We described the architecture of the Driver AdvocateTM
(DA) system, focusing on the integration of agent and
machine learning technologies. The architecture has been
partially implemented in a prototype system built upon a
high-fidelity driving simulator. We have been running
human driving experiments using the prototype DA so it
may learn to adapt to individual variances in their driving
behavior. Once the DA demonstrates the desired
capabilities, we will test the system in a real car in an actual
driving environment.

Much work needs to be done however, before the DA
could be deployed in a real car assisting drivers in an actual
driving environment. We conclude this paper by discussing
some of the interesting challenges we are facing, or expect
to face during the transitioning phase. First is the scalability
issue, i.e., whether the results we obtain from simulated
driving data will scale to the actual environment with real
sensors. Unlike the ‘high-level situational information’
input we get from the simulator, the output from real
sensors would be uncertain and of low-fidelity (cf.
Sukthankar, 1997). Also, we may encounter grounding and
epistemological problems, which would make object
identification and situation recognition difficult requiring
“deep” analysis. This could be a problem since the DA will
need to work in real-time.

Another challenge is related to the vast amount and diverse
nature of the data and knowledge the DA needs to deal
with; from statistical or numeric data (driving data
collected from the simulator, control data to send to the
actuators in the vehicle, etc.) to knowledge in symbolic
form (needed to describe task models and for planning and
reasoning about situations). Although our architecture
allows each agent to work using its own representation
formalism, some kind of hybrid reasoning capability needs
to be shared across multiple agents. Again, the efficiency
issue could be a key factor due to the real-time requirement
of the DA.

Finally, our machine learning tools will have to handle the
problem of temporal credit. The goal of the advising
system is reached only after a long sequence of actions, but
what actions in the sequence will have to be
credited/blamed for reaching/not reaching a specific goal?
The training data is not labeled except one instance at the
very end of the sequence when the goal is reached. What
action is then to take at each possible state of the system in
order to maximize the expected future reward (or to
minimize penalty)? This happens to be the exact problem
setting for reinforcement learning (Sutton and Barto, 1999),
and we are currently investigating various options to apply
reinforcement learning to our problems. The main idea is to
use a trained driving agent to drive in a simulated world
with simulated incidents and high simulated cognitive
loads, and let the DA system give advice according to the

current policy and adjust its policy according to the reward
it receives.

References
Aasman, J. 1995. Modeling Driver Behaviour in Soar. Ph.D.

Thesis, Rijksuniversiteit Groningen, Leiden, The Netherland.
Aasman, J. & Michon, J.A. 1992. “Multitaking in Driving,” in

Soar: A Cognitive Architecture in Perspective. Klewer
Academic Pub.

Abreu, B., Botelho, L, Cavallaro, A., Douxchamps, D., Ebrahimi,
T., Figueiredo, P., Macq, B., Mory, B., Nunes, L, Orri, J.,
Trigueiros, M.J. & Violante, A. 2000. “Video-based multiagent
traffic surveillance system,” Proc. Intelligent Vehicles Conf.,
Dearborn, MI.

Bratman, M.E., Israel, D.J. & Pollack, M.E. 1988. “Plans and
resource-bounded practical reasoning,” Computational Intel-
ligence, v4.

Campbell, W. M. & Torkkola, K. 2002. “Machine learning for
advising a driver: A Survey.” Proc. Internat. Conf. on Machine
Learning & Applications, Las Vegas, NV.

Dagli, I. & Reichardt, D. 2002. “Motivation-based approach to
behavior prediction.” Proc.IEEE Intelligent Vehicle Symp. (IV-
2002), Versailles, France.

Franke, U., Gavrila, D., Görzig, S., Lindner, F., Paetzold, F. &
Wöhler, C. 1999. “Autonomous driving approaches down-
town,” IEEE Intelligent Systems, v13.

ISO-11898. 1993. Road Vehicles – Interchange of Digital
Information – Controller Area Network (CAN) for High Speed
Communication (TC 22/SC3 ICS 43.040.15).

Lehman, J.F., Laird, J.E. & Rosenbloom, P.S. 1996. “A Gentle
introduction to Soar: An Architecture for human cognition,” in
Invitation to Cog.Sci., v4. MIT Press.

Malec, J. & Österling, P. 1996. Driver Support System for Traffic
Manoeuvres. Dept. Comp. & Info. Sci., Linköping U., Sweden.

Miller, B.W., Massey, N. & Gardner, R.M. 2002. “Safe
adaptation in an automotive vehicle: The Driver Advocate™,”
Proc. Workshop on Safe Learning Agents, AAAI Spring Symp.

Shapiro, D.G. 2001. Value-Driven Agents. Ph.D. Thesis, Stanford
U., Stanford, CA.

Sukthankar, R. 1997. Situation Awareness for Tactical Driving.
Ph.D. Thesis, CMU, Pittsburgh, PA.

Sukthankar, R., Baluja, S. & Hancock, J. 1998. “Multiple
adaptive agents for tactical driving,” Internat. J. of A.I., v9.

Sutton, R.S. & Barto, A.G. 1999. Reinforcement Learning. MIT
Press.

Tambe, M. 1997. “Agent architectures for flexible, practical
teamwork,” in Proc. AAAI-97.

Thorpe, C., Aufrere, R., Carlson, J.D., Duggins, D., Fong, T.W.,
Gowdy, J., Kozar, J., MacLachlan, R., McCabe, C., Mertz, C.,
Suppe, A., Wang, C. & Yata, T. 2002. “Safe robot driving,” in
Proc. ICMA-2002.

Ünsal, C., Sukthankar, R. & Thorpe, C. 1997. “Functional sensor
modeling for Automated Highway Systems simulations,”
presented at SPIE Internat. Symp. on Intelligent Systems &
Advanced Manufacturing, Pittsburgh, PA.

Varaiya, P. 1993. “Smart cars on smart roads: Problem of
Control,” IEEE Trans. on Automatic Control, v38.

FLAIRS 2003 285

