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Abstract

The standard formulation of association rules is suitable for
describing patterns found in a given data set. A number of dif-
ficulties arise when the standard rules are used to infer about
novel instances not included in the original data. In previous
work we proposed an alternative formulation calledinterval
association rules which is more appropriate for the task of
inference, and developed algorithms and pruning strategies
for generating interval rules. In this paper we present some
theoretical and experimental analyses demonstrating the dif-
ferences between the two formulations, and show how each
of the two approaches can be beneficial under different cir-
cumstances.

Standard Association Rules
One of the active research areas in data mining and knowl-
edge discovery deals with the construction and management
of association rules. We will call the formulation typified
in (Agrawal, Imielinski, & Swami 1993) thestandard for-
mulation. Astandard association rule is a rule of the form

X ⇒ Y,

which says that ifX is true of an instance in a database∆, so
is Y true of the same instance, with a certain level of signifi-
cance as measured by two indicators,support andcoverage:

[support] proportion ofXY s in∆;

[coverage] proportion ofY s amongXs in∆.

(Note that “coverage” is typically called “confidence” in the
standard association rule literature. However, we will be
using “confidence” to denote the level of certainty associ-
ated with an interval derived from a statistical procedure.To
avoid confusion, we will refer to the above measure of rule
accuracy as thecoverage of the rule, and restrict the use of
the word “confidence” to terms such as “the confidence in-
terval” as are traditionally used in statistics.)

The goal of standard association rule mining is to output
all rules whose support and coverage are respectively above
some given support and coverage thresholds. These rules
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encapsulate the relational associations between selectedat-
tributes in the database, for instance,

coke⇒ potato chips: 0.02 support; 0.70 coverage (∗1)

denotes that in our database 70% of the people who buy coke
also buy potato chips, and these buyers constitute 2% of the
database. This rule signifies a positive (directional) relation-
ship between buyers of coke and potato chips.

We would like to go from an observation obtained from
a data sample, such as (∗1), to an inference rule about the
population at large, such as

“buying coke is a good predictor for buying potato chips.”

A number of difficulties arise if we are to take association
rules, as typically formulated, to be rules of inference. These
difficulties stem from a fundamental difference in how these
rules are conceived. We will examine this distinction and
some of its implications in the following.

The Difference between
Description and Inference

There are many reasons to abstract rules of association from
a data set. For example, we may wish to extract an inten-
sional description of the data set, or we may want to use the
insights provided by the rules obtained from the data set as a
guide to similar occurrences in the world at large. We argue
that standard association rules are descriptive, tailoredfor
the first task, while interval association rules are inferential,
intended for the second task.

For the first task mentioned above, the standard formu-
lation of association rules is appropriate for the kind of in-
formation we seek. Standard association rules present a de-
scription of the patterns found among the attributes, as man-
ifested by the instances that belong to theexisting data set.
This is useful when we need a succinct summary of the data
set in lieu of a listing of all the instances. However, these
rules may not be directly applicable to describe patterns in
the instances that are not part of the given data set. This
latter usage is instead part of the second task.

For this second task we would like the rules we derive
from the given data set to be indicative of the patterns that
can be found in a much larger domain. The target domain
may be the list ofall potential transactions, for example, in-
cluding both those performed by current customers who did
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not shop on the day we collected the data, as well as those
that will be performed by customers who have not shopped
here yet but one day (in the not too distant future) will. The
target population thus is not only much larger than the given
data set, but also is typically of infinite cardinality. Exam-
ining the whole population is out of the question in many
cases of interest, both because of the size of the population,
and also because many members of the population, such as
those that exist in the future, cannot be available for exami-
nation at any cost.

This is not to suggest that the descriptive task is trivial. In
general discovering a pattern that characterizes unstructured
data is as difficult a task as making predictions about unseen
instances. We are merely pointing out that the two problems
are distinct, with different issues that need to be addressed.
For instance, consider the notion of “interestingness” or “un-
expectedness”. A rule that says

being in kindergarten⇒ less than 10 years old

is likely to be highly accurate, but not very surprising. The
value of this rule thus would be low in a descriptive context,
from a knowledge discovery perspective, while its utility as
a predictive rule in an inferential context may very well be
much higher.

Making Inferences with Association Rules
The distinction between description and inference is a point
worth emphasizing as often the implicit goal of an associa-
tion rule mining session is inferential rather than descriptive.
We look for rules that are expected to hold in a population
that typically extends into the inaccessible (for the moment)
future, and in any case is far greater than the sample data set
we gathered the rules from.

A number of considerations make it unattractive to adopt
standard association rules as inference rules mechanically.
The former rules are abstracted from a given sample data
set, while the latter rules are to be applicable to a larger pop-
ulation.

From Sample to Population
First, we need to take into account variations inherent in the
process of sampling. Although the larger the sample size,
the higher the proportion of samples that resemble the popu-
lation, any given sample of any given size is unlikely to have
exactly the same characteristics as the population. Givingan
exact point value for the rule support and coverage parame-
ters can easily convey an illusion of certainty of the findings.

Note that for the purpose of statistical inference, the sam-
ple relevant to a ruleX ⇒ Y is not the whole given data set
∆, but only that portion of∆ containingX. Thus, even from
a single given data set, different rules may require the con-
sideration of different samples (portions of∆). In addition,
the central limit theorem is based on theabsolute number of
instances in a sample, not the proportion it constitutes of the
parent population (which is typically infinite).

This cannot be easily modelled in the standard associa-
tion rule framework. Standard rules of the same coverage
are considered to be of equal standing unless we also take

note of their respective sample sizes. The support of a rule
X ⇒ Y is construed as theproportion of XY s in ∆. This
proportion is irrelevant here. What we need is theabsolute
number of instances ofX in order to establish the degree of
certainty, or statistical confidence, concerning the inference
from the rule coverage in a sample to the rule coverage in
the parent population.

Evaluation
Mining standard association rules is a clearly defined task.
The objective there is to generate all rules of the form
X ⇒ Y which are above some given support and cover-
age thresholds. The problem of evaluation and validation
is thus reduced to one of correctness and efficiency. Cor-
rectness in this case is unambiguous. Any algorithm is re-
quired to returnthe set of rules meeting the given criteria.
Since there is no difference between the set of rules returned
by one algorithm and the next, much of the research effort
in this area has been understandably focused on efficiency
issues, aiming to overcome the challenges imposed by the
tremendous size of the data sets involved and the potential
number of rules that can be generated. (Mannila, Toivonen,
& Verkamo 1994; Savasere, Omiecinski, & Navathe 1995;
Agrawalet al. 1996; Zakiet al. 1997, for example)

In those cases where variations to the standard frame-
work are investigated, the refinements are mostly restricted
to imposing additional constraints on top of the support and
coverage criteria to pick out the more interesting and rel-
evant rules from the huge pool of acceptable rules. Alter-
native measures to determine the fitness of a rule include,
for instance, correlation, gain, Gini, Laplace,χ2, lift, and
conviction. These metrics provide grounds to pre- or post-
prune the standard association rules in order to arrive at a
smaller set of rules. (Silberschatz & Tuzhilin 1996; Brin,
Motwani, & Silverstein 1997; Bayardo & Agrawal 1999;
Liu, Hsu, & Ma 1999, for example).

The several measures that have been used in the standard
association rule literature are not entirely satisfactoryas in-
dicators of the quality of an inference rule.Correctness is
not as well defined in the case of inference. Efficiency and
thequantity of rules are important, but they should be sup-
plementary to a measure of the substance of the rules.Inter-
estingness, as we have already noted, is relevant for descrip-
tion but not as much of a concern for inference. In this paper
we employ a measure from first principles, namely, compar-
ing rules known to exist (probabilistically) in the parent pop-
ulation to rules obtained from a data set sampled from this
population.

Interval Association Rules
The task of deriving predictive rules can be construed as
a statistical inference problem. The parent population (all
potential transactions) is typically very large if not infinite,
and the data set we have at hand (transactions recorded on a
given day) constitutes a sample drawn from this population.
The problem then can be cast as the problem of projecting
the associations found in the sample to justifiably probable
associations in the parent population.
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In (Teng & Hewett 2002) we advanced the interval associ-
ation rule framework as an approach to deriving associations
that is grounded in the theory of statistical inference. Instead
of point-based rules that have to satisfy some minimum cov-
erage and support in the given data set, association coverage
is given in terms of an interval, encompassing a range of
values in which we can claim the true rule coverage in the
parent population falls with a certain level of confidence.

What sets our approach apart is that instead of using sta-
tistical measures as a descriptive summary of the character-
istics in the sample data set, or as a way to select a subset of
more relevant rules from the exhaustive set of standard as-
sociation rules, or as a handle to deal with numeric data, we
relate explicitly the rule coverage in the given sample data
to the rule coverage in the population

Perhaps the work that is closest in spirit to our approach is
that of (Suzuki 1998), where a production rule (a rule with a
single-atom consequent) is considered reliable if its general-
ity and accuracy measures are above certain constant thresh-
olds based on a statistical confidence interval. Our approach
can be regarded as a more general formulation with respect
to association rules. Confidence intervals are formally at-
tached to the rules, allowing for more informative ways of
rule selection and pruning.

Specification
Let us briefly summarize the formulation of interval associ-
ation rules. Details of the framework as well as algorithms
and pruning strategies pertaining to the computational as-
pects of interval rules can be found in (Teng & Hewett 2002).

Let A = {a1, . . . , am} be a set ofm binary attributes.
Let ∆ be a data set of transactions, each transaction being a
subset ofA. For a set of attributesX ⊆ A, let #(X) denote
the number of transactions containingX in the data set, that
is, #(X) = |S|, whereS = {δ ∈ ∆ : X ⊆ δ}. Similarly,
for Y ⊆ A andz ∈ A, let #(XY ) denote#(X ∪ Y ) and
#(Xz) denote#(X ∪ {z}).

An interval association rule is a rule of the form

X ⇒ Y [l, u] : 1 − α, (∗2)

whereX,Y ⊆ A, X ∩ Y = ∅, andl, u, andα are all real
numbers in the interval[0, 1]. The goal of our interval rule
mining exercise is to assemble an appropriate set of interval
association rules, such that for each rule of the form (∗2),
the proportion of transactions containingY s in those con-
taining Xs in the parent population is in the interval[l, u]
with confidence 1 − α.

Using the normal approximation to the binomial distribu-
tion, the interval association rule in (∗2) can be rewritten as

X ⇒ Y [p − e, p + e] : 1 − α, (∗3)

where (when#(X) > 0)

p =
#(XY )

#(X)
; e = zα

√

p (1 − p)

#(X)
.

In the abovezα is the (two-tailed)z-score determined from
the confidence parameter α. (For example, z0.05 is 1.96.)
Note that the value#(X) used in the calculation ofp and

e above isnot the size of the whole data set|∆|. Rather,
#(X) is the number of occurrences of the antecedent of the
rule in question.

For simplicity we will omit the confidence parameter 1 − α
from the rule specification in the following discussion.

When to Adopt Which Approach?
One might ask why we bother with the confidence interval
at all, even if it is backed by some interesting statistical the-
ory. This is especially true considering that the sample rule
coveragep is always included in the interval. What do we
gain by adopting the interval structure?

We argued that the standard approach is descriptive, while
the interval approach is inferential. In practice, however, the
standard approach has been widely used in many situations,
for both description and inference, with little appreciable
difficulty. Let us see why this is the case through an ex-
ample, and then we will see through another example why
in some other situations the standard approach is inadequate.

The Case for the Standard Approach
Consider the following rule.

r : x ⇒ y, wherePr(x) = 0.05 andPr(y | x) = 0.6.

That is, the true coverage of ruler in the population is 60%.
Now consider samples of size 10,000 drawn from this popu-
lation. We expect that in at least 92% of these samples (tak-
ing into account the variation in the numbers of bothx and
y) the coverage ofr is in the interval[0.5551, 0.6449]. De-
pending on the utility and the sensitivity of the application,
the width of this interval may not worry the user too much.
(Is it 56% or 61% that consumers who buy beach balls also
buy frisbees?) Thus, the sample rule coverage may be con-
sidered a practical approximation of the true population rule
coverage. This is especially true when the sample size in
question is large, which is bolstered in the standard associa-
tion rule framework by the combined effect of huge data sets
and a reasonably high support threshold.

The Case for the Interval Approach
While the standard approach suffices in many situations,
there are cases where the additional inferential power of in-
terval association rules is desirable. For example, instead
of beach balls and frisbees, we are considering yachts and
real estate. Association rules involving commodities thatare
relatively rarely purchased but of high stakes would be of
great utility. In addition, by taking into account the relevant
sample sizes, interval association rules are better able todis-
criminate between rules that are justified and rules that are
inconclusive. Let us illustrate with some experiments.

Experiments
Consider two rules

r1 : x ⇒ y, wherePr(x) = 0.005 and Pr(y | x) = 0.7;
r2 : a ⇒ b, wherePr(a) = 0.1 and Pr(b | a) = 0.6.

Suppose the user specified a minimum coverage threshold
p∗ of 0.7. That is, we would like to accept rules whose cov-
erage in thepopulation at large is at leastp∗, and reject all
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Figure 1: Percentage of acceptance of rulesr1 andr2 over
1000 runs, varying the minimum coverage threshold used by
Apriori (this parameter does not affect interval rules). We
would like to acceptr1 but rejectr2.

others. According to this threshold, we would like to be able
to acceptr1 but rejectr2. In other words, the ideal accep-
tance rates of the two rules are 100% and 0% respectively.

This scenario was evaluated experimentally. We consid-
ered sample data sets∆ of size 10,000, drawn randomly
from a population with the above distribution constraints for
the attributesx, y, a, andb. The interval approach was com-
pared to the standard approach using an algorithm such as
Apriori (Agrawal et al. 1996).

Given a hypothetical rule coverage p 

∗ , the 95% confi-
dence interval with respect to a sample size#(x) is p∗ ±

1.96
√

p∗(1 − p∗)/#(x). In the interval framework we re-
quired that ruler1 be accepted if its actual sample cover-
age (the ratio between#(xy) and#(x) in the sample∆)
was greater thanp∗ − 1.96

√

p∗(1 − p∗)/#(x), and ruler2

be accepted if its actual sample coverage was greater than
p∗ − 1.96

√

p 

∗ (1 − p 

∗ )/#(a). This gave us a 97.5% confi-
dence1 that the sample∆ has been drawn from a population
in which the true coverage of an accepted rule (eitherr1 or
r2) is at leastp∗ (0.7 in our experiments).

In the standard framework, without degrading the qualita-
tive performance, the minimum support threshold for Apri-
ori was held deliberately low at 0.01%. We successively
lowered the minimum coverage threshold for Apriori from
0.7 down to 0.4. The results over 1000 runs each are shown
in Figures 1 and 2.

197.5% corresponds to the area under the standard normal curve
in theone-tailed interval(−z, +∞).

Figure 1 shows the percentage of runs in which each of
the two rules was accepted. On the interval approach, rule
r1 was accepted 97.1% of the time, while ruler2 was never
accepted. For Apriori, with the minimum coverage thresh-
old set at 0.7, the acceptance rates of the two rules were
49.8% and 0% respectively.

We investigated the effect of lowering the minimum cov-
erage threshold. Figure 1 shows that the lower the thresh-
old, the more often Apriori acceptedboth r1 andr2. With a
threshold of 0.6, the acceptance rate ofr1 has risen to 93.1%,
but at the same timer2 was also accepted in 50.1% of the
runs. Lowering the threshold further, both rules were ac-
cepted most of the time, and in some casesr2 was accepted
even (slightly) more often thanr1.

These results are further broken down into four cases in
Figure 2, based on the combination of rules that were ac-
cepted in each run: (a) both rules were rejected; (b)r1 was
rejected andr2 accepted; (c)r1 was accepted andr2 re-
jected; and (d) both rules were accepted. The case of par-
ticular interest is shown in Figure 2(c), where the two rules
received their desirable respective treatments.

Interval rules achieved this desirable scenario 97.1% of
the time (in the remaining 2.9% both rules were rejected).
For Apriori, as we lowered the minimum coverage thresh-
old, the percentage of the desired outcome rose from 50.2%
to 76.8%, but then dropped eventually to 0%. This slack was
taken up in Figure 2(d), which shows a sharp rise in the per-
centage of runs in which both rules were accepted. In other
words, as we lowered the minimum coverage threshold for
Apriori, r1 was accepted more often, but at the expense of
also accepting the undesirabler2. Apriori lacks the mecha-
nism to discriminate between the circumstances of the two
rules.

Conclusion
We have presented some theoretical and experimental anal-
yses comparing the standard and interval approaches to as-
sociation rule mining. The standard formulation is geared
toward description, while the interval formulation is geared
toward inference. Under certain circumstances, the two for-
mulations behave similarly. However, there are cases in
which the additional inferential power of the interval frame-
work is beneficial.

The interval formulation can make finer distinctions be-
tween inequivalent scenarios that are treated indifferently
in the standard formulation, where the minimum coverage
threshold (let us put aside the minimum support criterion)
dictates that for all rules with the same coverage level, we
either accept them all or reject them all. The standard ap-
proach does not discriminate between the situation where
the sample size is small, in which case the sample rule cover-
age can be expected to have a large spread, and the situation
where the sample size is large, in which case the rule cov-
erage of samples drawn from an identical population would
be more closely clustered around the population mean.

Although we can of course approximate such differentia-
tion of rules in the standard framework by devising a good-
ness measure based on a heuristic combination of the sup-
port and coverage values, the interval formulation provides
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Figure 2: Percentage of occurrences of the four cases over 1000 runs: (a) both rules rejected; (b)r1 rejected andr2 accepted;
(c) r1 accepted andr2 rejected; (d) both rules accepted. Note that case (c) is the desired outcome.

a more principled basis for making normative choices based
on a formal statistical theory. The crux of the problem lies
in distinguishing between a rule that is justifiably acceptable
and one whose supporting evidence is inconclusive. The in-
terval formulation achieves this differentiation by taking into
account the inherent uncertainty associated with the task of
inferring the characteristics of a population from the charac-
teristics of a sample.
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