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Abstract

Association mining explores algorithms capable of de-
tecting frequently co-occurring items in transactions. A
transaction can be identified with a market basket—a
list of items a customer pays for at the checkout desk.
In this paper, we explore a framework for the detec-
tion of changes in the buying patterns, as affected by
fashion, season, or the introduction of a new product.
We present several versions of our algorithm and ex-
perimentally examine their behaviors in domains with
gradually changing domains.

Introduction
Let a database consist of transactions T1, T2, . . . , TN such
that ∀i, Ti ⊆ I , where I is a set of items. Let an itemset,
X , be defined as a group of items such that ∃i,X ⊆ Ti.
A support of itemset X is the number of transactions, Ti,
containing this itemset. Suppose a user of an association-
mining algorithm submits a minimum support, θ. A popular
research issue is how to detect all itemsets whose support is
at least equal to θ. We will call them high-support itemsets.

In a classical application, the transactions are identified
with lists of items a customer pays for at the checkout desk
(market baskets). A supermarket then places associated
items on neighboring shelves, advertises them in the same
catalogues, and avoids discounts on more than one mem-
ber of the same itemset. However, the paradigm extends
well beyond the realm of supermarket data. In the Inter-
net environment, a transaction may consist of hyperlinks
pointing to a web page, and high-support itemsets then sig-
nal associations among web sites (Noel, Raghavan, & Chu
2001). In a medical application, each transaction can sum-
marize a patient’s history, and association mining may seek
co-occurring symptoms or ailments.

Here, we are interested in domains where the list of high-
support itemsets is subject to changes in time, for instance as
a result of fashion or seasonal impacts (Cheung & Han 1996;
Pitkow 1997; Raghavan & Hafez 2000). We will assume the
framework of block evolution (Ganti, Gehrke, & Ramakr-
ishnan 2000) where a block of market baskets is periodi-
cally added to an existing database as individual stores re-
port their daily business. The task is to adapt to this change
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and to measure the accuracy of this adaptation. To this end,
we recently developed a novel algorithm (Rozsypal & Ku-
bat 2002) and investigated its behavior in domains where
the change is abrupt. However, this may be too much of
a simplification. More often than not, the “Winter” buying
patterns only gradually replace the “Fall” patterns. This is
the scenario we address. Somewhat surprisingly, it turns out
that, under this circumstance, different operators for change
detection and for knowledge update are useful. We report a
series of experiments illustrating the point.

Related Work
The basic task of association mining is to find all item-
sets with support at least equal to a user-set minimum, θ%.
The seminal paper by Agrawal et al. (Agrawal, Imielin-
ski, & Swami 1993) introduces the algorithm Apriori that
recursively creates itemsets of size k from those of size
k − 1. Since the algorithm is known to be slow when ap-
plied to large real-world databases, most of the research has
focused on how to expedite the attendant computations—
see, e.g., (Aggarwal & Yu 2002; Chen, Park, & Yu 1996;
Nag, Deshpande, & DeWitt 1999). Some scientists have ad-
dressed some practical aspects of realistic applications, such
as the need to handle generalized items, synonyms, and sim-
ilarities (Han & Fu 1999). Also techniques for direct cou-
pling of association mining to relational database manage-
ment systems have been studied. Yet another research strand
has focused on processing specific types of queries.

In our own work, we have been concerned with the fact
that knowledge can vary in time. While some itemsets have
high support throughout the entire database, others are im-
portant only during specific time intervals. Let us introduce
the informal notion of a context, marked by “local” high-
support itemsets that are less frequent elsewhere. The au-
thors of (Cheung & Han 1996) describe an incremental tech-
nique that can be used in such environments—after the ar-
rival of a block of market baskets, the list of high-support
itemsets is updated. However, the mechanism is slow to re-
act to big changes in context and is essentially incapable of
detecting the changes with reasonable precision. The ap-
proach advocated by (Raghavan & Hafez 2000) goes one
step further: each block of time-ordered market baskets is
analyzed using the results from previous blocks. Although
the approach has been shown to detect locally important
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itemsets, its weakness is that it expects the user to specify
the borders of the individual contexts—performance plum-
mets if the specification is imprecise. Other systems of this
kind were independently developed by (Brin et al. 1997)
and (Ramaswamy, Mahajan, & Silberschatz 1998).

In the research reported here, we take inspiration from the
concept learning algorithms from the FLORA-family (Ku-
bat 1989; Widmer & Kubat 1996) that apply induction tech-
niques only to a “window” of time-ordered examples. Every
now and then, new examples are added and older ones get
deleted. Each time the window contents change, the current
description of the induced concept is updated so as to re-
flect the new circumstances. Practical implementations dif-
fer in how they adjust the window size and how they update
the concept description (Harries, Sammut, & Horn 1998;
Matwin & Kubat 1997). Similar idea was independently
developed for the needs of data mining by (Ganti, Gehrke,
& Ramakrishnan 2000) who determine the size of the win-
dow using their own mathematical model for measuring dif-
ferences between datasets (Ganti, Gehrke, & Ramakrishnan
1999). In our recent paper (Rozsypal & Kubat 2002), we re-
ported an alternative approach (more closely following the
ideas behind FLORA) and demonstrated its feasibility in
simple domains with abrupt context changes. Later, we car-
ried out a series of experiments with the somewhat more
realistic domains where the set of high-support itemsets was
changing only gradually. Surprisingly, the results and con-
clusions differed from those presented in (Rozsypal & Kubat
2002) to an extent that merits a separate paper.

Association Mining with a Moving Window
The idea of a window that moves along a stream of market
baskets (arriving in blocks) is illustrated by Figure 1. We
assume that the context changes after several blocks. If the
knowledge is updated after each block, the system can at
each moment return the list of itemsets that currently have
high-support. Our algorithm uses heuristics to detect a sig-
nificant change in the environment. If such change is de-
tected, the system decides how many outdated blocks should
be removed from the window. Each change in the window
then triggers an update of the list of itemsets. Heuristics are
used to keep the window large during periods of stability and
to narrow it when a context change occurs. The minimum
support, θMIN , remains fixed throughout the entire experi-
mental run. If the user specifies some θ > θMIN , it is easy
to choose from the list of high-support itemsets those that
satisfy θ.

Detecting the change by simple counting
Let LW denote the list of itemsets with high-support in the
window and let LB denote the list of itemsets with high-
support in a new block. Itemsets from LB that are not found
in LW are called “emerged” itemsets. As already men-
tioned, a series of blocks is presented to the system, one
by one. The number of emerged itemsets in the i-th block
is denoted by NEi (number of emerged). Conversely, high-
support itemsets fromLW that are not found inLB are “van-
ished” itemsets and the number of vanished itemsets in the
i-th block is denoted by NVi (number of vanished).

 

window stream of market baskets

context boundaries

high−support
itemsets

Figure 1: Association mining in time-varying domains. The
system can “see” only the recent market baskets visible
through the window.

In stable environments, NEi and NVi behave as ran-
dom numbers drawn from normal distributions. To detect a
change, the system has to determine whether the numbers of
emerged and vanished itemsets in the new block differ sig-
nificantly from what should be expected based on the under-
lying distribution. To merge the two distributions (emerged
and vanished itemsets), our algorithm works with their geo-
metric means Gi =

√
NEi ×NVi. The value of Gnew for

the newly added block is compared to the estimated param-
eters of Gi’s distribution. The significance of the difference
is evaluated using the one-tail t-test. The index i runs from 1
throughM , whereM is the number of blocks in the window.

Detecting the change by multivariate binomial
distribution
Let fI denote the relative frequency of itemset I . The proba-
bility that I is found in N market baskets is calculated from
the binomial distribution that can be, for sufficiently large
samples, approximated by the normal distribution with the

mean µI = fI and standard deviation σI =
√

fI(1−fI)
n

. Let
fIW and fIB denote the relative frequencies of itemset I in
the lists LW and LB , respectively; and let nW and nB de-
note the numbers of market baskets in these two lists. If nW

and nB are large, then dI = fIW−fIB can be approximated
by the normal distribution with the following parameters.

µI = fIW − fIB , (1)

sI =

√

fIW (1− fIW )

nW

+
fIB(1− fIB)

nB

(2)

If LW and LB come from the same source, then the next
metric follows the normal distribution, N(0, 1), and we can
use confidence intervals to decide whether the differences
between the two frequencies are statistically significant:

zI =
fIW − fIB

sI

(3)

Under the simplifying assumption that the occurrence
of individual itemsets is pairwise independent, the last re-
sult can be generalized to the multiple-itemsets scenario,
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where the distribution is characterized by the zk-statistic
(also called Penrose distance) defined by the following for-
mula, where the index i refers to individual itemsets:

zk =

k
∑

i=1

(fiW − fiB)2

fiW (1−fiW )
nW

+ fiB(1−fiB)
nB

(4)

Note that this is, in effect, the sum of mean values divided
by variances. The zk-statistic has been shown to follow a χ2

distribution with k degrees of freedom. This means that, for
a set of k high-support itemsets, the fact that zk satisfies the
expression zk > χ2

0.05;k can be interpreted as evidence of a
difference between the contexts that underly LW and LB .

Controlling the window size and updating the list
of itemsets
If a context change is suspected, then the window is reduced
by the removal of older, less relevant, blocks. We control the
window size by the following heuristics:

1. Harsh operator. If a change is suspected, re-
move all blocks except for the latest block.

2. Reluctant operator. If a change is suspected,
do nothing. Only if the change is detected in two con-
secutive blocks, remove all blocks except for the latest
two blocks.

3. Opportunistic operator. If a change is sus-
pected, remove 50% of the oldest blocks. If the change
is confirmed after the next block addition, remove all
the remaining blocks except for the latest two blocks.

Experiments
Experimental Setting
The technique has been tested on synthetic data produced
by our own data generator. In the first step, it picks a ran-
dom integer, N , to define the size of a market basket. Then,
it generates N random integers to become the items in the
basket. Random numbers are obtained from normal distri-
butions with user-set parameters. Note that the experimenter
can directly calculate the theoretical support of any itemset
by taking the product of the relative frequencies of the items
in the itemset.

Suppose the system returns a list of itemsets that have
high support in the window. Let the theoretical support be
denoted by fiT and let fiR denote the real support of the i-th
itemset as measured by the association mining program. For
a list of k itemsets, the error committed by the program is
calculated by the following equation:

error =

√

√

√

√

1

k

k
∑

i=1

(fiT − fiR)2 (5)

The market baskets arrive at the system in blocks, each
block consisting of 1,000 market baskets. We experimented
with domains where pairs of contexts alternate: for 20
blocks, all market baskets come from the first context; for
the next 20 blocks, the first context is gradually replaced

with the second context; for the next 20 blocks, all mar-
ket baskets come from the second context; for the next 20
blocks, the second context is gradually replaced with the
first context; etc. By “gradual replacement” we mean that
one block contains 5% market baskets from the new context
and 95% from the old context; the next block will contain
10% market baskets from the new context and 90% from the
old context; and so on, until all market baskets come from
the new context.

Let fi1 and fi2 be the frequency of the i-th itemset in the
first and second context, respectively; and let n1 and n2 be
the respective numbers of market baskets in the two con-
texts. The difference between the two contexts is quantified
by the zk-statistics (Penrose distance):

d =
k

∑

i=1

(fi1 − fi2)
2

fi1(1−fi1)
n1

+ fi2(1−fi2)
n2

(6)

We considered two domains: one with a relatively big dif-
ference between neighboring context (d = 252) and one
with a relatively small difference (d = 54). For each of
the domains, we experimented with two different heuris-
tics for context change detection (“simple counting” and
“multivariate binomial”) and three different operators con-
trolling window size (harsh, opportunistic, and
reluctant). For each domain, we generated 10 random
sequences of market baskets (taken from the alternating con-
texts as described above) and ran the algorithm on each of
them. The results reported in the following subsection are
obtained as average values from these 10 runs.

Experimental Results and Discussion
The results are summarized in Figure 2, where the horizontal
axis represents the number of blocks presented to the sys-
tem and the vertical axis represents the error as calculated
by Equation 5. The upper row contains charts for the do-
main with the big difference between neighboring contexts
and the lower row contains charts for the domain with the
small difference between neighboring contexts. Each graph
contains two curves: the dotted one plots the case where
the change is detected by the simple counting (SC), and
the solid curve plots the case where the multivariate bino-
mial (MB) distribution is used. For each domain, we used
three different operators to adjust the window size: harsh,
reluctant, and opportunistic.

For any window-size operator, the error in the periods of
change (between the 20th and 40th blocks, then between the
60th and 80th blocks, etc.) is lower when the SC change
detector is used, no matter whether the difference between
neighboring contexts is big or small. The MB detector out-
performs SC only in relatively stable periods. Since the MB
operator was better than SC in domains with abrupt change
as observed in (Rozsypal & Kubat 2002), we have to ask
about the cause of this phenomenon.

To provide some insight, Figure 3 shows how the win-
dow size evolves in time. The reader can see that the SC
detector is nearly always better at recognizing a change at a
very early stage—the window immediately shrinks. On the
other hand, MB outperforms SC in stable periods because
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Figure 2: Alternating contexts. The dotted curves represent the error rate for the “simple count” heuristic, the solid curves
represent the error rate for the “multivariate binomial” heuristic.
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Figure 3: The changing size of the window in the two domains, as affected by the three window-size heuristics.
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it helps remove the remnants of the transition period from
a stable period. It appears that the MB detector sometimes
treats the transition period as a specific sort of context and
tends to ignore the change until it really becomes conspicu-
ous. This is particularly pronounced in the small-difference
change (right column), where the MB detector appears to ig-
nore the change till the very last moment.

Among the window-size operators, no winner can be de-
termined as long as the difference between neighboring con-
texts is big (only the harsh operator appears to have a slight
edge). When the change is small, the opportunistic
operator leads to more stable error with the SC detector, and
also the window size changes less dramatically. The SC de-
tector thus seems to be more sensitive to changes than the MB
detector. Inevitably, this makes SC more sensitive to false
alarms, which is why its behavior was less satisfactory in
the experiments from (Rozsypal & Kubat 2002).

Conclusions
The paper reports our experience with FLORA-based asso-
ciation mining in domains with gradual changes. We inves-
tigated the behavior of two alternative operators for change
detection (SC and MB) and the behavior of three operators
for window-size reduction (harsh, opportunistic,
and reluctant).

Contrary to the results from (Rozsypal & Kubat 2002),
the change detector SC seems to be more appropriate here
than MB because it reacts faster to changes. This, however,
can be detrimental in noisy domains because the noise can
be misinterpreted for a change. As for window-size con-
trol, all of the three operators led to about the same error
in itemset detection. However, the opportunistic op-
erator appears to have somewhat more stable behavior than
the other two operators, especially in domains with a small
change between neighboring contexts.
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