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Abstract 
We report on our on-going effort to build an adaptive driver 
support system, Driver AdvocateTM, merging various AI 
techniques, in particular, agents, ontology, production 
systems and machine learning technologies. The goal of DA 
is to help drivers have a safer, more enjoyable, and more 
productive driving experience, by managing their attention 
and workload. This paper describes the overall architecture 
of the DA system, focusing on how we integrate agent and 
machine learning technologies to make it support the driver 
intelligently and unobtrusively. The architecture has been 
partially implemented in a prototype system built upon a 
high-fidelity driving simulator, letting us run human 
experiments.  The human driving data collected from the 
simulator are used as input to machine learning tools to 
make DA learn to adapt to the unique driving behavior of 
each driver. Once the DA demonstrates the desired 
capabilities, it will be tested in a real car in an actual driving 
environment. 

Introduction    
With the growing number of telematic devices found inside 
the cockpit – cell phones, navigators, internet access tools 
and PDAs, to name a few – the problem of driver 
distraction is becoming more and more serious. This has 
resulted in the acceleration of research in the area of 
intelligent transportation. In this vein, we are building a 
driver support system that is capable of monitoring the 
driver and the driving situation and intelligently assisting 
her to have safer, more enjoyable and more productive 
driving experiences.  
 
Before discussing our approach to building the driver 
support system, let us briefly review the current research in  
the intelligent transportation domain.  The goals of research 
effort in this area may be divided into autonomous 
vehicles, intelligent vehicles, and smart highways. 
Autonomous vehicles are automobiles that are equipped 
with sensors, computers and a control system to drive by 
themselves. The sensors allow the autonomous vehicles to 
perceive the environment – roads, pedestrians, other 
vehicles, potential hazards, etc. – as well as the driver, 
passengers and various components of the vehicle itself. 
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The computers process the information from the sensors 
and determine actions to take, which are then executed by 
the control system. Although certain autonomous vehicles 
have shown impressive performance (e.g., Franke, et al., 
1999; Thorpe, et al., 2002), we believe it will be some time 
before autonomous vehicles became practical. In the 
meantime, however, intelligent vehicles with the human in 
control appear to be more promising; these observe the 
traffic situation and support the driver by providing 
warnings and advice as needed (as discussed in, e.g., Dagli 
and Reichardt, 2002; Malec and Österling, 1996). 
Intelligent vehicles are also equipped with computers and 
sensors so they can perceive the environment, model and 
predict the driver’s behavior, and take appropriate actions, 
e.g., issuing a warning when the driver dangerously 
deviates from her lane. The goal of smart highways or 
automated highway systems (Abreu et al., 2000; Ünsal, 
1997; Varaiya, 1993) on the other hand is to make 
highways safer and more efficient through communication 
between vehicles and the control center. Intelligent vehicles 
could provide similar benefits through cooperation among 
themselves.  
 
The goal of our project is to build an intelligent driver 
assistance system, the Driver AdvocateTM (henceforth, 
DA), to deploy in a car, as a step toward building an 
intelligent vehicle. Building an intelligent vehicle requires 
much of the same technology required to build autonomous 
vehicles, including the technologies in sensor, vision and 
image processing, context and situation awareness, task 
modeling, and inference and decision making capability. 
That is, an intelligent vehicle may be  considered an 
‘autonomous vehicle that lacks control of the vehicle.’ In 
addition, constructing the DA requires work in user 
modeling, intention recognition and an understanding of 
human factors.  
 
In designing the DA, we have adopted an agent 
architecture, integrating it with an ontology-based 
knowledge representation system, production system-based 
decision making system, and technologies in adaptive 
learning.  At this time, we skip the sensor and vision issues 
as we use a driving simulator that provides high-level 
environmental information for free, unlike the situation in 
an actual vehicle. We have partially implemented the 
design in a prototype system  using a high-fidelity driving 
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simulator (Figure 1). We have begun human experiments, 
and are collecting driving data as input to the machine 
learning tools to learn to adapt to the unique driving 
behavior of each driver. 
 
The rest of the paper is organized as follows. We first 
provide a conceptual view of the DA system and its overall 
architecture.  We then discuss the agent architecture and its 
interaction with machine learning tools, followed by further 
discussion on how machine learning techniques may be 
used to build an adaptive driver assistance system. A brief 
description of remaining issues and our plan for future 
work concludes the paper. 
 

 
Figure 1. The Driving Simulator 

The Driver Assistance System 
As shown in Figure 2, the Driver AdvocateTM needs to 
perform three core classes of tasks to successfully assist the 
driver: monitoring the driver (‘Human Driver’), 
establishing the driver model (‘User Model’) and 
interacting with the driver (‘Driver Interaction’). More 
specifically, 
• Monitoring the Human Driver: This involves making 

assumptions about what information the driver is paying 
attention to (by monitoring her actions and behavior, 
such as eye gaze), in order to understand what she is 
reacting to, as well as inferring her intentions. 

• “User” Modeling: The model of the driver is established 
and continuously updated. The DA will make predictions 
of what the driver should be doing, in terms of her 
attention, actions, mental state, etc., based on this model 
and the observations of the world (from the sensors in 
the car), in the context of the current situation. 

• Driver Interaction: When the DA needs to communicate 
with the driver, the information should be presented in a 
timely manner so she could immediately act upon it. I.e., 
the DA has hard real-time constraints related to control 
of the vehicle especially when the vehicle is in motion. 
Also, the DA should present the information in a manner 
that is both clear and non-distracting to the driver. For 
example, it should not pull the driver’s attention from a 
high priority task to a lower priority one. 

Figure 2 further explains how these core tasks are related. 
The key to our design is the comparison between the 
prediction the DA makes of the driver action and the actual 
driver action (shown in the figure by the diamond 
indicating comparison). Because the DA’s user model is 
not going to be completely accurate, its prediction may be 
probabilistic as well as involving timeframes. For instance, 
the DA may infer that, since the driver has looked at the 
bicycle that is 10 meters ahead, there is a 60% probability 
she will reduce speed and a 40% probability she will 
change lanes within the next second (the action must be 
taken within 3 seconds). If neither action has been taken 
after a second, the DA must assume that either the driver is 
in error and needs to be prompted to take a corrective 
action or that its user model is in error. Currently, the DA 
assumes that all errors identified are driver errors. We 
isolate model errors and revise the user model during a 
separate, off-line training phase. Online adaptation is our 
ultimate goal, but as (Miller, et al., 2002) point out, 
maintaining system safety will require additional effort in 
the face of such adaptation, which we are not prepared to 
address at this time. 
 
Given that a prediction has not obtained, we send the failed 
prediction to the Driver Interaction core, where it is used 
along with the information about the general situation and 
the current environmental information to select a 
communication operation to perform. This may be 
implemented using a variety of modalities, e.g., visual, 
audible, or even haptic. The core representation of such 
interactions is a speech act, which can also be used to 
update the user model in a reinterpretation stage. 

Figure 2.  Conceptual view of  the Driver AdvocateTM System 
 

The basis of our system architecture is intelligent agents, 
for reasons to be discussed later.1 At the center is an upper 
and domain ontology shared by the agents which can be 
used for service advertisements and in agent negotiation to 
                                                 
1 In fact, the agent architecture has been used in many systems in 
the intelligent transportation domain, e.g., see (Abreu et al., 2000; 
Shapiro, 2001; Sukthankar, et al., 1998). 
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select the best service provider that meets service 
requirements (e.g., of response time, quality of result, etc.). 
Our agent system can support agents written in any 
language because only the agent communication language 
(ACL) and the ontology for message content are 
prescribed. Our ACL includes enough pragmatics to assure 
that the response to a particular speech act message will 
have the desired effect on the agents state and future 
performance. Some of our agents can encapsulate formal 
logical reasoning systems, some machine learning 
algorithms, and some are just purely reactive (particularly 
those critical to real-time response).  
 
For the Driver Interaction core, we have adopted the Soar 
architecture (Lehman, et al., 1996). It has been used in 
flexible cooperative team-based agent applications such as 
(Tambe, 1997) and in building driving agents (Aasman, 
1995; Aasman and Michon, 1992). We plan on using the 
architecture as at least part of the User Modeling core as 
well.2 Soar is capable of proposing and evaluating 
operations on the environment using a “psychologically 
plausible” architecture – which may be useful in creating 
better user models. At the present moment, however, our 
user model consists primarily of a model derived from 
supervised learning. We use our driving simulator to 
collect driving data from human drivers and distill them 
into a general driving model, which is used (when 
connected to the proper agents, i.e., driving agents) to 
effect driving the vehicle. In this fashion we are able to 
check and correct our model, by examining (as an 
observer) if the resultant driving is reasonable and natural, 
and can take palliative actions when it is not. 

The Agent Architecture 
We selected the agent architecture as it provides the best 
means to bridge together the various technologies and 
components required to build an intelligent driver support 
system. We first explain our choice of the agent 
architecture and then discuss some of the DA agents of 
particular interest.  
 
There are several factors that drove the decision to choose 
the agent architecture. First, the DA system must be robust 
to unanticipated input and to dynamic reconfiguration. Due 
to the unconstrained task of driving, it is clearly not 
possible to predict all possible situations that drivers will 
find themselves in. Also, the system must be robust to 
sensor and component reconfiguration during its lifetime 
(for instance, sensors may break or become ineffective 
during driving).   Unlike today’s cars that usually remain 
configured the same as when they were manufactured 
(except for maybe a new stereo) modern cars permit much 
more flexibility in their configuration. The agent 
                                                 
2 Soar has also integrated a learning mechanism, i.e., chunking, 
with rule-based symbolic reasoning, although we are not making 
use of it in the DA system at this time. 
 

architecture supports this need of dynamic configuration as 
it allows agents to enter and leave the community 
transparently and enlist or delist other agents based on their 
capability and the quality of the service they provide. 
 
Second, conflict resolution: An intelligent driver support 
system should be able to deal with conflicting sensor 
information (e.g., GPS and momentum-based sensors may 
differ) and conflicting system recommendations (e.g., 
navigation system says turn left but collision avoidance 
system says swerve right). BDI (Belief, Desire, Intention)-
type agents (Bratman, et al., 1988) can be used for conflict 
resolution by reasoning over why the agents are making the 
current suggestions using human cognitive models, 
resulting in a system that resolves conflict similar to how 
drivers resolve conflict. Additionally, there are conflicts 
with run-time resource constraints that may affect the 
quality of subsystem performance, which requires run-time 
decision making capabilities. For example, a vehicle radar 
system may be able to trade resolution for beam width. 
Agents are suitable for determining this tradeoff by using 
goal-based decisions to balance quality and frequency of 
sensor updates with known resources.   
 
Lastly, easy integration with multiple platforms: During the 
development of the system, there will be multiple teams 
creating components using different software tools and 
languages. We also plan to move from a driving simulator 
to an actual instrumented vehicle where hardware may 
replace our simulation software. Since all agent 
communication takes place via text messages, any 
hardware or software components that can communicate 
through a network port can be used in the system.  We are 
currently using TCP/IP with Java, C++, and Lisp code 
running on multiple platforms, but it can be easily switched 
to automotive bus protocol such as used by the CAN 
standard (ISO-11898, 1993). 

The DA Agents  
Table 1 shows some of the DA agents that are unique to 
our domain (Percept Agent, Soar Agent and Agenda Agent) 
together with User Interface Agent and Machine Learning 
Agent.  
 
The User Model in Figure 2 is implemented with a Soar 
Agent, which maintains prioritized rules, and a Machine 
Learning agent, which generates probabilistic information 
based on the driver model (see the following section).  The 
decision diamond in Figure 2 can be handled by the Soar 
Agent, which will have access to the results of the Machine 
Learning agent and may defer any decisions to the most 
probable result as determined by the Machine Learning 
agent.   When the Soar Agent decides that the driver is in 
error, it sends a message to an Agenda Agent who will 
ultimately determine the best way (modality, timing, 
intensity, etc.)  to inform the driver of this error. 
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Agent Role 
User 
Interface 
Agent  

Converts user commands into speech acts for 
other agents. Eventually these may act in 
place of a user (for testing purposes) and be 
able to self-configure to best elicit a response 
from a user. 

Machine 
Learning 
Agent 

Receives data or rules, and generates predict-
ion or classification using a variety of ML 
techniques. 

Percept 
Agent 

Obtains driving parameters, e.g., speed, 
heading, surrounding traffic, etc., from the 
simulator (but eventually from sensors). 

Soar 
Agent 

Wraps the Soar architecture. Also, translates 
percept or parameter value changes into data 
structures used by Soar and translates output 
actions from Soar into speech acts. 

Agenda 
Agent 

Alerts the driver to various problems using 
visual, audio, or haptic channel. 

Table 1.  DA Agents 
 

Machine Learning in Advising a Driver 
To avoid having to program the responses of a system to 
every imaginable situation, machine learning (ML) 
techniques are often used in intelligent advising systems, 
including the ones in automotive domain (see the survey by 
Campbell and Torkkola, 2002). We also use ML 
techniques to enable the DA to learn appropriate responses 
from the driving data. In this section, we describe how we 
apply ML technology to the DA, specifically, in learning 
user models, detecting driving/ driver states, and learning 
to interact with the driver. 

User Modeling 
Let us consider a simple scenario with a lane departure 
warning system, which adapts to the current driver's habit 
of driving within the lane. The system might be initially 
very eager to warn the driver of drifting to the shoulder, if 
she tends to drive close to the right lane edge. By adapting 
the user model based on a few minutes of her driving, the 
system demonstrates improved usability with reduced false 
alarm rate. 
 
Learning and adaptation of a user model require collected 
or streaming data. The model could be, for example, a 
Hidden Markov Model (HMM), or just a set of linear 
regression coefficients, depending on the complexity of the 
driver characteristic chosen to be modeled and adapted. 
This direction will eventually be extended towards much 
more faithful modeling of the human driver, including 
many aspects of driving, as well as her intentions.  

Recognizing the Driving States 
The second direction is also closely tied to user modeling, 
and could be characterized as learning models/detectors for 
various driving situations, including the state of the driver. 

This could include discovery of meaningful driving states 
in an unsupervised fashion by means of clustering or 
HMMs, or supervised learning of driving states based on 
driving data that has been annotated with relevant labels.  
The model/detector can be one of many possibilities, such 
as a HMM, if history of the states is important, or any 
classifier for static data, such as a decision tree or a neural 
network. Annotation of the states should follow a 
predefined ontology for driving situations. Recognition and 
automatic labeling of these states can then loosely be 
thought as grounding the symbols in the ontology. 
 
We have experimented with unsupervised state 
segmentation using a HMM. Figure 3 depicts a four-state 
HMM segmenting a driving path into states. Input variables 
to the HMM were physical parameters from the car, such as 
location, speed, acceleration, and the positions of all the 
controls in the car.  

 
Figure 3. Unsupervised segmentation of driving states 
using HMMs. x, y axes are (geographical) driving 
coordinates, and z is the accelerator position (just to 
illustrate a third variable on the same graph). Segmentation 
is indicated by the color. 

 

Learning to Interact with the Driver 
One of the requirements of the DA system is to learn from 
the environment and adapt to it. Since the adaptation will 
mainly occur through user interaction - giving advice to the 
driver, and driver reacting to it - it is not possible to work 
with static collected databases only. Interaction may be 
either real interaction with human drivers who are driving 
the simulator or simulated interaction. (The state space in 
driving is too large to learn by exploration with human 
interaction only.) Our plan is to use simulated interaction 
initially, and a driving agent is being used for this purpose. 
We are envisioning the driving agent to be bootstrapped 
from, and constrained by models describing human driving, 
especially limitations of humans. This driving agent may 
also learn the bulk of its driving capabilities through 
interacting with the simulated world. Humanized driving 
agents make it possible to test and develop suitable 
learning methods in simulated worlds. 

284    FLAIRS 2003   



 

        

Concluding Remarks 
 

We described the architecture of the Driver AdvocateTM 
(DA) system, focusing on the integration of agent and 
machine learning technologies. The architecture has been 
partially implemented in a prototype system built upon a 
high-fidelity driving simulator. We have been running 
human driving experiments using the prototype DA so it 
may learn to adapt to individual variances in their driving 
behavior.  Once the DA demonstrates the desired 
capabilities, we will test the system in a real car in an actual 
driving environment.  
 
Much work needs to be done however, before the DA 
could be deployed in a real car assisting drivers in an actual 
driving environment. We conclude this paper by discussing 
some of the interesting challenges we are facing, or expect 
to face during the transitioning phase. First is the scalability 
issue, i.e., whether the results we obtain from simulated 
driving data will scale to the actual environment with real 
sensors. Unlike the ‘high-level situational information’ 
input we get from the simulator, the output from real 
sensors would be uncertain and of low-fidelity (cf. 
Sukthankar, 1997). Also, we may encounter grounding and 
epistemological problems, which would make object 
identification and situation recognition difficult requiring 
“deep” analysis. This could be a problem since the DA will 
need to work in real-time. 
 
Another challenge is related to the vast amount and diverse 
nature of the data and knowledge the DA needs to deal 
with; from statistical or numeric data (driving data 
collected from the simulator, control data to send to the 
actuators in the vehicle, etc.) to knowledge in symbolic 
form (needed to describe task models and for planning and 
reasoning about situations). Although our architecture 
allows each agent to work using its own representation 
formalism, some kind of hybrid reasoning capability needs 
to be shared across multiple agents. Again, the efficiency 
issue could be a key factor due to the real-time requirement 
of the DA. 
 
Finally, our machine learning tools will have to handle the 
problem of temporal credit. The goal of the advising 
system is reached only after a long sequence of actions, but 
what actions in the sequence will have to be 
credited/blamed for reaching/not reaching a specific goal?  
The training data is not labeled except one instance at the 
very end of the sequence when the goal is reached. What 
action is then to take at each possible state of the system in 
order to maximize the expected future reward (or to 
minimize penalty)? This happens to be the exact problem 
setting for reinforcement learning (Sutton and Barto, 1999), 
and we are currently investigating various options to apply 
reinforcement learning to our problems. The main idea is to 
use a trained driving agent to drive in a simulated world 
with simulated incidents and high simulated cognitive 
loads, and let the DA system give advice according to the 

current policy and adjust its policy according to the reward 
it receives. 
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