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Abstract 
 
In this paper, we present an experimental methodology and 
results for a machine learning approach to learning opening 
strategy in the game of Go, a game for which the best 
computer programs play only at the level of an advanced 
beginning human player. While the evaluation function in 
most computer Go programs consists of a carefully crafted 
combination of pattern matchers, expert rules, and selective 
search, we employ a neural network trained by self-play 
using temporal difference learning. Our focus is on the 
sequence of moves made at the beginning of the game. 
Experimental results indicate that our approach is effective 
for learning opening strategy, and they also identify higher-
level features of the game that improve the quality of the 
learned evaluation function. 

Introduction   
The ancient game of Go is one of the most widely played 
strategy games in the world, especially in the Far East. 
More effort has been devoted to developing computer 
programs that play Go than to developing programs for any 
other game of skill except chess (Müller 2000). Unlike 
chess, however, where the best programs play as well as 
the top human players, the best Go programs play only at 
the level of advanced beginners. Standard game-playing 
techniques based on brute force minimax search are not 
sufficient for Go because the game tree is extremely large 
and because accurate evaluation functions are slow and 
difficult to construct. Hence, most current programs rely on 
a carefully crafted combination of pattern matchers, expert 
rules, and selective search. Unfortunately, the engineering 
effort involved suggests that making significant progress 
by simply fine-tuning the individual components will 
become increasingly difficult and that additional 
approaches should be explored.  
 In this paper, we investigate a machine learning 
approach to constructing an evaluation function for Go 
based on training a neural network by self-play using 
temporal difference (TD) learning. We focus on learning 
opening strategy, i.e., the sequence of moves played at the 
beginning of the game. Also, we investigate a number of 
higher-level features of Go positions and identify those that 
most improve the quality of the evaluation function. 
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 We begin by presenting an overview of game play in Go 
and the challenges for computer Go. After describing our 
learning approach and experimental methodology, we 
present and analyze experimental results. We conclude by 
surveying earlier work and discussing future plans.  

Background 
To start, we present a brief description of how Go is played 
by humans and by computers. A comprehensive 
explanation of the rules can be found in (Kim and Soo-
hyun 1997); our aim here is simply to give a sense of the 
object of the game and the factors that make it difficult for 
computers to play. 

Playing Go 
Go is a two-player game played with black and white 
stones on a board of 19 x 19 intersecting lines, though 
13 x 13 and 9 x 9 boards are sometimes used. Starting with 
black, the players take turns either placing one stone onto 
one of the empty intersections or passing. The goal is to 
acquire territory (empty intersections) by surrounding it 
with stones. Once placed, a stone does not move; however, 
blocks of stones can be surrounded and captured by the 
opposing player. The game ends when both players pass. 
The player who has surrounded the most points of territory 
wins the game. In official play, there are no draws because 
the white player receives 5.5 additional points (called 
komi) to compensate for playing second. 
 Stones placed horizontally or vertically adjacent to each 
other form a block. The empty intersections next to a block 
are its liberties. A block is captured when all of its liberties 
are occupied by enemy stones. Consider the following 
examples from Figure 1: In the bottom left corner, a block 
of white stones has surrounded 12 points of territory. 
Towards the bottom right, a block consisting of a single 
black stone is surrounded on three of four sides. White can 
capture this stone by playing at its last liberty, the 
intersection marked A. Above those stones, White can 
capture the block of two black stones by playing at the 
liberty marked B. If it is Black’s turn, Black can help those 
stones escape by playing at B first and creating a resultant 
block with three liberties. 
 In the upper left corner, black can capture the white 
stones by playing at C, thereby fully surrounding the three 
stones. Normally, it is illegal to play a stone where it will 
not have any liberties. However, playing a black stone at C 

434    FLAIRS 2003   

Copyright © 2003, American Association for Artificial Intelligence  



is allowed because it captures at least one of the white 
stones directly adjacent to C. In this case, it captures the 
entire white block of three stones. In the upper right corner, 
the white block is alive, i.e., safe from capture, because 
black cannot play a stone at D and a stone at E 
simultaneously.  
 

 
Figure 1: White can capture one black stone by 

playing at A or two stones by playing at B. Black can 
capture three white stones by playing at C. Since black 
cannot play at D and E simultaneously, the white stones 

in the upper right corner are alive. 
 

 The stones in Figure 1 were artificially arranged for 
explanatory purposes. Figure 2 shows a more realistic 
board situation partway through a game on a 13 x 13 
board. In this game, white has staked out territory in the 
upper right, upper left, and lower left sections of the board. 
Meanwhile, black has staked out territory in the lower right 
and upper middle sections of the board and has pushed into 
the middle left section, thereby reducing white’s territorial 
gain. Furthermore, black has effectively captured the white 
stones in the middle right section of the board (see (Kim 
and Soo-hyun 1997) for a full explanation). 
 Part of what makes Go so engrossing and challenging is 
the interplay between strategy and tactics. On one hand, 
players try to build stone patterns with “good shape”, i.e., 
those with long-term strategic influence. On the other 
hand, they fight highly tactical “life-or-death” battles that 
concern whether a group of stones can be captured or not. 
 

 
Figure 2: White’s turn to move partway through an 

example game on a 13 x 13 board. 
 
 Figure 3 shows the board situation at the end of the same 
game from Figure 2. Black’s territorial points are marked 
with small black dots, and white’s territorial points are 
marked with small white dots. The final score, taking into 
account captured stones and komi, has white ahead by 4.5 
points of territory.  
 

 
Figure 3: Final board position. Taking into account 
captured stones and komi, white wins by 4.5 points. 

Computer Go 
From a computer scientist’s perspective, what stands out 
about Go is that it remains a perplexing computational 
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problem. The standard brute force minimax approach to 
strategy games is not sufficient for Go because the game 
tree is extremely large – the average branching factor is 
about 35 in chess and 250 in Go – and because accurate 
heuristic evaluation functions are computationally 
expensive.  
 Hence, most Go programs contain a mix of various AI 
components. Pattern matchers recognize common stone 
arrangements and recommend the best move in those 
situations. Expert rules identify important strategic regions, 
estimate territorial balance, and suggest candidate moves. 
Selective search resolves local questions about the life-or-
death status of a block or a group of stones.  
 Researchers throughout the world continue to work on 
computer Go and gather regularly at computer Go 
tournaments to pit their updated programs against each 
other. Currently, the top programs in the world include 
Handtalk/Goemate, by Zhixing Chen; Go4++, by Michael 
Reiss; Haruka, by Ryuichi Kawa; Many Faces of Go, by 
David Fotland; and GNUGo, by multiple developers. 

Learning Opening Strategy 
In this section, we motivate our approach to learning 
opening strategy, provide details of our experimental 
methodology, and describe some features of Go positions 
that can be supplied as input to a Go evaluation function. 

Temporal Difference Learning and Go 
Like many other strategy games, the moves played in the 
early part of a Go game dictate game play for the rest of 
the game and have the greatest influence on the outcome. 
At the beginning of a game, players place stones to stake 
loose territorial claims and to shape the flow of attack and 
defense in the middle game. Localized battles involving 
the life-or-death status of a group of stones tend to occur 
later in the game. Hence, opening strategy focuses more on 
developing desirable stone patterns than on finding tactical 
maneuvers to capture a group of stones. 
 We attempted to learn an evaluation function for 
opening strategy in Go using a neural network trained with 
temporal difference learning. We chose a neural network 
representation because it seems well-suited for the 
emphasis on pattern recognition in opening strategy, and 
we chose temporal difference learning, a kind of 
reinforcement learning, because we wanted the system to 
learn by self-play and by play against others. 
 Unlike supervised learning, reinforcement learning relies 
only on periodic feedback or reinforcement and makes it 
possible to learn when classified training data sets are 
unavailable. Temporal difference (TD) learning methods 
work by using successive predictions of an environment as 
it evolves over time (Sutton 1988). For Go, the inputs 
might be descriptions of board positions from move to 
move over the course of a game, and the outputs might be 
scalar values representing the probability of a win or the 
relative desirability of a position. 

 A traditional Backpropagation approach to neural 
network learning adjusts the network weights based on the 
error between the output generated from a particular input 
and the correct output (Hertz, et.al. 1991). Since the correct 
output is unavailable to a TD-learner, it adjusts the weights 
based on the difference between the current network output 
and the output some time in the future (e.g., one move 
later). It does not matter if this output is somewhat 
inaccurate as long as the learner periodically receives 
error-free output. Such output comes at the end of each 
game when the outcome is no longer in doubt. 

Experimental Methodology 
In designing our experiments, we focused on two related 
tasks. First, whereas others have previously investigated 
the effectiveness of neural networks and TD-learning for 
Go in general (Schraudolph, et.al. 1994), we wanted to 
determine their effectiveness for learning opening strategy 
in particular. Second, since the true value function over 
raw board positions is likely very non-linear, we wanted to 
determine whether and how much the inclusion of various 
higher-level features of the position would improve the 
learned evaluation function. 
 For computational reasons, we limited all our 
experiments to 9 x 9 boards. We created 16 computer 
players, each of which used an evaluation function 
consisting of a fully connected two-layer feed-forward 
neural network with 40 hidden nodes and one output node 
representing the relative score differential between the 
black and white players. The players differed only by the 
type and number of inputs used. Of the 5 features 
described below, each player took as input the raw board 
position (Feature A) and a selection from four additional 
features (Features B, C, D, and E). In the remainder of this 
paper, we refer to a player by the features it takes as input, 
e.g., Player ACD takes Features A, C, and D.  
 Typically, the learning phase would involve playing a 
program against itself or another opponent for a series of 
complete games and using each game’s outcome to adjust 
the neural network weights. Because we wanted to 
determine which player stands better at the end of the 
opening, we took a new approach. For each player, we 
played out an average length opening (10 moves per side 
on a 9 x 9 board) and then handed off the position to 
GNUGo, which we used as a Go “expert”. GNUGo 
finished the game by playing stones for both sides, and the 
result was treated as the correct output for the final opening 
position. Over the long run, the side with a better position 
after the opening should end up winning the game. This 
approach focused our learning and testing on the opening 
moves, and it had the added benefit of reducing the interval 
between successive reinforcement signals. 

Higher-Level Features 
Before moving on to the experimental results, we describe 
the features that were provided as input to the various 
players. Feature A corresponds to the raw board position 
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and is supplied to each of the 16 players. Features B, C, D, 
and E are higher-level features that many instructional 
texts cite as important for choosing a move. While these 
features could be derived from the raw board position, we 
hoped that the value function over these features might be 
smoother than that over just the raw board position and 
that including them as input might improve the quality of 
the evaluation function or the speed of learning. 
 Feature A indicates the status of an intersection: black 
stone, white stone, or unoccupied. It also indicates whether 
the intersection is playable on the next turn. 
 Feature B indicates the distance from the intersection to 
the two closest edges of the board. This information may 
be useful because board edges and corners greatly 
influence game play. 
 Feature C indicates the number of liberties for the block 
to which the stone at that intersection belongs. In general, a 
block with many liberties is stronger and less likely to be 
captured. 
 Feature D indicates the total number of stones in the 
block to which the stone belongs. This information may be 
useful because larger groups tend to be difficult to kill.
 Feature E indicates the number of friendly and enemy 
stones that are close to the block to which a stone belongs. 
Nearby friendly stones can help a block to attack and 
defend. Likewise, nearby enemy stones can hurt its ability 
to do so.  

Results and Analysis 
We trained each of the 16 players by self-play for 2000 
games. To encourage exploration and to avoid repeated 
training over the same sequence of moves, we added a very 
small random component so that occasionally a move other 
than the “best” move was played.   
 To test the effectiveness of our learning, we played 100 
games between Player A and Player Random, a player that 
randomly chooses a move among all legal moves with 
uniform probability. As in the learning phase, each player 
made 10 moves, and then GNUGo played out the game to 
determine the winner. Player A won 71 of the 100 games. 
This result is encouraging, though with improved learning, 
we expect Player A to win even more games. 
 To evaluate the benefit of including higher-level features 
in the input to the neural network, we played 100 games 
each between all 16 players in round-robin fashion. Table 1 
shows the percentage of games won by each player against 
all other players. In general, players that used more 
features won more games; this suggests that including 
those features either improved the evaluation function’s 
quality, the learning rate, or both. As expected, Player 
ABCDE, which used all four additional features, 
performed relatively well against the other players. 
Somewhat surprisingly, Player ADE won marginally more 
games than Player ABCDE (though in their head-to-head 
matchup, Player ABCDE won 53 of 100 games). In a few 
cases, adding an individual feature actually caused worse 

performance. For example, Players AC and AE both won 
fewer games overall than Player A. 
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Win 
% 

42 43 46 46 46 48 48 49 50 52 54 54 54 55 55 56

Table 1: Winning percentages of each player in a round-
robin tournament with all other players. 

 
 To evaluate the incremental benefit of including each 
individual high-level feature, we considered all of the 
players that did not use that feature and computed the 
percentage improvement in number of games won when 
that feature was added. Table 2 shows the average number 
of additional games won when each of the four features 
was added. Overall, each feature showed a positive 
improvement when included in the input. The most 
beneficial feature was D, the size of a stone’s block. The 
next most beneficial feature was E, the number of nearby 
friendly and enemy stones. We believe that Feature B, the 
distance from the edges, is more relevant for larger board 
sizes, where there is much more of a center region. Also, 
we suspect that Feature C, the number of liberties, 
becomes a greater factor in the middle game, when life-or-
death issues occur more frequently. 
 

Feature Average 
improvement 

B 4% 
C 3% 
D 13% 
E 8% 

Table 2: Average number of additional games won when 
the individual feature was added to the input. 

 
 While it is not surprising that the players using more 
features generally did better than players using fewer, we 
expected there to be a larger difference in winning 
percentage between the best and worst players. One 
possible explanation is that the degree of learning was not 
high enough for the additional feature information to make 
a large difference. Another possible explanation is that the 
features we chose are beneficial but not critical to accurate 
move evaluation.  

Previous Work 
Machine learning has long been an appealing approach to 
constructing evaluation functions for strategy games. It 
promises not only to reduce the level of human effort 
required but also to identify and represent knowledge that 
may not be easy to encode manually. The challenges 
include choosing an appropriate representation language, 
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devising an efficient learning algorithm, and obtaining 
beneficial training experience. 
 When classified training data sets are available, 
traditional supervised learning approaches have been used 
to learn various aspects of game play in Go. Using a 
database of expert games and treating each played move as 
correct and every other legal move as incorrect, Dahl 
trained a neural network to identify stone patterns with 
“good shape” vs. those with “bad shape” (Dahl 1999). In 
related work, Enderton used neural networks for move 
ordering and forward pruning of selective search in his 
Golem Go program (Enderton 1991), and Stoutamire used 
hashed sets of patterns rather than neural networks to 
identify good and bad shape (Stoutamire 1991). Using 
neural networks in conjunction with automatic feature 
extraction methods and informed pre-processing, van der 
Werf and colleagues learned to predict good local moves 
from game records (van der Werf, et.al. 2002). 
 Among reinforcement learning approaches, Tesauro first 
showed how to apply TD-learning of neural networks to 
strategy games with his TD-Gammon program, a world 
class backgammon player (Tesauro 1995). Schraudolph 
and colleagues applied the same approach to Go with more 
modest success (Schraudolph, et.al. 1994). Enzenberger 
attempted to integrate this approach with manually 
encoded expert Go knowledge in his Neurogo program 
(Enzenberger 1996). 

Conclusions and Future Work 
In this paper, we described an approach for learning 
opening strategy in the game of Go by training a neural 
network evaluation function using TD-learning. To focus 
on opening strategy, we played only the opening moves 
and then employed an “expert” Go program to play out and 
score positions at the end of the opening. We also 
presented an experimental methodology in which we 
trained 16 computer players, each taking as input a 
different combination of four higher-level features, and we 
compared the resulting players with each other. While 
there remains ample room for improvement, the 
experimental results indicate that our approach is effective 
for learning opening strategy and that all four higher-level 
features help improve the quality of the learned evaluation 
function, the learning rate, or both. 
 While this research itself is specific to the game of Go, it 
has ramifications for other work in machine learning. First, 
it provides an example of how TD-learning of neural 
networks can be applied even in situations where the 
interval between reinforcement signals is normally quite 
long. Second, it provides a methodology for comparing the 
relative benefit of various features to the quality of a 
learned evaluation function. 
 Looking forward, we hope to build upon our work in 
several ways. First, we plan to try other network structures, 
input features, and output representations, e.g., those that 
simply represent the game-theoretic value of a position. 
Second, we plan to run experiments on larger board sizes. 

While our approach is directly applicable to 13 x 13 and 
19 x 19 boards, it will require much more computation 
time, most of which is used by GNUGo to play out games. 
Third, we plan to learn other aspects of game play besides 
opening strategy. One possibility would be to learn joseki, 
the common patterns of play that are often hard-coded into 
the pattern matchers of many programs. Fourth, we plan to 
explore ways to combine a priori Go knowledge with our 
learning approach. Like earlier efforts (Enzenberger 1996), 
we hope to develop effective methods for integrating 
learning and other AI techniques in a Go-playing system. 

Acknowledgements 
This work was supported by the National Science 
Foundation under Grant No. 9876181, and by Middlebury 
College.  
 

References 
Dahl, F. 1999. Honte, a Go-Playing Program Using Neural 
Nets. International Conference on Machine Learning 
Workshop on Machine Learning in Game Playing. 
http://www.ai.univie.ac.at/icml-99-ws-games/.  
 
Enderton, H. 1991. The Golem Go Program. Carnegie-
Mellon University Technical Report #CMU-CS-92-101. 
 
Enzenberger, M. 1996. The Integration of A Priori 
Knowledge into a Go Playing Neural Network. Internet. 
http://www.markus-enzenberger.de/neurogo.html. 
 
Hertz, J., Krogh, A., and Palmer, R. 1991. Introduction to 
the Theory of Neural Computation. Addison-Wesley. 
 
Kim, J. and Soo-hyun, J. 1997. Learn to Play Go, Volume 
1, 2nd Edition. Good Move Press. 
 
Müller, M. 2000. Computer Go. In Artificial Intelligence 
Journal 134(1-2): 145-179. 
 
Schraudolf, N., Dayan, and P., Sejnowski, T. 1994. 
Temporal Difference Learning of Position Evaluation in 
the Game of Go. In Advances in Neural Information 
Processing Systems 6. Morgan Kaufmann. 
 
Stoutamire, D. 1991. Machine Learning, Game Play, and 
Go. Case Western Reserve University Report #TR91-128. 
 
Sutton, R. 1988. Learning to Predict by the Methods of 
Temporal Differences. In Machine Learning 3:9-44. 
 
Tesauro, G. 1995. Temporal Difference Learning and TD-
Gammon. In Communications of the ACM 38(3):58-68. 
 
van der Werf, E. Uiterwijk, J., Postmas, E., and van den 
Herik, J. 2002. Local Move Prediction in Go. In 
Proceedings of the 3rd International Conference on 
Computers and Games. Edmonton, Canada. 

438    FLAIRS 2003   


