
Learning Opening Strategy in the Game of Go

Timothy Huang, Graeme Connell, and Bryan McQuade
Department of Mathematics and Computer Science

Middlebury College
Middlebury, VT 05753

{huang, gconnell, bmcquade}@middlebury.edu

Abstract

In this paper, we present an experimental methodology and
results for a machine learning approach to learning opening
strategy in the game of Go, a game for which the best
computer programs play only at the level of an advanced
beginning human player. While the evaluation function in
most computer Go programs consists of a carefully crafted
combination of pattern matchers, expert rules, and selective
search, we employ a neural network trained by self-play
using temporal difference learning. Our focus is on the
sequence of moves made at the beginning of the game.
Experimental results indicate that our approach is effective
for learning opening strategy, and they also identify higher-
level features of the game that improve the quality of the
learned evaluation function.

Introduction
The ancient game of Go is one of the most widely played
strategy games in the world, especially in the Far East.
More effort has been devoted to developing computer
programs that play Go than to developing programs for any
other game of skill except chess (Müller 2000). Unlike
chess, however, where the best programs play as well as
the top human players, the best Go programs play only at
the level of advanced beginners. Standard game-playing
techniques based on brute force minimax search are not
sufficient for Go because the game tree is extremely large
and because accurate evaluation functions are slow and
difficult to construct. Hence, most current programs rely on
a carefully crafted combination of pattern matchers, expert
rules, and selective search. Unfortunately, the engineering
effort involved suggests that making significant progress
by simply fine-tuning the individual components will
become increasingly difficult and that additional
approaches should be explored.
 In this paper, we investigate a machine learning
approach to constructing an evaluation function for Go
based on training a neural network by self-play using
temporal difference (TD) learning. We focus on learning
opening strategy, i.e., the sequence of moves played at the
beginning of the game. Also, we investigate a number of
higher-level features of Go positions and identify those that
most improve the quality of the evaluation function.

 (www.aaai.org). All rights reserved.

 We begin by presenting an overview of game play in Go
and the challenges for computer Go. After describing our
learning approach and experimental methodology, we
present and analyze experimental results. We conclude by
surveying earlier work and discussing future plans.

Background
To start, we present a brief description of how Go is played
by humans and by computers. A comprehensive
explanation of the rules can be found in (Kim and Soo-
hyun 1997); our aim here is simply to give a sense of the
object of the game and the factors that make it difficult for
computers to play.

Playing Go
Go is a two-player game played with black and white
stones on a board of 19 x 19 intersecting lines, though
13 x 13 and 9 x 9 boards are sometimes used. Starting with
black, the players take turns either placing one stone onto
one of the empty intersections or passing. The goal is to
acquire territory (empty intersections) by surrounding it
with stones. Once placed, a stone does not move; however,
blocks of stones can be surrounded and captured by the
opposing player. The game ends when both players pass.
The player who has surrounded the most points of territory
wins the game. In official play, there are no draws because
the white player receives 5.5 additional points (called
komi) to compensate for playing second.
 Stones placed horizontally or vertically adjacent to each
other form a block. The empty intersections next to a block
are its liberties. A block is captured when all of its liberties
are occupied by enemy stones. Consider the following
examples from Figure 1: In the bottom left corner, a block
of white stones has surrounded 12 points of territory.
Towards the bottom right, a block consisting of a single
black stone is surrounded on three of four sides. White can
capture this stone by playing at its last liberty, the
intersection marked A. Above those stones, White can
capture the block of two black stones by playing at the
liberty marked B. If it is Black’s turn, Black can help those
stones escape by playing at B first and creating a resultant
block with three liberties.
 In the upper left corner, black can capture the white
stones by playing at C, thereby fully surrounding the three
stones. Normally, it is illegal to play a stone where it will
not have any liberties. However, playing a black stone at C

434 FLAIRS 2003

Copyright © 2003, American Association for Artificial Intelligence

is allowed because it captures at least one of the white
stones directly adjacent to C. In this case, it captures the
entire white block of three stones. In the upper right corner,
the white block is alive, i.e., safe from capture, because
black cannot play a stone at D and a stone at E
simultaneously.

Figure 1: White can capture one black stone by

playing at A or two stones by playing at B. Black can
capture three white stones by playing at C. Since black
cannot play at D and E simultaneously, the white stones

in the upper right corner are alive.

 The stones in Figure 1 were artificially arranged for
explanatory purposes. Figure 2 shows a more realistic
board situation partway through a game on a 13 x 13
board. In this game, white has staked out territory in the
upper right, upper left, and lower left sections of the board.
Meanwhile, black has staked out territory in the lower right
and upper middle sections of the board and has pushed into
the middle left section, thereby reducing white’s territorial
gain. Furthermore, black has effectively captured the white
stones in the middle right section of the board (see (Kim
and Soo-hyun 1997) for a full explanation).
 Part of what makes Go so engrossing and challenging is
the interplay between strategy and tactics. On one hand,
players try to build stone patterns with “good shape”, i.e.,
those with long-term strategic influence. On the other
hand, they fight highly tactical “life-or-death” battles that
concern whether a group of stones can be captured or not.

Figure 2: White’s turn to move partway through an

example game on a 13 x 13 board.

 Figure 3 shows the board situation at the end of the same
game from Figure 2. Black’s territorial points are marked
with small black dots, and white’s territorial points are
marked with small white dots. The final score, taking into
account captured stones and komi, has white ahead by 4.5
points of territory.

Figure 3: Final board position. Taking into account
captured stones and komi, white wins by 4.5 points.

Computer Go
From a computer scientist’s perspective, what stands out
about Go is that it remains a perplexing computational

FLAIRS 2003 435

problem. The standard brute force minimax approach to
strategy games is not sufficient for Go because the game
tree is extremely large – the average branching factor is
about 35 in chess and 250 in Go – and because accurate
heuristic evaluation functions are computationally
expensive.
 Hence, most Go programs contain a mix of various AI
components. Pattern matchers recognize common stone
arrangements and recommend the best move in those
situations. Expert rules identify important strategic regions,
estimate territorial balance, and suggest candidate moves.
Selective search resolves local questions about the life-or-
death status of a block or a group of stones.
 Researchers throughout the world continue to work on
computer Go and gather regularly at computer Go
tournaments to pit their updated programs against each
other. Currently, the top programs in the world include
Handtalk/Goemate, by Zhixing Chen; Go4++, by Michael
Reiss; Haruka, by Ryuichi Kawa; Many Faces of Go, by
David Fotland; and GNUGo, by multiple developers.

Learning Opening Strategy
In this section, we motivate our approach to learning
opening strategy, provide details of our experimental
methodology, and describe some features of Go positions
that can be supplied as input to a Go evaluation function.

Temporal Difference Learning and Go
Like many other strategy games, the moves played in the
early part of a Go game dictate game play for the rest of
the game and have the greatest influence on the outcome.
At the beginning of a game, players place stones to stake
loose territorial claims and to shape the flow of attack and
defense in the middle game. Localized battles involving
the life-or-death status of a group of stones tend to occur
later in the game. Hence, opening strategy focuses more on
developing desirable stone patterns than on finding tactical
maneuvers to capture a group of stones.
 We attempted to learn an evaluation function for
opening strategy in Go using a neural network trained with
temporal difference learning. We chose a neural network
representation because it seems well-suited for the
emphasis on pattern recognition in opening strategy, and
we chose temporal difference learning, a kind of
reinforcement learning, because we wanted the system to
learn by self-play and by play against others.
 Unlike supervised learning, reinforcement learning relies
only on periodic feedback or reinforcement and makes it
possible to learn when classified training data sets are
unavailable. Temporal difference (TD) learning methods
work by using successive predictions of an environment as
it evolves over time (Sutton 1988). For Go, the inputs
might be descriptions of board positions from move to
move over the course of a game, and the outputs might be
scalar values representing the probability of a win or the
relative desirability of a position.

 A traditional Backpropagation approach to neural
network learning adjusts the network weights based on the
error between the output generated from a particular input
and the correct output (Hertz, et.al. 1991). Since the correct
output is unavailable to a TD-learner, it adjusts the weights
based on the difference between the current network output
and the output some time in the future (e.g., one move
later). It does not matter if this output is somewhat
inaccurate as long as the learner periodically receives
error-free output. Such output comes at the end of each
game when the outcome is no longer in doubt.

Experimental Methodology
In designing our experiments, we focused on two related
tasks. First, whereas others have previously investigated
the effectiveness of neural networks and TD-learning for
Go in general (Schraudolph, et.al. 1994), we wanted to
determine their effectiveness for learning opening strategy
in particular. Second, since the true value function over
raw board positions is likely very non-linear, we wanted to
determine whether and how much the inclusion of various
higher-level features of the position would improve the
learned evaluation function.
 For computational reasons, we limited all our
experiments to 9 x 9 boards. We created 16 computer
players, each of which used an evaluation function
consisting of a fully connected two-layer feed-forward
neural network with 40 hidden nodes and one output node
representing the relative score differential between the
black and white players. The players differed only by the
type and number of inputs used. Of the 5 features
described below, each player took as input the raw board
position (Feature A) and a selection from four additional
features (Features B, C, D, and E). In the remainder of this
paper, we refer to a player by the features it takes as input,
e.g., Player ACD takes Features A, C, and D.
 Typically, the learning phase would involve playing a
program against itself or another opponent for a series of
complete games and using each game’s outcome to adjust
the neural network weights. Because we wanted to
determine which player stands better at the end of the
opening, we took a new approach. For each player, we
played out an average length opening (10 moves per side
on a 9 x 9 board) and then handed off the position to
GNUGo, which we used as a Go “expert”. GNUGo
finished the game by playing stones for both sides, and the
result was treated as the correct output for the final opening
position. Over the long run, the side with a better position
after the opening should end up winning the game. This
approach focused our learning and testing on the opening
moves, and it had the added benefit of reducing the interval
between successive reinforcement signals.

Higher-Level Features
Before moving on to the experimental results, we describe
the features that were provided as input to the various
players. Feature A corresponds to the raw board position

436 FLAIRS 2003

and is supplied to each of the 16 players. Features B, C, D,
and E are higher-level features that many instructional
texts cite as important for choosing a move. While these
features could be derived from the raw board position, we
hoped that the value function over these features might be
smoother than that over just the raw board position and
that including them as input might improve the quality of
the evaluation function or the speed of learning.
 Feature A indicates the status of an intersection: black
stone, white stone, or unoccupied. It also indicates whether
the intersection is playable on the next turn.
 Feature B indicates the distance from the intersection to
the two closest edges of the board. This information may
be useful because board edges and corners greatly
influence game play.
 Feature C indicates the number of liberties for the block
to which the stone at that intersection belongs. In general, a
block with many liberties is stronger and less likely to be
captured.
 Feature D indicates the total number of stones in the
block to which the stone belongs. This information may be
useful because larger groups tend to be difficult to kill.
 Feature E indicates the number of friendly and enemy
stones that are close to the block to which a stone belongs.
Nearby friendly stones can help a block to attack and
defend. Likewise, nearby enemy stones can hurt its ability
to do so.

Results and Analysis
We trained each of the 16 players by self-play for 2000
games. To encourage exploration and to avoid repeated
training over the same sequence of moves, we added a very
small random component so that occasionally a move other
than the “best” move was played.
 To test the effectiveness of our learning, we played 100
games between Player A and Player Random, a player that
randomly chooses a move among all legal moves with
uniform probability. As in the learning phase, each player
made 10 moves, and then GNUGo played out the game to
determine the winner. Player A won 71 of the 100 games.
This result is encouraging, though with improved learning,
we expect Player A to win even more games.
 To evaluate the benefit of including higher-level features
in the input to the neural network, we played 100 games
each between all 16 players in round-robin fashion. Table 1
shows the percentage of games won by each player against
all other players. In general, players that used more
features won more games; this suggests that including
those features either improved the evaluation function’s
quality, the learning rate, or both. As expected, Player
ABCDE, which used all four additional features,
performed relatively well against the other players.
Somewhat surprisingly, Player ADE won marginally more
games than Player ABCDE (though in their head-to-head
matchup, Player ABCDE won 53 of 100 games). In a few
cases, adding an individual feature actually caused worse

performance. For example, Players AC and AE both won
fewer games overall than Player A.

Player A

E

A

C

A A
B
C

A
B

D

A
B

A

C

E

A
B

E

A

C
D

A

D

A
B
C
D

A
B
C

E

A
B

D
E

A

C
D
E

A
B
C
D
E

A

D
E

Win
%

42 43 46 46 46 48 48 49 50 52 54 54 54 55 55 56

Table 1: Winning percentages of each player in a round-
robin tournament with all other players.

 To evaluate the incremental benefit of including each
individual high-level feature, we considered all of the
players that did not use that feature and computed the
percentage improvement in number of games won when
that feature was added. Table 2 shows the average number
of additional games won when each of the four features
was added. Overall, each feature showed a positive
improvement when included in the input. The most
beneficial feature was D, the size of a stone’s block. The
next most beneficial feature was E, the number of nearby
friendly and enemy stones. We believe that Feature B, the
distance from the edges, is more relevant for larger board
sizes, where there is much more of a center region. Also,
we suspect that Feature C, the number of liberties,
becomes a greater factor in the middle game, when life-or-
death issues occur more frequently.

Feature Average
improvement

B 4%
C 3%
D 13%
E 8%

Table 2: Average number of additional games won when
the individual feature was added to the input.

 While it is not surprising that the players using more
features generally did better than players using fewer, we
expected there to be a larger difference in winning
percentage between the best and worst players. One
possible explanation is that the degree of learning was not
high enough for the additional feature information to make
a large difference. Another possible explanation is that the
features we chose are beneficial but not critical to accurate
move evaluation.

Previous Work
Machine learning has long been an appealing approach to
constructing evaluation functions for strategy games. It
promises not only to reduce the level of human effort
required but also to identify and represent knowledge that
may not be easy to encode manually. The challenges
include choosing an appropriate representation language,

FLAIRS 2003 437

devising an efficient learning algorithm, and obtaining
beneficial training experience.
 When classified training data sets are available,
traditional supervised learning approaches have been used
to learn various aspects of game play in Go. Using a
database of expert games and treating each played move as
correct and every other legal move as incorrect, Dahl
trained a neural network to identify stone patterns with
“good shape” vs. those with “bad shape” (Dahl 1999). In
related work, Enderton used neural networks for move
ordering and forward pruning of selective search in his
Golem Go program (Enderton 1991), and Stoutamire used
hashed sets of patterns rather than neural networks to
identify good and bad shape (Stoutamire 1991). Using
neural networks in conjunction with automatic feature
extraction methods and informed pre-processing, van der
Werf and colleagues learned to predict good local moves
from game records (van der Werf, et.al. 2002).
 Among reinforcement learning approaches, Tesauro first
showed how to apply TD-learning of neural networks to
strategy games with his TD-Gammon program, a world
class backgammon player (Tesauro 1995). Schraudolph
and colleagues applied the same approach to Go with more
modest success (Schraudolph, et.al. 1994). Enzenberger
attempted to integrate this approach with manually
encoded expert Go knowledge in his Neurogo program
(Enzenberger 1996).

Conclusions and Future Work
In this paper, we described an approach for learning
opening strategy in the game of Go by training a neural
network evaluation function using TD-learning. To focus
on opening strategy, we played only the opening moves
and then employed an “expert” Go program to play out and
score positions at the end of the opening. We also
presented an experimental methodology in which we
trained 16 computer players, each taking as input a
different combination of four higher-level features, and we
compared the resulting players with each other. While
there remains ample room for improvement, the
experimental results indicate that our approach is effective
for learning opening strategy and that all four higher-level
features help improve the quality of the learned evaluation
function, the learning rate, or both.
 While this research itself is specific to the game of Go, it
has ramifications for other work in machine learning. First,
it provides an example of how TD-learning of neural
networks can be applied even in situations where the
interval between reinforcement signals is normally quite
long. Second, it provides a methodology for comparing the
relative benefit of various features to the quality of a
learned evaluation function.
 Looking forward, we hope to build upon our work in
several ways. First, we plan to try other network structures,
input features, and output representations, e.g., those that
simply represent the game-theoretic value of a position.
Second, we plan to run experiments on larger board sizes.

While our approach is directly applicable to 13 x 13 and
19 x 19 boards, it will require much more computation
time, most of which is used by GNUGo to play out games.
Third, we plan to learn other aspects of game play besides
opening strategy. One possibility would be to learn joseki,
the common patterns of play that are often hard-coded into
the pattern matchers of many programs. Fourth, we plan to
explore ways to combine a priori Go knowledge with our
learning approach. Like earlier efforts (Enzenberger 1996),
we hope to develop effective methods for integrating
learning and other AI techniques in a Go-playing system.

Acknowledgements
This work was supported by the National Science
Foundation under Grant No. 9876181, and by Middlebury
College.

References
Dahl, F. 1999. Honte, a Go-Playing Program Using Neural
Nets. International Conference on Machine Learning
Workshop on Machine Learning in Game Playing.
http://www.ai.univie.ac.at/icml-99-ws-games/.

Enderton, H. 1991. The Golem Go Program. Carnegie-
Mellon University Technical Report #CMU-CS-92-101.

Enzenberger, M. 1996. The Integration of A Priori
Knowledge into a Go Playing Neural Network. Internet.
http://www.markus-enzenberger.de/neurogo.html.

Hertz, J., Krogh, A., and Palmer, R. 1991. Introduction to
the Theory of Neural Computation. Addison-Wesley.

Kim, J. and Soo-hyun, J. 1997. Learn to Play Go, Volume
1, 2nd Edition. Good Move Press.

Müller, M. 2000. Computer Go. In Artificial Intelligence
Journal 134(1-2): 145-179.

Schraudolf, N., Dayan, and P., Sejnowski, T. 1994.
Temporal Difference Learning of Position Evaluation in
the Game of Go. In Advances in Neural Information
Processing Systems 6. Morgan Kaufmann.

Stoutamire, D. 1991. Machine Learning, Game Play, and
Go. Case Western Reserve University Report #TR91-128.

Sutton, R. 1988. Learning to Predict by the Methods of
Temporal Differences. In Machine Learning 3:9-44.

Tesauro, G. 1995. Temporal Difference Learning and TD-
Gammon. In Communications of the ACM 38(3):58-68.

van der Werf, E. Uiterwijk, J., Postmas, E., and van den
Herik, J. 2002. Local Move Prediction in Go. In
Proceedings of the 3rd International Conference on
Computers and Games. Edmonton, Canada.

438 FLAIRS 2003

