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Abstract

Support vector machines (SVMs) are regularly used for clas-
sification of unbalanced data by weighting more heavily the
error contribution from the rare class. This heuristic tech-
nique is often used to learn classifiers with high F-measure,
although this particular application of SVMs has not been rig-
orously examined. We provide significant and new theoreti-
cal results that support this popular heuristic. Specifically, we
demonstrate that with the right parameter settings SVMs ap-
proximately optimize F-measure in the same way that SVMs
have already been known to approximately optimize accu-
racy. This finding has a number of theoretical and practical
implications for using SVMs in F-measure optimization.

Introduction
Support vector machines (SVMs) (Vapnik 1995; Cristianini
& Shawe-Taylor 2000) have been shown throughout the last
decade to be a popular and successful methodology for clas-
sification problems. SVMs for classification have most often
been used to optimize accuracy on a given dataset. When
training data is unbalanced, however, accuracy is often a
poor metric to use. For example, if a dataset has 99% of its
points in class “A” and only 1% of its points are in class “B,”
then an accuracy maximizing classifier may draw the con-
clusion that “all points are in class A.” When dealing with
this situation practitioners often prefer to measure precision
and recall (Hand, Mannila, & Smyth 2001) instead of accu-
racy. Precision and recall are typically each maximized at
the expense of the other, and thus practitioners must choose
a compromise. One popular balance is F-measure (van Rijs-
bergen 1979), which is a particular kind of average between
precision and recall. F-measure is therefore a relevant goal
in any machine learning scenario where data from one class
are present in much greater quantities than data from the
other class.

In this situation, i.e. when one class is “rare” relative
to the other, a traditional SVM can be augmented with a
weighting parameter to provide extra emphasis on the rare
class. This weighting parameter can be set directly via a
heuristic (Morik, Brockhausen, & Joachims 1999), or a tun-
ing procedure can be used to determine what the optimal
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value for this parameter should be. These methods work
well, and have been successful in practice.

It seems reasonable to conclude that a variation on the
standard SVM, designed to optimize F-measure, should do
a better job than a standard SVM. An SVM variant that op-
timizes F-measure directly would be highly desirable, but
would be difficult to solve due to the nonlinearities inher-
ent in the formulation. We do not attempt to solve such an
SVM variant in this work. All approaches to date that we
know of using SVMs to maximize F-measure do so by vary-
ing parameters in standard SVMs in an attempt to maximize
F-measure as much as possible. While this may result in a
“best possible” F-measure for a standard SVM, there is no
evidence that this technique should produce an F-measure
comparable with one from a classifier designed to specifi-
cally optimize F-measure. Our discovery, which is the main
thrust of this paper, is that for the right parameter settings
the standard SVM does in fact optimize an approximation
to F-measure. This provides significant new evidence that
the ad-hoc techniques that researchers have been using for
years are in fact “the right thing to do” in trying to optimize
F-measure.

We now describe our notation and give some background
material. All vectors will be column vectors unless trans-
posed to a row vector by a prime ′. For a vector x ∈ Rn,
x∗ denotes the vector in Rn with components (x∗)i = 1
if xi > 0 and 0 otherwise (i.e. x∗ is the result of apply-
ing the step function component-wise to x). The notation
A ∈ Rm×n will signify a real m×n matrix. For such a ma-
trix A′ will denote the transpose of A and Ai will denote the
i-th row of A. A vector of ones or zeroes in a real space of
arbitrary dimension will be denoted by e or 0, respectively.
For two vectors x and y in Rn, x ⊥ y denotes orthogonality,
that is x′y = 0.

This paper is organized as follows. We first present the
standard SVM and the formulation it approximates, the mis-
classification counting SVM. We next present our new F-
measure maximizing SVM, and show its equivalence to the
misclassification counting SVM. Finally, we consider impli-
cations of this equivalence and conclude.

The Misclassification Counting SVM
We consider the problem of classifying m points in the n-
dimensional real space Rn, represented by the m×n matrix
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A, according to membership of each point Ai in the class
A+ or A− as specified by a given m × m diagonal matrix
D with +1’s or -1’s along its diagonal. For this problem the
standard SVM with a linear kernel (Vapnik 1995) is given
by the following quadratic program with parameter C > 0:

Formulation 1 (Standard Linear SVM)

min
(w,b,ξ)∈Rn+1+m, ξ≥0

1
2w′w + Ce′ξ

s.t. D(Aw − eb) + ξ ≥ e
(1)

Here w is the normal to the bounding planes:

x′w = b + 1
x′w = b − 1,

(2)

and b determines their location relative to the origin. The
plane x′w = b+1 bounds the class A+ points, possibly with
some error, and the plane x′w = b − 1 bounds the class A−

points, also possibly with some error. The linear separating
surface is the plane:

x′w = b, (3)

midway between the bounding planes (2). The quadratic
term in (1) is twice the reciprocal of the square of the 2-
norm distance 2

‖w‖2
between the two bounding planes of (2).

This term maximizes this distance which is often called the
“margin.” If the classes are linearly inseparable, then the
two planes bound the two classes with a “soft margin.” That
is, they bound each set approximately with some error de-
termined by the nonnegative error variable ξ:

Aiw + ξi ≥ b + 1, for Dii = 1,
Aiw − ξi ≤ b − 1, for Dii = −1.

(4)

Traditionally the 1-norm of the error variable ξ is minimized
parametrically with weight C in (1) resulting in an approxi-
mate separation.

The standard SVM as presented in (1) measures misclas-
sification errors by a 1-norm distance metric. The 2-norm
distance is a common variation (Mangasarian & Musicant
2001; Cristianini & Shawe-Taylor 2000). Both these met-
rics are typically chosen out of a need to easily solve the
support vector machine optimization problem. It is impor-
tant to point out, however, that the error metric truly desired
is a count of the number of misclassified points (Cortes &
Vapnik 1995). This can be formulated similarly to (1), using
the step function (·)∗ as follows:

Formulation 2 (Misclassification Counting Linear SVM)

min
(w,b,ξ)∈Rn+1+m, ξ≥0

1
2w′w + Ce′(ξ)∗

s.t. D(Aw − eb) + ξ ≥ e
(5)

Though this approach has been studied (Mangasarian 1994a;
Chen & Mangasarian 1996), it is generally avoided because
the problem of finding an exact solution is NP-complete.
Furthermore, the non-differentiability of the objective func-
tion renders analysis more difficult. We therefore approxi-
mate it as (Mangasarian 1996):

Formulation 3 (Approximate Misclassification Count-
ing Linear SVM)

min
(w,b,ξ)∈Rn+1+m, ξ≥0

1
2w′w + Ce′s(ξ)

s.t. D(Aw − eb) + ξ ≥ e
(6)

where s(ξ) is a differentiable function that approximates the
step function. One such choice is the following, where α is
an arbitrary positive fixed constant that determines the close-
ness of the approximation:

s(ξi) =

{

1 − exp(αξi), ξi ≥ 0
0 ξi < 0

(7)

All of the above formulations are motivated by trying to
equally minimize, approximately or exactly, the number of
classification errors across all points. This is not appropriate
when one is concerned with emphasizing correctness on a
rare class. To that end, the standard approach is to weight
the rare class more heavily. Therefore, let C+ be the weight
assigned to the class A+, and C− be the weight assigned to
the class A−. Define the vector c ∈ Rm as

ci =

{

C+ if Ai ∈ A+

C− if Ai ∈ A−
(8)

The standard SVM (1) is then reformulated as

Formulation 4 (Weighted Standard Linear SVM)

min
(w,b,ξ)∈Rn+1+m, ξ≥0

1
2w′w + c′ξ

s.t. D(Aw − eb) + ξ ≥ e
(9)

Likewise, the misclassification counting SVM (6) can be re-
formulated as

Formulation 5 (Weighted Approximate Misclassifica-
tion Counting Linear SVM)

min
(w,b,ξ)∈Rn+1+m, ξ≥0

1
2w′w + c′s(ξ)

s.t. D(Aw − eb) + ξ ≥ e
(10)

We now proceed to define the nonlinear kernelized vari-
ants of these two approaches. Once this is done, we can
consider generating SVMs designed to optimize F-measure.

The KKT optimality conditions (Mangasarian 1994b) for
the standard linear SVM, which indicate the conditions un-
der which a potential solution is optimal, are given in the
following dual problem:

Formulation 6 (KKT Conditions for Weighted Standard
Linear SVM)

e′Du = 0
ui = ci − vi, i = 1, ...,m
D(AA′Du − eb) + ξ ≥ e
u ⊥ (D(AA′Du − eb) + ξ − e)
v ⊥ ξ = 0
ξ, u, v ≥ 0

(11)
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The variables (w, b) of the standard linear SVM which de-
termine the separating surface (3) can be obtained from the
solution of the dual problem above (Mangasarian & Musi-
cant 1999, Eqns. 5 and 7):

w = A′Du, b ∈ argmin
α∈R

e′(e−D(AA′Du−eα))+ (12)

In order to introduce a nonlinear kernel into (11) in the
normal fashion, we will use the well known “kernel-trick”
(Schölkopf 2000) incorporating the following notation. For
A ∈ Rm×n and B ∈ Rn×`, the kernel K(A,B) maps
Rm×n × Rn×` into Rm×`. A typical kernel is the Gaussian
kernel K(A,B) = exp(−µ‖A′

i − B·j‖
2), i, j = 1, . . . ,m,

` = m, while a linear kernel is K(A,B) = AB. We there-
fore substitute a kernel in for the matrix product AA′ to ob-
tain the kernelized formulation:

Formulation 7 (KKT Conditions for Weighted Standard
Nonlinear SVM)

e′Du = 0
ui = ci − vi, i = 1, ...,m
D(K(A,A′)Du − eb) + ξ ≥ e
u ⊥ (D(K(A,A′)Du − eb) + ξ − e)
v ⊥ ξ = 0
ξ, u, v ≥ 0

(13)

The separating surface in this case is given by:

K(x′, A′)Du = b (14)

Finally, we now present KKT conditions for the misclassifi-
cation counting SVM (6). Using the same kernel trick, we
obtain:

Formulation 8 (KKT Conditions for Weighted Approxi-
mate Misclassification Counting Nonlinear SVM)

e′Du = 0

ui = ci
∂s(ξi)

∂ξi

− vi, i = 1, ...,m

D(K(A,A′)Du − eb) + ξ ≥ e
u ⊥ (D(K(A,A′)Du − eb) + ξ − e)
v ⊥ ξ = 0
ξ, u, v ≥ 0

(15)

The above two formulations describe precisely the condi-
tions under which the standard SVM and the misclassifica-
tion counting SVM have a solution. We now move on to de-
veloping a variation on the SVM that can be used for max-
imizing F-measure. Once this has been done, we will use
these KKT conditions to show the equivalence of this new
variation to the nonlinear misclassification counting SVM
(15) (for which the standard SVM is typically used as a
proxy).

The F-Measure Maximizing SVM
The basic form of the support vector machine is designed
to optimize training set accuracy. The goal is to minimize
the number of misclassified points in the training set. In
the presence of rare classes, a more common approach is to

maximize F-measure (van Rijsbergen 1979). To define F-
measure, we first focus on the following confusion matrix
where we label the rare class as A+, and the nonrare class
as A−:

Actual class
A+ A

−

Predicted A+ True Pos (TP) False Pos (FP)
class A

−
False Neg (FN) True Neg (TN)

Total # of pos (m+) # of neg (m
−

)

We next define precision (P) and recall (R) as:

P =
TP

TP + FP
, R =

TP

TP + FN
(16)

Recall measures how many of the rare points are predicted to
be rare, whereas precision measures how many of the points
predicted as rare are in fact rare. Both precision and re-
call are desirable, but they typically trade off against each
other. The following weighted average F-measure is thus
often used:

F =
2(P )(R)

P + R
(17)

We wish to formulate a modified SVM that actually opti-
mizes F-measure in addition to performing structural risk
minimization (Vapnik 1995; Cristianini & Shawe-Taylor
2000) as an SVM normally does. To that end, we observe
that can express F-measure as:

F =
2(TP )2

2(TP )2 + (TP )(FP ) + (TP )(FN)
(18)

We can simplify this expression and also replace TP by its
equal value m+ − FN to obtain:

F =
1

1 + 1
2

FP+FN
m+−FN

(19)

We can thus conclude that in order to maximize F-measure,
we can instead minimize the quantity FP+FN

m+−FN
. This can

be easily formulated into a variation on the standard linear
SVM, if we define an m×1 vector n such that ni = 1 if point
i is in class A+ and ni = 0 otherwise. Our new F-measure
maximizing SVM formulation is:

Formulation 9 (F-measure Maximizing Linear SVM)

min
(w,b,ξ)∈Rn+1+m, ξ≥0

1
2w′w + C

e′(ξ)∗

m+ − n′(ξ)∗
s.t. D(Aw − eb) + ξ ≥ e

(20)

As earlier, we approximate the step function with a differen-
tiable approximation in order to yield

Formulation 10 (Approximate F-measure Maximizing
Linear SVM)

min
(w,b,ξ)∈Rn+1+m, ξ≥0

1
2w′w + C

e′s(ξ)

m+ − n′s(ξ)
s.t. D(Aw − eb) + ξ ≥ e

(21)
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This optimization problem (21) is precisely the desired
formulation in order to optimize F-measure on a training
set. The objective directly balances maximizing F-measure
while at the same time minimizing the norm of w so as to
avoid overfitting. The parameter C controls the balance of
these two goals in the same fashion as it does in the standard
SVM. This formulation is highly nonlinear and quite diffi-
cult to solve. Nonetheless, we can now assert the following:

Proposition 1 Given a parameter C, an optimal separat-
ing surface found by the F-measure optimizing SVM (21) is
also an optimal separating surface for the misclassification
counting SVM (10) for an appropriate choice of parameters
C+ and C− (contained in c) in (10). The result also holds
for the nonlinear generalizations of these two formulations.

Proof Proposition 1 can be seen to be true by looking at
the KKT optimality conditions for the F-measure optimizing
SVM (21):

e′Du = 0

ui = C
(m+ − n′s(ξ) + e′s(ξ)ni)

(m+ − n′s(ξ))2
∂s(ξi)

∂ξi

− vi, i = 1...m

D(AA′Du − eb) + ξ ≥ e
u ⊥ (D(AA′Du − eb) + ξ − e)
v ⊥ ξ = 0
ξ, u, v ≥ 0

(22)
Using the same kernel substitution that we used in (13) and
(15), we obtain the following KKT conditions for the non-
linear F-measure optimizing SVM:

e′Du = 0

ui = C
(m+ − n′s(ξ) + e′s(ξ)ni)

(m+ − n′s(ξ))2
∂s(ξi)

∂ξi

− vi, i = 1...m

D(K(A,A′)Du − eb) + ξ ≥ e
u ⊥ (D(K(A,A′)Du − eb) + ξ − e)
v ⊥ ξ = 0
ξ, u, v ≥ 0

(23)
Let (w, b, ξ, u, v) satisfy the KKT conditions (23). Recall
that ni = 1 if point i is in class A+, and ni = 0 otherwise.
We can then observe that these conditions are identical to
KKT conditions (15) with the following choices of C+ and
C−:

C+ = C

(

m+ − n′s(ξ) + e′s(ξ)

(m+ − n′s(ξ))2

)

(24)

and

C− = C

(

1

m+ − n′s(ξ)

)

(25)

We may therefore conclude that for these particular values of
C+ and C−, (23) and (15) are identical and thus optimiza-
tion problems (21) and (10) (and their nonlinear extensions)
have the same optimal solutions.

Implications
There are a number of specific and important implications
that we can draw from Proposition 1.

1. For practical reasons, the standard SVM (9) is used as a
proxy for the misclassification counting SVM (10). It has
become common practice to optimize F-measure using the
standard SVM (9) by tweaking the C+ and C− parameters.
To our knowledge, despite its common usage this parameter
varying methodology has not been justified beyond the sim-
ple heuristic idea that weighting the classes differently will
help balance precision and recall. Proposition 1 indicates
that the misclassification counting SVM (10) is equivalent
to the F-measure optimizing SVM (21) for the right set of
parameters, and thus that the standard SVM (9) serves just
as well as a proxy for the F-measure optimizing SVM (21).
Therefore, tweaking C+ and C− parameters in the standard
SVM (9) for purposes of optimizing F-measure is just as rea-
sonable as the typical procedure of using the standard SVM
(9) to approximate misclassification counting. These argu-
ments hold for the nonlinear variations of these formulations
as well.

2. A common heuristic to use in choosing C+ and C− is to
balance them such that the errors for both classes contribute
equally. For example (Morik, Brockhausen, & Joachims
1999), choose C+ and C− to satisfy the ratio

C+

C−
=

number of points in class A−

number of points in class A+
(26)

Proposition 1 indicates that in trying to optimize F-measure,
the optimal values for C+ and C− are not necessarily deter-
mined by this ratio. We note that though this ratio heuris-
tic may provide a reasonable “first guess,” optimizing F-
measure requires significantly more experimentation.

3. Proposition 1 is also relevant if the linear error function
s(ξ) = ξ is used. In this case, we draw the conclusion that
appropriate parameter choices in the standard SVM (9) pro-
vide the same solution as that of an approximation to the
F-measure optimizing SVM where a linear error metric is
used.

4. Our original goal was to produce a new SVM formulation
to optimize F-measure. Such a problem is highly nonlin-
ear, and would require new approximations and algorithms.
On the other hand, existing algorithms and software such as
SVMlight (Joachims 1999), SVMTorch (Collobert & Ben-
gio 2001), and others have undergone extensive effort to
render them fast and usable. The community has been using
these tools to optimize F-measure, since it is reasonably easy
to do. Our results, combined with the speed and usability of
these tools, provide strong evidence that practitioners should
feel secure in using these tools to optimize F-measure.

5. A number of non-SVM related techniques exist for deal-
ing with classification in the presence of rare classes. A re-
cent successful example is PNrule (Agarwal & Joshi 2001).
SVMs sometimes perform better than PNrule, and some-
times worse. For example, Table 1 shows our SVM exper-
imental performance on the king-rook-king problem from
the UCI repository (Murphy & Aha 1992), when compared
to previous experiments with PNrule (Joshi, Agarwal, & Ku-
mar 2002). An SVM with a Gaussian kernel seems to per-
form better than PNrule on this problem. On the other hand,
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Dataset PNrule Boosted SVM
PNrule

krkopt-sixteen 56.35 70.17 76.6
krkopt-five 63.48 65.84 63.4
krkopt-eight 52.74 61.84 66.3
krkopt-nine 43.35 59.11 65.8
krkopt-ten 42.08 54.63 56.2
krkopt-fifteen 66.07 72.09 73.3
krkopt-eleven 49.00 58.62 57.4
krkopt-thirteen 58.51 61.56 65.1
krkopt-fourteen 61.73 72.90 73.1

Table 1: SVM test set F-measure on the king-rook-king
dataset, compared with both PNrule and a boosted version of
PNrule. SVM results are seen to be considerably better than
PNrule, and comparable with boosted PNrule.

SVMs performed poorly in our experiments under a variety
of standard kernels when compared with synthetic datasets
designed to highlight the strengths of PNrule (Joshi, Agar-
wal, & Kumar 2001). These synthetic datasets are particu-
larly hard for a standard SVM to handle, as the features that
characterize the rare class are different from the features that
characterize the non-rare class. The theoretical results that
we provide here yield evidence that the lack of success on
these datasets by SVMs is not due to an inability to max-
imize F-measure, but due to some other intrinsic difficulty
in using an SVM to fit the data. We therefore provide fur-
ther evidence that the two-phase technique that PNrule uses
is doing something new and different, and perhaps such a
technique could be wrapped around an SVM.

Conclusions and Future Work
We have provided a framework and yielded new insights
into what is accomplished when support vector machines are
used to optimize F-measure on a dataset. We have also pro-
vided new theoretical evidence that heuristic techniques that
are popular within the data mining community are a worth-
while endeavor.

Future research directions include integrating feature se-
lection techniques in conjunction with SVMs to compete
further with PNrule, as well as looking more directly at how
to modify SVMs to optimize F-measure without the need for
adjusting parameters.
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