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Abstract 

Almost all the approaches in association rule mining 
suggested the use of a single minimum support, technique 
that either rules out all infrequent itemsets or suffers from 
the bottleneck of generating and examining too many 
candidate large itemsets. In this paper we consider the 
combination of two well-known algorithms, namely 
algorithm DIC and MSApriori in order to end up with a 
more effective and fast solution for mining association rules 
among items, with different support values. Experiments 
show that the new algorithm is better than algorithm 
MSApriori, as well as better than algorithm DIC. 

Introduction     
Since its introduction from Agrawal, Imielinski and Swani 
(1993), the task of association rule mining has received 
much attention, and still remains one of the most popular 
pattern discovery methods in KDD. A formal description 
of the problem can be found from (Agrawal, Imielinski 
and Swani 1993), or from (Agrawal and Srikant 1994). 
Many alternatives have been proposed in order to improve 
this first approach (Toivonen 1996; Park, Chen and Yu 
1995; Brin et. al. 1997), with most of the subsequent 
algorithms trying to reduce the I/O overhead. Lately much 
effort has been made in the on-line generation of 
association rules (Aggarwal and Yu 2001; Hidler 1997; 
Kouris, Makris and Tsakalidis 2002). For a survey on the 
bulk of the work made on the area of data mining readers 
are referred to the work of Chen, Han and Yu (n.d.). 
However almost all the approaches suggest the use of a 
single minimum support, assuming all itemsets to be of the 
same importance. 
Mannila (1998) presented what he called the rare item 
problem. According to this problem if the overall minsup 
is set too high, then we eliminate all those itemsets that are 
infrequent. On the other hand if we set the overall minsup 
too low, in order to find also those itemsets that are 
infrequent, we will most certainly generate a huge number 
of frequent itemsets and will produce far too many rules, 
rules that will be meaningless. In order to deal with this 
problem there have been proposed various alternatives. 
                                                 
 Copyright © 2003, American Association for Artificial Intelligence  
 (www.aaai.org). All rights reserved. 

One is splitting the data into a few blocks according to the 
frequencies of the items and then mine for rules in each 
distinct block with a different minimum support (Lee, 
Stolfo and Mok 1998). One second approach is to group a 
number of related rare items together into a higher order 
item, so that this higher order item is more frequent (Lee, 
Stolfo and Mok 1998; Han and Fu 1995; Srikant and 
Agrawal 1995). However the first approach fails to 
produce in a straightforward - simple manner rules with 
items across different blocks, while the second approach 
fails to produce rules involving the individual rare items 
that form the higher order itemset.  
Liu, Hsu and Ma (1999) proposed an algorithm called 
MSApriori, which was based on algorithm Apriori and 
could find rules among items with different supports 
without falling in the pitfall described by Mannila (1998). 
According to this approach, every itemset in the database 
can have its own support value called MIS. Let MIS(i) 
denote the MIS value of an item i. The minimum support 
of a rule R is the lowest MIS value among the items in the 
rule. That is, a rule R involving k items is valid if the rule’s 
actual support is greater or equal to: 

[min(MIS(a1),MIS(a2),…,MIS(ak)] 
That way we are in position to have higher minimum 
supports for rules only with frequent itemsets and lower 
minimum supports for rules that involve also rare itemsets. 
However the use of multiple supports takes off the 
advantage of pruning and discarding some itemsets from 
further consideration. All level-wise algorithms like 
Apriori, rely on the property that an itemset can only be 
large if only all of its subsets are large (downward closure 
property) so that they can reduce the number of itemsets 
that have to be checked. In order not to miss that 
advantage the specific researchers suggested a variation 
called the sorted closure property, according to which all 
the 1-items in the dataset are sorted in ascending order 
according to their MIS values. This ordering is used in all 
subsequent operations, and the items in all higher order 
itemsets follow this ordering. Nevertheless MSApriori, 
like its ancestor Apriori, required as many passes over the 
data as is the number of single items in the higher order 
candidate itemset.  
On the other hand Brin et al. (1997) presented algorithm 
DIC, which made use of a single minimum support and 
reduced the number of passes made over the data while at 
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the same time kept the number of itemsets that have to be 
checked low as compared to sampling techniques 
(Toivonen 1996). The main idea of this algorithm was to 
start counting any itemset as soon as it is suspected to be 
large instead of waiting until all of its subsets are counted 
through all the transactions. According to Brin, DIC is 
compared to a train running over the data with stops at 
intervals M transactions apart. At every stop of the train 
some new itemsets get on the train (start to be counted), 
while others get of (stop to be counted). What this 
approach fails to approximate is that not all passengers are 
the same. Some passengers are first class passengers and 
thus need some extra attention, while some others are the 
economy class. Every itemset that gets on the train at any 
stop is presumed to be the same as all the others, or in 
other words to have the same support threshold as all the 
others. What we try to manage is to incorporate the 
philosophy of the multiple support values introduced by 
Liu, Hsu and Ma (1999), into the procedure proposed by 
Brin et al. (1997) and end up with an even faster and more 
efficient algorithm for mining association rules with 
multiple minimum supports. 

Algorithm KTM 
Every itemset in our database is marked with a different 
state. Apart from the four states that were used also by the 
DIC algorithm, we introduce two additional states for our 
purposes. So our algorithm marks overall the itemsets in 
six different possible ways, which are: 
Dashed Circle (DC) – suspected small itemset – an itemset 

we are still counting that its count is bellow its MIS 
value– also the initial state of all itemsets. 

Solid Circle (SC) – confirmed small itemset – an itemset 
we have finished counting and its count is bellow its 
own MIS value as well as bellow the MIS value of the 
item before it. 

Dashed Square (DS) – suspected large itemset – an 
itemset we are still counting but its count already 
exceeds its MIS value. 

Solid Square (SS) – confirmed large itemset – an itemset 
we have finished counting through all the transactions 
and that exceeds its MIS value. 

Dashed Diamond (DD) – itemset which we confirmed that 
its count is bellow its own MIS value but above the MIS 
value of the item before it in the MIS ordering, and has 
not yet generated its corresponding candidate itemsets. 

Solid Diamond (SD) – itemset that we confirmed that its 
count is bellow its own MIS value but above the MIS 
value of the item before it in the MIS ordering and that 
has generated its corresponding candidate itemsets. 

Every 1-itemset begins to be counted with its state DC – 
Dashed Circle, except from the empty itemset, which is 
marked immediately with its state solid box (Figure 1, 
snap 1). After M transactions, where M is the number of 
transactions that have to be read before our train 
(algorithm) makes its first stop, we check the counter of 

every itemset we are counting against its MIS value. If its 
counter is larger or equal to its MIS value then its state is 
changed into DS – Dashed Square (Figure 1, snap 2).  
When an itemset has been counted through all the 
transactions we check again its counter against its MIS 
value. If its state was DC – Dashed Circle, and its counter 
is finally equal or larger than its MIS value we change its 
state to SS – Solid Square. If its state was DS – Dashed 
Square, we simply change it to SS – Solid Square (Figure 
1, snap 3). 

Figure 1: The running of the KTM algorithm 

If its counter remains lower than its MIS value and it is a 
1-itemset we now check it against the MIS value of the 
item before it in the MIS ordering. If it is also bellow the 
MIS value of the item before it, we then change its state to 
SC – Solid Circle. If on the other hand its counter is equal 
or over the MIS value of the item before it, we change its 
state to DD – Dashed Diamond (Figure 1, snap 3), and 
begin generating all candidates from it. This state is not 
preserved long since after this itemset has generated all 
possible candidate itemsets we change its state to SD – 
Solid Diamond (Figure 1 snap 4). The only difference 
between the two states is that an itemset with state SD has 
generated all possible candidate itemsets from it. The 
reason we added two states, Dashed Diamond - DD and 
Solid Diamond – SD instead of just one (state DD – 
Dashed Diamond) was because we wanted to keep our 
algorithm from producing new candidates at every stop. 
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Our algorithm terminates upon the absence of any dashed 
itemset. 
If any immediate superset of a 1-itemset stated DS – 
Dashed Square, has all of its subsets as solid or dashed 
squares, we make its state DC – Dashed Circle and begin 
counting it (Figure 1 snaps 2 & 5). This procedure is 
somewhat different for 1-itemsets which are stated DD – 
Dashed Diamonds in that we generate supersets from them 
by using the 1-itemset stated DD and any 1-itemset stated 
DS – Dashed Square, or SD – Solid Square which is also 
before it in the MIS ordering (Figure 1 snap 4 where we 
generated the candidate itemset <1,3> only and not also 
<3,4>). Also the order of every new itemset is preserved, 
by putting first the 1-itemset that has the lowest MIS value, 
and then all the other items sorted ascending by their MIS 
values. 
If any immediate superset of a k-itemset ( 2≥k ) stated 
DS – Dashed Square has all of its subsets as solid or 
dashed squares, we make its state DC – Dashed Circle and 
begin counting it. There is however one exception when a 
subset of an itemset is not large (i.e. is not stated DS or 
SS), and nevertheless the candidate superset cannot be 
pruned (In Figure 1, snap 4 superset <1,3,4> is generated 
although subset <3,4> is not large). This case arises when 
the subset does not contain the first item of the superset 
(there is always one such subset) and we are not sure that 
the MIS value of the first item is not the same as that of the 
second item. 
As we can easily understand only 1-itemsets can be stated 
DD or SD, since we keep an MIS ordering only for those 
itemsets. All the other higher order itemsets can be of state 
DC, DS, SS and SC.  
Upon termination of the algorithm we end up with an 
itemsets lattice like the one shown in Figure 2, with the 
empty itemset at the bottom and the set of all items at the 
top. The itemsets that are not marked with any state at all 
(i.e. were never counted) are nevertheless shown here for 
the ease of representation. 

Item ordering 
The ordering of the items in the data structure plays an 
essential role in both algorithms, each for its own 
purposes. In this section we show that the ordering that we 
apply serves both algorithms and results in a more efficient 
combined algorithm.  
Liu, Hsu and Ma (1999) proposed a sorting of the items 
according to their MIS values in ascending order in order 
to satisfy what they called the sorted closure property. Brin 
et al. (1997) on the other hand used one single minimum 
support, which satisfied the downward closure property, 
but brought up the subject of how the items should be 
ordered in the data structure used for counting.  According 
to Brin, having the items that occur in many itemsets to be 
last in the sort order of the items, and the items that occur 
in few itemsets to be last accomplishes more efficient 
counting. The specific researchers tried to apply an item 
reordering technique, whose results were rather 

disappointing, since the reordering played a negligible role 
in the overall performance, whereas sometimes it had the 
complete opposite effect, ordering the items completely 
reversal. The problem is especially apparent in datasets 
that are highly skewed, and localized changes or 
characteristics in data can have completely unpredictable 
results. The ordering that we propose in our algorithm first 
of all satisfies the sorted closure property suggested by 
Liu, Hsu and Ma (1999). Furthermore since according to 
this ordering the most frequent items are stored last in the 
order and the least frequent are stored first, we accomplish 
more effective counting, avoid the overhead incurred due 
to the re-sorting proposed in the work of Brin et al. (1997), 
and finally as shown in the final section, for highly skewed 
datasets our algorithm outer performs DIC. 

Figure 2: An itemsets lattice 

The Data Structure 
The data structure used by our algorithm is exactly like the 
hash tree used in DIC with a small but very significant 
difference. In every node of the tree we store also the 
corresponding MIS value of the specific node. This means 
that since we do not have a common support threshold for 
every itemset in the tree, each itemset must have its own 
support value. The MIS values for the 1-itemsets are 
assigned manually by the user, and from that point after 
the program itself assigns the MIS values to every node 
automatically. This step is given bellow:  

1 for every itemset c=<c.item1, c.item2,…., c.itemk> that we begin counting 
2 select c.item1 
3            c.MIS= c.item1.MIS 

Basically in every itemset that becomes a candidate (i.e. is 
stated DC) and starts to be counted we take the first item, 
which also has the lowest MIS value from all the others, 
and assign to the itemset this MIS value. In Figure 3 we 
present the symbols for the various itemset states, the 
transitions among the different states and finally when 
should these transitions occur. Managing transitions 
among all these states (from active to counted and from 
small to large) and detecting when these transitions should 
occur becomes a rather complicated task. 
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Performance Comparison 

In this section we compare our proposed method with 
algorithm MSApriori as well as with algorithm DIC. The 
experiments were run on a Celeron 333MHz PC, with 
128MB of main memory, under the Windows 98 operating 
system. 

Experiments with synthetic data 
In order to carry out experiments with synthetic data we 
used the data generator1, which is very well documented in 
(Agrawal and Srikant 1994). As stated by Liu, Hsu and Ma 
(1999) in the comparison of MSApriori to algorithm 
Apriori, as far as the synthetic data is concerned the time 
required by algorithm MSApriori is roughly the same as 
that needed by algorithm Apriori since the database scan 
dominates the computation. So we compared our algorithm 
directly to algorithm Apriori. The number of candidate and 
large itemsets are exactly the same for both algorithms and 
hence are not shown here.  
In order to assign MIS values to the items in the data set 
we used the same method used by Liu, Hsu and Ma 
(1999), and more specifically we used the following 
formulas: 

{ αβ
β
/1

)()()()(
)(

=
=>

=
ifiM

where
otherwise

LSiM
LS

iM
iMIS  

Where f(i) is the actual frequency of an item i, LS is the 
user specified lowest minimum item support allowed and β 
is a parameter controlling how the MIS values for items 
should be related to their frequencies. 

                                                 
1 http://www.almaden.ibm.com/cs/quest/syndata.html 

For our experiments we generated a number of data sets to 
test our proposed algorithm. All of the datasets had similar 
behavior, and so we present only one. However at its 
present version our algorithm does not support the 
automatic assignment of MIS values, and so everything 
had to be done manually. So we tested our algorithm with 
sets consisting of just some tenths of distinct items. We 
expect our algorithm to perform even better with more 
items. The data set shown here is generated using an 
average of 10 items per transaction, with 50 items and 
100.000 transactions. The step length of our algorithm was 
fixed at 20% of the database (i.e. 20.000 transactions).  

Figure 4: Comparison of execution times in percentage 

In Figure 4 we show the comparison between the 
execution times of the two algorithms as a percentage. As 
we can see our algorithm manages to reduce the execution 
times considerably. For LS=1% our algorithm runs almost 

 
Figure 3: The transitions among the different states 
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70% faster (for a=1), and for LS=2% almost 60% faster 
(for a=1). 

Skewed Data 
Algorithm DIC as well as our algorithm are both 
susceptible to data skew. Since there is no known 
generator for generating skewed synthetic datasets, that we 
are aware of, we decided to generate some custom data 
sets. We begun with a dataset consisting of 5 items and 
100.000 transactions and gradually increased the number 
of items to 9. 
The datasets that we created were so highly skewed that 
some itemsets appeared as seldom as only 100 times in a 
dataset of 100.000 transactions, all in consecutive 
transactions and most of the times at the end of the whole 
dataset. This means that sometimes both the algorithms 
had to wait until the end of the transaction file in order to 
begin counting some items, thus completely missing the 
advantage offered by both the algorithms which is starting 
to count higher order itemsets early enough in the dataset. 
This explains the slightly high times required by both 
algorithms. In these series of experiments we did not 
include also algorithm MSApriori as it would yield even 
higher execution times. 
In these experiments, as can be seen also in Figure 5, 
algorithm KTM performed better than algorithm DIC in all 
cases, reducing the execution times from 2% in the dataset 
with 5 items to almost 10% in the dataset with 9 items and 
thus confirming what we have proposed previously. 

Figure 5: % Improvement of execution time 

Conclusions and Future work 
In the future we would like to run more extensive 
experiments in order to test the behavior of our algorithm. 
We would like to experiment more with features like the 
step length, the minimum confidence as well as with more 
distinct items. We would also like to test it with real data, 
preferably from a retail company. 
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