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Abstract 
The distribution of illnesses reported by emergency 
departments from hospitals in a region under surveillance is 
particularly informative for the early detection of epidemics.  
The most direct source of data for construction of such a 
distribution is the final diagnoses of patients being seen in 
the emergency departments, but the delay in their 
availability impinges on the requirement that detection be 
timely.  Free-text descriptions of patients’ symptoms, called 
triage diagnoses, and ICD-9 values that encode the 
symptoms are entered when patients are admitted and, 
consequently, are timelier sources of data.  An experiment 
to evaluate the accuracy of Bayesian classification of triage 
diagnoses into syndromes (i.e., illness categories) was 
performed, resulting in areas under the ROC curve (AUC) 
between .80 and .97 for the various syndromes.  The 
classification accuracies using triage diagnoses surpass the 
classification accuracies using ICD-9 codes reported by 
previous studies.  Triage diagnoses, therefore, are a more 
accurate source of data than ICD-9 codes for the early 
detection of epidemics. 

Introduction   
The early detection of epidemics (either naturally-occurring 
or as the result of bioterrorism) is of critical concern for 
public health surveillance systems (Wagner et al. 2001). 
Such a system relies upon the real-time collection and 
analysis of various types of data indicative of the state of 
health of the region under surveillance.  One type of data 
that is particularly informative for this task is the 
distribution of illnesses reported by emergency departments 
from region hospitals: unexplained deviations from the 
expected distribution may be evidence of an outbreak.  
Using such data, it has been shown that it is possible to 
detect an influenza outbreak earlier than with more 
traditional data (Tsui et al. 2001). 
 A distribution of illnesses could be most directly 
constructed from the final diagnoses of patients admitted to 
emergency departments.  However, the delay between a 
patient’s admission and the availability of the patient’s final 
diagnosis has been shown by one study to have a mean of 
7.5 hours and a maximum of 80.6 hours (Espino and 
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Wagner 2001), and by another study to have a mean of 6.3 
hours and a maximum of 14.5 hours (Ivanov et al. 2002). 
Information entered upon patient admission, therefore, 
would be a timelier source of data.  Such information 
includes a free-text description of the patient’s symptoms, 
called a triage diagnosis, which combines the patient’s 
description of symptoms with medical terminology added 
by the admitting nurse, and an ICD-9 (International 
Classification of Diseases, ninth revision) value that 
encodes the contents of the triage diagnosis.  Classification 
of patients into categories of illnesses, called syndromes, 
using ICD-9 codes has been reported by previous studies to 
suffer from poor accuracy (Espino and Wagner 2001; 
Ivanov et al. 2002).  Using triage diagnoses for 
classification may result in an improvement in accuracy. 
 To test the hypothesis that classification using triage 
diagnoses is more accurate than with ICD-9 codes, an 
experiment was performed using statistical natural 
language processing techniques: a Bayesian classifier was 
employed to classify triage diagnoses into syndromes, and 
the results were compared with those previously reported 
for ICD-9 codes. 

Methods 
A designed experiment was used to evaluate the accuracy 
of Bayesian classification of triage diagnoses.  A set of 
triage diagnoses was collected and classified by hand for 
the experiment.  Bayesian classification of the triage 
diagnoses was performed using three different language 
models, and the classification accuracies were compared 
among the models. 

Data 
A set of 28,990 triage diagnoses was collected from an 
emergency department in Utah covering patient visits over 
the course of one calendar month.  The triage diagnoses 
contained a large number of misspelled and abbreviated 
words.  Commonly-used phrases were also regularly 
abbreviated.  The triage diagnoses as entered by the 
admitting nurses were preprocessed to transform all letters 
into lowercase and to replace all punctuation with spaces, 
resulting  in a collection of triage diagnoses ranging in 
length from one word to ten words. 
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 A physician read and classified each individual triage 
diagnosis with one or more of eight syndromes used for this 
experiment.  The syndromes included Gastrointestinal, 
Constitutional, Respiratory, Rash, Hemorrhagic, Botulinic, 
Neurological, and Other.  The decision to classify a triage 
diagnosis with a particular syndrome was based on whether 
the words of the triage diagnosis suggested that the patient 
was suffering from symptoms indicative of that general 
category of illness: symptoms such as nausea, vomiting, 
and diarrhea were classified as Gastrointestinal; non-
localized systemic problems like fever, chills, or influenza 
were classified as Constitutional; problems with the nose, 
throat, or lungs were classified as Respiratory; any 
description of a rash was classified as Rash; bleeding from 
any site was classified as Hemorrhagic; ocular 
abnormalities, and difficulty speaking or swallowing were 
classified as Botulinic; non-psychiatric complaints related 
to brain function were classified as Neurological; and any 
pain or process in a system excluded from surveillance 
(e.g., trauma, psychological evaluations) was classified as 
Other.  Table 1 shows the distribution of the triage 
diagnoses across the syndromes. 
 

Syndrome Number 
Gastrointestinal 4,082 
Constitutional 1,848 
Respiratory 3,438 
Rash 317 
Hemorrhagic 799 
Botulinic 85 
Neurological 2,521 
Other 17,166 

Table 1. The distribution of triage diagnoses. 

Classification 
A Bayesian classifier was used to assign one or more 
syndromes to a triage diagnosis.  A training set of triage 
diagnoses was used to estimate the prior probability and the 
probabilities of unique words for each syndrome. Given a 
triage diagnosis, these probabilities were used to compute 
the posterior probability for each syndrome; the set of 
syndromes with posterior probabilities above a specified 
threshold was used to classify the triage diagnosis. 
 Given a triage diagnosis G consisting of a sequence of 
words w1 w2 … wn, the posterior probability of syndrome R, 
P(R|G), can be expressed using Bayes’ rule and the 
expansion of G into words as 
 
 
 
 
 
An approximation of P(R|G) was computed by employing 
language models that made assumptions about the 
conditional independence of the words in a triage diagnosis 
(Manning and Schütze 1999).  For this experiment, three 

models were investigated: unigram (i.e., each individual 
word was assumed to be conditionally independent), 
bigram (i.e., each word pair was assumed to be 
conditionally independent), and mixture (i.e., a weighted 
combination of the unigram and bigram models).  The 
mixture model applied a weight of .05 to the unigram 
model and a weight of .95 to the bigram model.  While 
there are an infinite number of ratios of the unigram and 
bigram models that could have been used, this one was 
selected because it represents the basic bigram model with 
a small correction introduced by the unigram model to 
compensate for word pairs absent from the training set. 
 To apply the Bayesian classifier with a particular model, 
the triage diagnoses were separated into a training set and a 
test set, the prior and word probabilities were estimated 
from the training set, and each triage diagnosis in the test 
set was classified with the subset of syndromes having a 
posterior probability above a specified threshold.  The 
sensitivity and specificity of the model were computed for 
each syndrome by comparing the true classifications of the 
triage diagnoses in the test set with those assigned by the 
classifier. Classification with the same training and test sets 
over a range of thresholds resulted in a collection of 
sensitivity and specificity pairs that described the 
performance of the classifier under different conditions. 

Experiment Design 
A ten-fold cross-validation experiment was performed to 
estimate the accuracy of the Bayesian classifier across 
different training sets.  First, the set of triage diagnoses was 
divided into ten randomly-selected, disjoint subsets.  Then 
the following steps were performed for each iteration: (1) 
one subset was selected as the test set and the remaining 
nine subsets were concatenated to form a training set; (2) 
the Bayesian classifier was trained with one of the three 
models using the training set; (3) the trained classifier was 
used to assign syndrome classifications to each triage 
diagnosis in the test set over a range of thresholds; and (4) 
the sensitivity and specificity at each threshold for each 
syndrome were computed.  Ten iterations were performed, 
each with a different subset used as the test set.  The entire 
experiment was repeated with each of the models using the 
same randomly-selected subsets of triage diagnoses. 

Analysis 
For each combination of model, syndrome, and iteration, 
the end result of the experiment was a set of sensitivity and 
specificity pairs which determined an ROC curve that 
described the performance of the classifier under different 
conditions (Zweig and Campbell 1993). To transform each 
ROC curve into a single-number representation of the 
classification accuracy, the area under the ROC curve 
(AUC) was computed (Bradley 1997; Hanley and McNeil 
1982). Then, to obtain an estimate of the overall 
classification accuracy for each combination of model and 
syndrome, the mean and standard deviation of the AUC 
across the ten iterations was computed and used as the 
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basis for comparison among the models for each syndrome.  
Since this methodology did not result in an average ROC 
curve for each combination of model and syndrome, the 
pooled sensitivity and specificity values (i.e., the average 
sensitivity and specificity values at each threshold across 
the ten iterations) were used to display the ROC curves 
(Bradley 1997). 

Results 
Table 2 shows the mean (and standard deviation) of the 
AUC for each combination of syndrome and model from 
the ten-fold cross-validation experiment.  A pairwise 
comparison of the mean AUC for each syndrome between 
models shows that the unigram model consistently resulted 
in a larger mean AUC than did the bigram and mixture 
models.  One-tailed paired t-tests confirm that the pairwise 
differences in mean AUC between the unigram and bigram 
models are statistically significant at the p < .0001 level 
(except for the Rash syndrome which is significant at the p 
< .001 level), and that the pairwise differences in mean 
AUC between the unigram and mixture models are 
significant for only the Constitutional, Respiratory, and 
Neurological syndromes (at the p < .0001 level). 
 

 An examination of the misclassified triage diagnoses 
suggests three general causes for misclassification—
misspelled words, use of nonstandard terminology, and 
compound complaints.  Table 3 lists example triage 
diagnoses that were misclassified by the unigram model 
and the reason that each was misclassified.  Triage 
diagnoses that contained misspelled words or nonstandard 
terms tended to be misclassified because the prior 
probabilities of these words were zero which, in turn, 
caused the posterior probabilities of such triage diagnoses 
to be zero.  Similarly, triage diagnoses that contained 
multiple complaints were commonly misclassified because 
the prior probabilities of a majority of the words in such 
triage diagnoses were small for each syndrome, thereby 
resulting in small posterior probabilities. 
 The problems of misspelled words and nonstandard 
terminology can be addressed by translating the words in 
each triage diagnosis into an established vocabulary—e.g., 
by using a domain- and application-specific spell 
checker—but the problem of compound complaints would 
require separating each triage diagnosis into its component 

complaints.  Focusing on the first two problems, a list of 
substitutions was created to correct misspellings and 
nonstandard terminology in the triage diagnoses used in 
this experiment.  While specific to these triage diagnoses, 
the list of substitutions approximated the effect of a more 
sophisticated and automated approach that would normally 
be developed for use in a real-time data-analysis 
application.  The list of substitutions was used to translate 
each triage diagnosis, and the ten-fold cross-validation 
experiment was re-run on the transformed triage diagnoses. 
 

Triage Diagnosis Misclassification Reason 
cugh fever misspelled word 
nausea vomtiting misspelled word 
naus vomiting nonstandard terminology 
syncopal episode nonstandard terminology 
dizzy nausea compound complaint 
fever cough vomiting compound complaint 

Table 3. Examples of misclassified triage diagnoses. 

 Table 4 shows the mean (and standard deviation) of the 
AUC for each combination of syndrome and model from 
the ten-fold cross-validation experiment when using 
substitutions.  The pairwise relationships of the mean AUC 
for each syndrome between models are parallel to those 
when substitutions were not used: the unigram model 
consistently outperformed both the bigram and mixture 
models.   Moreover, one-tailed paired t-tests confirm that 
precisely the same pairwise differences in mean AUC 
between the models are significant at the same p levels as 
were significant when substitutions were not used (except 
for the difference in mean AUC between the unigram and 
bigram models for the Botulinic syndrome which is 
significant at the p < .001 level when using substitutions). 
 

Table 4. The AUC means (and standard deviations) 
when using substitutions.  Bold values indicate 
statistically-significant increases in mean AUC.  

 The mean AUC for each combination of syndrome and 
model when using substitutions was uniformly higher than 
the corresponding mean AUC when not using substitutions.  
One-tailed paired t-tests confirm that the intra-model 
pairwise differences for all three models are significant at 
the p < .001 level for the Other, Gastrointestinal, 
Respiratory, and Neurological syndromes. Additionally, the 
intra-model pairwise differences for the unigram and 

Syndrome Unigram Mixture Bigram 
Gastrointestinal .945 (.012) .941 (.013) .891 (.013) 
Constitutional .931 (.012) .916 (.015) .853 (.017) 
Respiratory .957 (.009) .949 (.009) .888 (.013) 
Rash .910 (.030) .904 (.030) .837 (.055) 
Hemorrhagic .926 (.012) .919 (.012) .866 (.026) 
Botulinic .781 (.061) .774 (.053) .702 (.062) 
Neurological .924 (.015) .915 (.017) .830 (.023) 
Other .957 (.003) .956 (.003) .896 (.007) 

Table 2. The AUC means (and standard deviations). 

Syndrome Unigram Mixture Bigram 
Gastrointestinal .954 (.010) .952 (.009) .904 (.008) 
Constitutional .941 (.013) .927 (.015) .864 (.018) 
Respiratory .968 (.008) .961 (.010) .902 (.015) 
Rash .922 (.020) .917 (.018) .842 (.052) 
Hemorrhagic .934 (.010) .923 (.011) .874 (.024) 
Botulinic .798 (.073) .797 (.073) .721 (.083) 
Neurological .935 (.015) .927 (.017) .849 (.023) 
Other .964 (.001) .963 (.002) .910 (.006) 
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Figure 1. ROC curves when using (dashed lines) and not using (solid lines) substitutions for the unigram model. 

bigram models are significant at the p < .001 level for the 
Constitutional syndrome. The bold values in Table 4 
indicate statistically-significant increases in mean AUC as 
compared to the corresponding mean AUC when not using 
substitutions. 
 The ROC curves when using (dashed lines) and not 
using (solid lines) substitutions are illustrated in Figure 1 
for the unigram model.  The ROC curves when using 
substitutions are generally as good as or better than the 
ROC curves when not using substitutions.  However, the 
effective improvements—while statistically significant in 
some cases—are small.  The ROC curves for the mixture 
and bigram models exhibit similar pairwise differences. 

Discussion 
The large mean AUC values reported by the ten-fold cross-
validation experiment demonstrate that it is possible to 

achieve high classification accuracies of triage diagnoses 
using a Bayesian classifier.  The unigram model clearly 
outperformed the bigram model, suggesting that each word 
in a triage diagnosis has high information content 
independent of the other words.  The poorer performance 
of the bigram model might be attributable to the relative 
increase in sparseness of the training set when considering 
word pairs as opposed to individual words; a larger training 
set might have improved the performance of the bigram 
model.  While the unigram and mixture models performed 
comparably well for some syndromes, the relative 
simplicity of the unigram model makes it arguably 
preferable to the mixture model.  It should be noted, 
however, that a different ratio of the unigram and bigram 
models in the mixture model might have performed better.  
A parameter estimation algorithm such as Expectation 
Maximization (EM) can be used to find a ratio that 
improves the classification accuracy (Mitchell 1997). 
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 While the unigram model performed well overall, the 
classification accuracy was poorest for the Botulinic 
syndrome.  As shown in Table 1, the number of triage 
diagnoses for this syndrome was much smaller than for the 
other syndromes. A larger number of triage diagnoses 
representative of the Botulinic syndrome would most likely 
result in an improvement in its classification accuracy. 
 The use of substitutions to correct misspellings and 
nonstandard terminology did increase the classification 
accuracies, however the relative improvement when 
compared to the effort needed to preprocess the data may 
make these transformations expensive.  Such preprocessing 
may make sense only when maximal classification accuracy 
is critical or when easily performed with pre-existing 
software.  The extent to which addressing the problem of 
compound complaints can improve classification accuracy 
remains an open question.  Undoubtedly, separating each 
triage diagnosis into its component complaints would allow 
more precise models to be constructed and thus more 
accurate classification decisions to be made. 
 The early detection of epidemics relies upon the timely 
and reliable identification of increases in illnesses.  Triage 
diagnoses and their associated ICD-9 codes are generally 
available earlier than final diagnoses, making them timelier 
sources of data for surveillance. Previous studies reported 
the classification accuracy using ICD-9 codes as having a 
sensitivity of 0.32 and a specificity of 0.99 for 
gastrointestinal illnesses (Ivanov et al. 2002), and as having 
a sensitivity of 0.44 and a specificity of 0.97 for respiratory 
illnesses (Espino and Wagner 2001). Using triage 
diagnoses, the classification accuracies with the unigram 
model without substitutions for the Gastrointestinal and 
Respiratory syndromes surpass this benchmark with 
sensitivities of 0.86 and 0.91 for specificities of 0.99 and 
0.97, respectively.  Since triage diagnoses have an earlier 
availability than final diagnoses and, at least for 
gastrointestinal and respiratory illnesses, a superior 
classification accuracy than ICD-9 codes, triage diagnoses  
are a better source of data for the early detection of 
epidemics. 
 Finally, an important issue which remains to be 
addressed is how well a classifier trained with triage 
diagnoses from one emergency department will classify 
those from another. As a first step, a set of triage diagnoses 
was similarly assembled from an emergency department in 
Pennsylvania and was used as the training set to classify 
triage diagnoses collected in Utah during the Olympic 
games (Tsui et al. 2002).  While a cursory inspection 
indicated an acceptable performance, designed experiments 
are required to better investigate this issue of portability. 
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