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Abstract1 

Reinforcement learning has become a widely used 
methodology for creating intelligent agents in a wide range 
of applications. However, its performance deteriorates in 
tasks with sparse feedback or lengthy inter-reinforcement 
times. This paper presents an extension that makes use of an 
advisory entity to provide additional feedback to the agent. 
The agent incorporates both the rewards provided by the 
environment and the advice to attain faster learning speed, 
and policies that are tuned towards the preferences of the 
advisor while still achieving the underlying task objective. 
The advice is converted to �tuning� or user rewards that, 
together with the task rewards, define a composite reward 
function that more accurately defines the advisor�s 
perception of the task. At the same time, the formation of 
erroneous loops due to incorrect user rewards is avoided 
using formal bounds on the user reward component. This 
approach is illustrated using a robot navigation task. 

Introduction 
In recent years, learning from reinforcements (Watkins 
1989 and Kaelbling, Littman, and Moore 1996) has 
received substantial attention as a mechanism for robots 
and other computer systems to learn tasks without external 
supervision. In this framework, the system learns from its 
interaction with the environment and a task-specific 
reward function that provides feedback about its 
performance at a given task. The agent typically receives 
reinforcement from the environment only after it achieves 
a particular goal or sub-goal. This intermittent and some-
times incomplete feedback makes learning from 
reinforcements slow. Feedback that is of a more 
continuous nature can make learning faster. For instance, if 
additional rewards are assigned to sub-goals instead of a 
single final reward, the task can be learned faster since 
sub-goals are often simpler to learn. However, it is 
generally non-trivial to construct reward functions that 
mirror the properties of every task. Often, the translation of 
a task into a single numerical function requires simplifica-
tions that might result in a control policy that does not 
correctly address the task. 
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     Another approach to improving the performance of 
reinforcement learning algorithms is the incorporation of 
external advice. In many practical task domains there 
exists an external advisor, be it a human expert, a software 
agent or a control system, that is at least partially know-
ledgeable of the task to be learned. Such an advisor could 
aid the agent in learning the optimal control policy, as 
illustrated in Figure 1. The learning agent derives its 
control policy based not only on the reinforcement signals 
but also on the instructions provided by the advisor. 
     The advantages of learning from advice have been 
recognized almost 45 years ago by John McCarthy in his 
proposal of the advice taker (McCarthy 1958). (Clouse 
1996) applies advice from a training agent that, if taken, 
yields some reinforcement as determined by the training 
agent regardless of the true feedback from the 
environment. Similarly, (Lin 1992) suggests the use of 
advice in the form of a sequence of actions that yield some 
predetermined reinforcement. Placing the onus of 
computing such reinforcements on the advisor could 
produce unpredictable (and potentially incorrect) policies 
and, in the case of human advisors, be a tad inconvenient. 
(Maclin and Shavlik 1994) describes an approach to 
learning from reinforcements and advice that uses 
knowledge-based neural networks. Advice is applied as 
weight-changes, thereby producing a modified policy. 
     This paper presents an approach to learning from 
reinforcements and advice in which the set of external 

Environment 

Learning Agent 

Advisor 

State 

Action 

Instruction 

Reinforcement 

Figure 1.  Learning from reinforcements and advice 
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instructions is used to sculpt a reward function that more 
accurately represents the advisor�s view of the task, 
resulting in the learning of a potentially different control 
policy. Instructions serve two purposes�the acceleration 
of the learning process and the tuning of the reward 
function, which can alter the manner in which the task is 
solved, and possibly the task itself. 
     In this paper, a robot navigation task will be considered. 
Here, reinforcement learning and advice will be used to 
learn paths to target locations in a hybrid topological/ 
geometric path planning framework. Policies are learned in 
a connectivity graph where nodes represent significant 
locations, referred to as via-points, and connected nodes 
can be reached using geometric control primitives. 

Simple and Composite Reward Functions 
The construction of an appropriate reward function for a 
specific task is generally difficult. Often, the agent derives 
a large positive reward when it reaches an accepting state. 
In the example navigation task, a task reward function 
would assign a fixed positive reward to the goal states. A 
similar navigational task might also include a set of via-
points which the robot must avoid. This information can be 
captured by assigning negative rewards to these states. 
     More complex reward structures can be created by 
assigning rewards to intermediate states or state-action 
pairs. For instance, a particular navigation task might 
assign a positive reward to actions that represent a passage 
through a door or corridor. This provides the robot with a 
heuristic similar to �doors and corridors are a means of 
reaching distant goals.� Incorporating this information into 
the reward function can be seen as fine-tuning the policy. 
Negative rewards play a similar role. 
     Adding intermediate rewards and punishments to tune a 
policy is generally non-trivial and can easily result in the 
formation of a policy that does not perform the task 
correctly. One way of countering this involves determining 
upper and lower limits for the reward that may be applied 
to each state-action pair such that it does not lead to the 
formation of loops. However, some tasks require the 
formation of loops. For instance, the optimal policy for a 
robot that secures and patrols a building and reports when 
it detects a burglar would involve repeatedly cycling 
through the rooms of the building. It would therefore seem 
appropriate to differentiate between the task reward 
function and the �tuning� reward function, referred to 
within this text as the user reward function. These two 
components together define the reward function, where the 
task reward function is fixed a priori while an external 
advisor can define the user reward function. Throughout 
learning, the system ensures that cycles are not created due 
to modified user rewards. 

The Task of Navigation 
Composite rewards are used to learn the sample task of 
mobile robot navigation. It is important to note that while 

this paper develops and applies the technique of learning 
from reinforcements and advice in the context of naviga-
tion, it is also applicable to tasks that may be correctly 
described by reward functions. 
     The task assigned to the mobile robot is to learn to 
optimally navigate to a specific target. The environment 
consists of a set V of via-points on a set W of maps, linked 
together through a subset of V representing the linkage via-
points. Each map is a 50×50 grid of square cells1. Figure 2 
shows a sample environment consisting of four maps or 
100×100 cells. The via-points are linked together to create 
a connectivity graph that identifies valid paths. 
     Actions are specified as instances of a geometric 
motion controller with a particular goal. Goal specifica-
tions here consist of subsets of via-points representing 
absolute locations or locations of recognizable visual 
features. These actions directly handle the continuous 
geometric space by computing a path to one of the given 
goal locations, if such a path exists. 
     The abstract state space S of the learning agent is the set 
of via-points V. The maximum number of controllers in 
this state space is 2|S|�1, as the set of goals G for each 
controller can include any combination of the |S| states.              
 The number of controllers can be reduced to |S| by 
restricting the goal of each controller to a single via-point. 
This set of controllers represents the action space A. 
 
                                                 
1 The choice of a 50×50 grid is related to the use of harmonic potential-
based motion controllers (Connolly and Grupen 1992, Connolly and 
Grupen 1996) to traverse via-points. 

Figure 2.  Representation of a sample environment 
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     The target of a specific navigation task can be a 
particular via-point in V or a visual feature from the set of 
recognizable visual features F. The size of the set F and 
the complexity of the visual features depend on the 
capability of the robot�s camera and image processing 
modules. Targets represented by via-points are directly 
reachable by at least one controller. However, controllers 
are only applicable from a limited number of states. 
Targets represented by visual features are reachable 
through their closest via-points. When the robot detects a 
visual feature at a particular via-point, it stores the via-
point�feature pair in the model for future reference. 

Learning from Reinforcements and Advice 
The steps involved in taking advice from external entities 
were defined (Hayes-Roth, Klahr and Mostow 1980) as: 

1. Request the advice, 
2. Convert the advice to an internal representation, 
3. Convert the advice into a usable form, 
4. Integrate the reformulated advice into the agent�s 

current knowledge base, and 
5. Judge the value of the advice. 

 The first step decides what entity initiates the provision 
of advice. This paper assumes that the advisor initiates the 
provision of advice. This assumption is based on 
convenience for human advisors. 
 Often, instructions are provided in a form that is 
comprehensible to only the advisor (typically a human) 
and requires the reformulations made in steps 2 and 3. In 
the example presented here, the advice itself is in the form 
of states and state-action pairs. A recommendation of the 
state-action pair (s, a) leads to a preference for action a in 
state s. A recommendation of the state s leads to a 
preference for the path of state-action pairs starting at the 
current state and ending at s. The set of recommended 
states and state-action pairs is mapped onto a numerical 
function, ℵ→∪×× )(: FVASbias . If ns represents the total 
number of actions available at state s and ( )FVT ∪∈  
represents the task, bias is defined as: 

     









←),( asbiasT

 
 This definition of the bias function ensures that the 
numerical bias applied to each state-action pair is zero if 
all ns actions at state s are recommended equally often. The 
notion behind this construction is that an advisor that 
recommends all possible actions at a state is most likely 
unaware of the true best action(s). 
 Step 4 varies with the learning approach and internal 
representation scheme used. In this work, the bias function 
is transformed into the user reward component ),(, asr Tυ of 
the composite reward function. This transformation is 
defined as: 

     









=),(, asr Tυ

 
 Here, *ω  and *ω  are weighting functions. Their purpose 
is to vary the applied user reward with the user bias. For 
example, consider the following instances of 1f  and *ω : 

**
1 ),,,( ωω kTasf =      and      

x
xx
+

=
1

)(*ω  

 The value of the weighting function *ω  increases with 
the user bias towards an asymptotic value of one. If the 
user bias is positive, the applied user reward 1f  would be 
in the range [ )kk ,2 . 
 Finally, in step 5, the agent must analyze how the 
external advice has altered its performance, and 
accordingly retain, alter or dispose of it. A typical example 
is the avoidance of erroneous loops. In the work presented 
here, analytic limits on the user rewards are derived to 
avoid such misleading advice.  

The User Reward Function 
The user reward component associated with a particular 
state-action pair is directly related to the bias function. The 
sign of the bias indicates if the state-action pair has been 
recommended or discouraged, while the magnitude indi-
cates how often the state-action pair has been recommend-
ed or discouraged. 

Upper Bound for User Rewards 
An important decision is the numerical value of the user 
reward. To preserve the task and speed up learning, it has 
to be ensured that the value is not so high as to lead to the 
formation of self-sustaining loops. Figure 3 illustrates such 
a case. The following analysis assumes a task reward 
function with a single final task reward and no 
intermediate rewards or punishments. It further assumes 
that the action selection mechanism is deterministic and 
based on the Q-value function, where ),( asQ  represents 
the value of a state-action pair as the expected sum of 
discounted future rewards if action a is taken in state s and 
the optimal policy is followed afterwards (Watkins 1989). 
However, the results also apply to probabilistic models. 
     State

Bs is closer to the task goal T than As and has a 
higher value. The Q-value of the state-action pair ),( As

B as  

1),( −+ sT nasbias  If a is the recommended action, 
    1),( −asbiasT  If a is an alternative action, 
       ),( asbiasT  Otherwise. 

( ))),((,,, *
1 asbiasTasf Tω  If ),( asbiasT  is positive, 
( ))),((,,, *2 asbiasTasf Tω  If ),( asbiasT  is negative, 

                     0 Otherwise. 

Tr ,υ

As  

Bs  

rRn ++1γ

Rnγ  

Figure 3.  A simple loop. 
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after convergence is γ ),( Bs
AT asQ , where γ  is the discount 

fac-tor and the notation ta  represents an action that leads 
to state t. A loop is formed if this value is larger than the 
value of state sB. To ensure that no loop forms, the 
following inequality must hold: 

γ ( ) RrR n
T

n γγ υ <++
,

1  

     Simplifying this inequality and solving for Tr ,υ results in: 

( )2
, 1 γυ −<Tr 1−nγ R  

     This upper bound for the user reward is correct under 
the assumption that no other state-action pair receives a 
reward. In general, both the task and user reward 
components may have positive and negative intermediate 
reward assignments. In this more general case, an upper 
bound for the user reward can be can be derived as12: 

)1(),(, γυ −<asr T ),(),( , asrasQ TT τ−  

     This limit is used to judge the advice in order to prevent 
the formation of spurious loops and thus to preserve the 
original task objective. 

Lower Bound for User Rewards 
Consider a value function that is strictly increasing. 
Negative rewards have the effect of reducing the values of 
the predecessor states. Certain assignments of negative 
rewards can invalidate this property. For example, any 
cycle of states can be made to form a loop by assigning 
sufficiently large negative rewards to all actions that leave 
the cycle. If there are no rewards within the loop, the 
values associated with the state-action pairs that form the 
loop decay to zero. If there are negative rewards within the 
loop, the values of the corresponding state-action pairs 
decay to a fixed negative value that is a function of the 
negative rewards and the discount rate. However, if every 
state has at least one action that is assigned a non-negative 
reward, then the values of state-action pairs in the loop 
decay to zero. A lower bound for user rewards can 
therefore be computed as the value that causes the value of 
the best action to become zero. When the user reward 
drops below this limit, the corresponding values become 
zero or less, and (potentially) lead to the formation of 
loops. In the presence of intermediate task rewards, a 
lower bound for the user reward is: 

),(),(max),( ,, asrbsQasr TTAbT τυ −−>
∈

 

The Learning Algorithm 
An algorithm for learning from reinforcement and advice 
is shown in Table 1. It learns an optimal control policy for 
a task T. 
     The algorithm makes dynamic programming updates on 
the Q-value and user reward functions. The Q-value of 
each state-action pair ),( tas depends on the probability that 
                                                 
2 A detailed derivation of this bound can be found in (Papudesi 2002). 

action ta  leads to state t. The correct value of this 
probability, ),|( tastP , is discovered as the agent explores 
the state space. An incremental user reward update scheme 
is essential for oscillation-free convergence of the user 
reward function (Papudesi 2002). 

Experimental Results 
This section presents the application of the LEARN-WITH-
USER-REWARDS algorithm. The quadruple of user reward 
transformation functions used to obtain these results are: 

**
1 ),,,( ωω =Tasf ( )1( γ− )),(),( , asrasQ TT τ− , 

( ,max),,,( **2 ωω =Tasf )),(),(max ,
}{

asrbsQ TT
aAb t τ−−

−∈
, 

x
xx
+

=
1

)(*ω  and  
10

)(*
xx =ω

 
 The weighting function *ω  for positive user biases tends 
towards one as the user bias increases. On the other hand, 

*ω  causes the user reward to decrease by 0.1 with each 
recommendation of a different state-action pair. The user 
reward functions 1f  and 2f  enforce the upper and lower 
bounds to prevent the formation of loops. 
     Figure 4 shows the different paths taken by the agent. 
The initial and final via points are represented by the circle 
and cross, respectively. Without any external advice, the 
agent takes the shortest path to the target which is path (a). 
When the state-action pair ),( tas  (marked as 1 in the 
figure) is recommended by the advisor, path (b) is 
preferred, as a result of the newly introduced user rewards. 
 The prevention of loops is shown by issuing a second 
instruction that recommends the state-action pair ),( sat , 
marked as 2 in Figure 4. The agent now takes path (c) and 
avoids the formation of the expected loop. Figures 5 and 6 

Table 1.  Learning from reinforcement and advice 
 
LEARN-WITH-USER-REWARDS (task T): 
 Initialize: 
  i ← 0 
  For each state-action pair ),( tas , do ),(,

ti
T asrυ  ← 0 

 Repeat forever: 
  1+← ii  
  For each state-action pair ),( tas , do: 
  1. Determine the composite reward ),( t

T asr : 
   a. Compute ),(,

t
T asrυ  according to ),( t

T asbias  
   b. ( )),(),(),(),( 1

,,
1

,,
ti

T
t

T
ti

T
ti

T asrasrasrasr −− −+← υυυυυ α  
   c. ),(),(),( ,,

ti
T

t
T

t
T asrasrasr υτ +←  

  2. Compute the components of ),( t
T asQ : 

   a. +← ),(),( t
T

t
succ asrasδ γ ( )),(maxarg, btQtQ T

Ab
T

∈
 

   b. γδ ←),( t
fail as ),( t

T asQ  
  3. ),|(),( tt

T astPasQ ← ),( t
succ asδ  

      ( )),|(1 tastP−+ ),( t
fail asδ  
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illustrate the changes in the user reward and Q-value 
functions due to the two instructions. 
 Advice intended to tune the policy may be used to 
specify the preferred path to a via-point. However, the 
upper and lower bounds on the user rewards prevents 
advice from changing the task itself. Experiments to this 
effect were successfully performed. 
 The learning process is generally accelerated by the 
provision of advice, the exception being advice that is 
intended to modify or tune the policy. The actual speed-up 
in the learning process is derived in (Papudesi 2002). 

Conclusion 
The results presented in this paper illustrate the potential of 
learning from reinforcement and advice using user 
rewards. By incorporating advice into an additional reward 
function, its independence from the task is ensured. As a 
result, the advisor is provided with a high degree of 
freedom in shaping the control policy, but cannot prevent 
the achievement of the overall task. Furthermore, 
strategically provided advice can accelerate the learning 
process, while incorrect advice is ultimately ignored, as its 
effects diminish over time. 
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Figure 5.  Changes in the user reward function due to advice. 
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Figure 6.  Changes in the Q-value function due to advice. 
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    Figure 4.  Paths taken by the agent with and without advice. 
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