
Classification of Natural Language Sentences using Neural Networks

Sergio Roa and Fernando Nino
National University of Colombia
Department of Computer Science

Ciudad Universitaria
Bogota, D.C., Colombia

s.roa@computer.org
lfnino@ing.unal.edu.co

Abstract

In this work the task of classifying natural language sen-
tences using recurrent neural networks is considered. The
goal is the classification of the sentences as grammatical or
ungrammatical. An acceptable classification percentage was
achieved, using encoded natural language sentences as ex-
amples to train a recurrent neural network. This encoding is
based on the linguistic theory of Government and Binding.
The behaviour of the recurrent neural network as a dynam-
ical system is analyzed to extract finite automata that repre-
sent in some way the grammar of the language. A classifier
system was developed to reach these goals, using the Back-
propagation Through Time algorithm to train the neural net.
The clustering algorithm Growing Neural Gas was used in the
extraction of automata.

Introduction
Neural networks have been widely used in classification
tasks and, in particular, multilayer feedforward networks
are well-known and broadly implemented. However, in the
case of grammars, it may be verified that recurrent neural
networks have an inherent ability to simulate finite state
automata (Haykin 1999), from which grammars of regular
languages are inferred. The behaviour of a recurrent neural
net (RNN) as a dynamical system can be analyzed (Haykin
1999) to construct a finite state automaton (Giles et al. 1992;
Omlin & Giles 1996; Lawrence, Giles, & Fong 2000). How-
ever, regarding the natural language processing, it must
be noted that grammars of natural languages cannot be
completely represented by finite state models, due to their
hierarchical structures (Pereira & Shabes 1992). Neverthe-
less, it has been shown that recurrent networks have the
representational power required for hierarchical solutions
(Elman 1991), and therefore, a type of RNN for natural
language processing, called Elman network, is studied in
this work.

This article describes the use of a RNN to classify
natural language encoded sentences by their grammatical
status (grammatical or ungrammatical), using the encoding
assumed by the Government and Binding theory of syntax
(GB-theory) (Chomsky 1981). The objective of the RNN

Copyright c© 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

is to produce the same judgements as native speakers on
the grammatical/ungrammatical pairs, and to infer some
representation of the grammar, expecting that the neural
network learns in some way grammatical features. In recent
years, diverse architectures of RNNs have been developed
and used to extract automata for grammatical inference
(Giles et al. 1992). In this work, based on the research
of Lawrence, Giles, & Fong, the capacity of the Elman
recurrent neural network (Elman 1991) to classify correctly
natural language sentences is shown. The Elman network
has been used previously in some natural language process-
ing tasks (Stolcke 1990) and is used here, because of the
good results found in its training (Lawrence, Giles, & Fong
2000). An implementation of the Backpropagation through
time (BPTT) algorithm, specifically adapted to the problem,
was developed and used to train the network, achieving an
improved optimization of the algorithm convergence with
respect to previous works (Lawrence, Giles, & Fong 2000;
Roa & Nino 2001). Finally, the behaviour of the net as a
dynamical system was analyzed to extract the knowledge
acquired by the Elman neural net, in this case finite au-
tomata that represent some of the syntactic structures found
in the language. The clustering algorithm called Growing
Neural Gas network (Fritzke 1997) was used to reach these
goals, obtaining improved results compared to anterior
works.

The rest of this article is organized as follows. First, the
design of the classifier system is described, i.e., the Elman
network, its topology and the training algorithm used. Then,
the results of this classification are presented. Finally, the
automata extraction process is explained in detail.

Design of the classifier system
The input data are encoded sentences of the English lan-
guage. These examples were taken from the investigation
described on the article of Lawrence and others (2000).
The neural network was trained using the same examples,
expecting the same judgements as native speakers on the
grammatical/ungrammatical pairs. Consequently, without
having any knowledge about the components assumed by
the linguistic theory described above, in this case positive
and negative examples are used, trying to exhibit the
same kind of discriminatory power that the linguists have
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found using the GB-theory (Lawrence, Giles, & Fong 2000).

The GB-theory assumes four primary lexical categories,
which are verbs (v), nouns (n), adjectives (a) and preposi-
tions (p). The other four classes are complementizer (c),
determiner (det), adverb (adv) and marker (mrkr). Besides
this categorization, a subcategorization of the classes is also
defined, i.e., the categories are subcategorized depending on
the context. Following the GB-theory and using a specific
parser, the subcategorization was made by Lawrence, Giles,
& Fong to obtain the encoded examples used in this work.
For example, an intransitive verb, such as sleep, would be
placed into a different class from the transitive verb hit.
Similarly, verbs that take sentential complements or dou-
ble objects, such as seem, give or persuade, would be rep-
resentative of other classes. Hence, the encoding resulted
in 8 classes, categorized as follows: 9 classes of verbs, 4
of nouns, 4 of adjectives, 2 of prepositions. The remaining
classes do not have subcategorization. Table 1 shows some
examples of sentences, their respective encoding and gram-
matical status, where 1 means grammatically correct and 0
incorrect.

Sentence Encoding Grammatical

Status

I am eager for John to be here n4 v2 a2 c n4 v2 adv 1

n4 v2 a2 c n4 p1 v2 adv 1

I am eager John to be here n4 v2 a2 n4 v2 adv 0

n4 v2 a2 n4 p1 v2 adv 0

I am eager to be here n4 v2 a2 v2 adv 1

n4 v2 a2 p1 v2 adv 1

Table 1: Encoded sentences and grammatical status.

As shown in Table 1, some sentences have different en-
codings, because the parser was developed in a free-context
manner (Lawrence, Giles, & Fong 2000). Some sentences
presented contradictory results, i.e., different grammatical
states for the same sentence, thereby these examples were
eliminated. The encoded sentences are processed using a
parser and encoded again to be presented properly to the
neural net. A normalized encoding for the subcategories
of the 4 principal categories is used. For example, the
subcategories for nouns would be: Not a noun = 0, noun
class 1 = 0.5, noun class 2 = 0.667, noun class 3 = 0.833,
noun class four = 1. The remaining categories, which do not
have subcategorization, have a value of 1. This encoding
was defined using a linear order, depending on similarities
between subcategories.

The output data or desired responses are originally 0 or 1
(grammatically correct or incorrect), but values of 0.9 and
0.1 were given to the network, to avoid the saturation of
the activation function of each neuron (Lawrence, Giles, &
Fong 2000). 365 training examples were presented, equally
distributed in correct and incorrect examples.

Topology of the recurrent neural network
In this work, the Elman recurrent neural network (Elman
1991), shown in Figure 1, was used. The data were input
to the neural net using a window of size 2, through which
sentences are entered in blocks of each two words. Each
window consists of 8 neurons, corresponding with the 8 lex-
ical categories, i.e., 16 neurons overall. The value received
by each neuron is the corresponding one for the subcategory
or 0.0 if the neuron does not correspond with those category.
For example, the input of the encoded sentence “n1 v1”
would correspond to 0.5 for the first neuron, that represents
nouns, and 0.0 for the next seven neurons of the respective
window, 0.0 for the first neuron in the second window, 0.5
for the second neuron corresponding with verbs, and 0.0 for
the rest.

The use of a window is relevant because permits the tem-
poral processing of each sentence, allowing the extraction of
information acquired by the net as dynamical system. In this
case, some finite automata were extracted. For the case of a
window of size 2, transitions of two words in the constructed
automaton may be predicted, although in this work the use of
a window of size 1 was also investigated, reaching good re-
sults in the convergence of the algorithm and the extraction
of automata with one-word transitions. The use of a large
window (input window equal to the longest sentence) was
also investigated, without observing the behaviour expected
as dynamical system, because the network does not have to
store any information (states and rules) during the process-
ing of the sentence; it simply maps the inputs directly to the
classification. Figure 1 shows this process and the network
topology.

n4 v2 a2 c n4 v2 adv

. . . z−1

. . .

Outputs

Hidden nodes

Input nodes

Figure 1: Use of the window in the Elman recurrent network

The architecture of the net consists of 16 neurons in the
input layer for a window of size 2, 20 in the hidden layer and
2 in the output layer, using bias inputs. This topology pre-
sented the best results for the convergence of the algorithm.
The first neuron in the output layer has a desired response of
0.9 if the sentence is correct and 0.1 otherwise. The second
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neuron gets the desired responses of 0.1 and 0.9 respectively.
Thus, these neurons classify the sentences as grammatical or
ungrammatical.

Network training
An adapted version of the BPTT algorithm (Williams &
Peng 1990; Haykin 1999) was implemented. This algo-
rithm is commonly used to train recurrent networks and is
an extension of the standard algorithm. It is derived by un-
folding the temporal operation of the net into a feedforward
network, holding the synaptic weights. The algorithm pre-
sented in this article is based on the Truncated BPTT and the
Epochwise BPTT algorithms (Williams & Peng 1990). Let
T (n) be the set of indices j of neurons for which exists a de-
sired response dj such that the output yj of the j-th neuron
should have at time n. Then, the error signal is defined by:

ej(n) =

{

dj(n) − yj(n) if j ∈ T (n)

0 otherwise.
(1)

The total error is described as follows:

E(n) =
1

2

∑

j

e2
j (n). (2)

The learning goal is the minimization of the total error
over some appropriate period of time [n0, n1], defined by

Etotal(n0, n1) =

n1
∑

n=n0

E(n). (3)

For this particular task, the period [n0, n1] is represented
by a temporal pattern, i.e., the input of a whole sentence,
where n0 is the initial time step of processing (first word1)
and n1 is the final time step (last word(s)). Therefore, the
topology of the net at the end of the forward propagation
can be viewed as a multilayer feedforward network, with as
many hidden layers as the magnitude of the interval [n0, n1].
This process can be observed in Figure 2, where ~x is the
input vector, ~w is the weight vector, ~y is the output vector
and there are 3 steps of processing (e.g., a sentence of three
words using a window of size 1).

The backpropagation step is performed when the current
sentence is processed throughout. Let T (n), H(n1) and
H(n) be the set of indices of neurons in the output layer,
in the last unfolded hidden layer and in a hidden layer, re-
spectively. The local gradients are defined as

δj(n) =























ϕ′

j(vj(n))ej(n) if n = n1 and j ∈ T (n)

ϕ′

j(vj(n))
∑

k
wkjδk(n) if n = n1, j ∈ H(n1)

and k ∈ T (n)

ϕ′

j(vj(n))
∑

k
wkjδk(n + 1) if n0 6 n < n1,

j ∈ H(n), k ∈ H(n + 1)

(4)
where ϕ′

j(vj(n)) is the derivative of the activation function
at time n for neuron j, given the activation potential vj . In
this case, the logistic function was used. It can be observed

1Or 2 words for the case of a window of size 2

xi
�

�

�

�

w
(1)
ji

w
(2)
kj...

...

�

�

�

�

w
(2)
ki

w
(3)
lk...

...

�

	




�

w
(3)
li

w
(O)
ml

...
...

y
(O)
m

Time 1

Time 2

Time 3

Input layer Hidden l. 1 Hidden l. 2 Hidden l. 3 Output layer

Figure 2: Forward propagation in the BPTT algorithm.

that the backpropagation starts in the output layer and con-
tinues until the first layer, only taking into account the un-
folded layers for the current sentence. Let I(n) denote the
set of indices for the neurons in the input layer. Then, the
weight updates are calculated as follows:

∆wji =















η
∑n1

n=n0
δj(n)xi(n) j ∈ H(n), i ∈ I(n)

η
∑n1

n=n0+1
δj(n)yi(n − 1) j ∈ H(n), i ∈ H(n − 1)

ηδj(n)yi(n) j ∈ T (n), i ∈ H(n1)

and n = n1.

(5)
The equation 5 shows that, for the feedback connection

(second case), the gradient at n0 is not considered, because
the output yi(n − 1) corresponds with the processing of
the previous sentence. Likewise, for the last case, i.e., the
connection between the hidden layer and the output layer,
only the local gradient for the output layer is considered.
This may be explained because of the processing of the
output layer just at time n1.

The average total error was used as performance measure
at the current training epoch:

Eavg =
1

N

N
∑

t=1

Etotal(t) (6)

for the t-th training example from N in total. The learn-
ing rate η at time t is adjusted using a search-then-converge
schedule of the form η0

1+ t

τ

, where η0 = 0.2 is the ini-

tial learning rate and τ is a constant. This schedule is
used to avoid parameter fluctuation through a training cy-
cle, preventing a decrease in the network training perfor-
mance (Haykin 1999; Lawrence, Giles, & Fong 2000). The
stochastic update2 was used and, in addition, the training ex-
amples were randomly presented, avoiding the convergence
to local minima (Haykin 1999). The weights were initialized

2Each pattern (the whole sentence) is presented and the back-
propagation is executed immediately
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using uniformly distributed random numbers in the range
[−2, 2], which presented better results.

Experimental results
Acceptable results were found in the classification of sen-
tences. 365 examples were used in the training phase, 184
grammatical and 181 ungrammatical. The results in cor-
rect classification percentage and final error (Table 2) were
very similar using windows of size 1, 2 and 15 (the longest
sentence size). The values were taken after 4000 epochs of
training. The same analysis was performed for the test set,

Window Classification Error

1 100% 0.00013
2 100% 0.00019
15 100% 0.00031

Table 2: Results over the training set.

consisting of 135 sentences (96 correct and 39 incorrect).
The results are shown in Table 3, also for both correct and
incorrect examples.

Window Percentage of correct classification
Grammatical ex. Ungrammatical ex. Total

1 59.38% 69.23% 62.22%
2 56.25% 82.05% 63.70%
15 56.25% 79.49% 62.96%

Table 3: Results over the test set.

These results prove that the recurrent network has the
ability to learn grammatical structures involved in its neu-
rodynamics. However, the results for the test set were in-
ferior, because the training examples possibly do not repre-
sent much of the syntactic structures found in the English
language. It may be concluded that the recurrent network
learns some representation or part of the grammar, due to
the small proportion of training examples used in this inves-
tigation3; additionally, the separation into the training and
test sets can create a test set which lacks some grammatical
structures.

Automata Extraction
The knowledge acquired by a RNN may be extracted,
analyzing the net as a dynamical system. The ordered triple
of a discrete Markov process ({state; input (word(s)) →
next state}) can be extracted from a recurrent network,
constructing equivalent finite automata which represent
some of the language features. This can be done by clus-
tering the activation values of the recurrent state neurons
(Omlin & Giles 1996). In this case, the state of an Elman
network is represented by the hidden layer neurons (Haykin
1999). However, it is firmly established (Chomsky 1956)
that the syntactic structures of natural language cannot be
parsimoniously described by regular languages. Certain

3The dataset has been hand-designed by GB linguists
(Lawrence, Giles, & Fong 2000)

phenomena are more compactly described by context-
free grammars, recognized by push-down automata, or
context-sensitive grammars, recognized by linear bounded
automata (Pollack 1991). Some researches, for example,
have dealt with the problem of analyzing a RNN as a
chaotic dynamical system, studying the fractal attractors
found in its neurodynamics, trying to understand how RNNs
can represent more than a regular language and how they
can learn a complex set of grammatical rules (Pollack 1991).

Once the states and transitions are extracted from the
RNN (propagating the set of sentences), a clustering
algorithm was used to categorize these states into different
classes, searching a reduction of dimensionality and expect-
ing that the recurrent network quantize its state space during
training. The algorithm used in this case is the Growing
Neural Gas network (Fritzke 1997). It is an incremental
network model which is able to learn important topological
relations in a given set of input vectors, in this case the state
vectors, by means of a simple Hebb-like learning rule. The
main idea of this method is to successively add new units
(neurons) to an initially small network by evaluating local
statistical measures gathered during previous adaptation
steps. The network topology is generated incrementally by
Competitive Hebbian learning (Martinetz 1993): at each
adaptation step a connection between the winner and the
second-nearest unit is created. The resulting graph is a
subgraph of the Delaunay triangulation corresponding with
the set of reference vectors of the neurons. This subgraph,
which is called the induced Delaunay triangulation, is
limited to those areas of the input space where data are
found. The induced Delaunay triangulation has been shown
to optimally preserve topology in a very general sense
(Martinetz 1993). Furthermore, since the reference vectors
are adapted to the input space, a mechanism to remove
edges that are not valid is needed. This is done by an aging
mechanism. The algorithm ends depending on a given
maximal count of neurons or a minimal quantization (or
distortion) error (Fritzke 1997).

When the clustering phase is finished, automata are con-
structed using the reference vectors of the winner neurons,
which categorize the extracted states of the RNN, by stor-
ing the new ordered triple {corresponding reference vector
of a state; input (word(s)) → corresponding reference vec-
tor of the next state}. In general, non-deterministic finite
state automata were extracted. In order to obtain more in-
formation, automata were extracted using both training set
and complete set. The results for the case of one-word tran-
sitions (use of a window of size 1) and two-word transitions
are shown in Table 4 and in Table 5, respectively. Columns
3 and 4 show the percentages of correct classification. In ad-
dition, these tables show the number of states extracted, the
set of examples used to extract automata, and the final quan-
tization errors. When the complete set is used to construct
an automaton, a better classification for both training and
test sets is obtained, because the automaton includes more
knowledge.
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Nr. of states Used set Classification Error
Training set Test set

57 Training 81.42% 47.79% 0.15
57 All 81.69% 69.12% 0.17
94 Training 88.25% 47.06% 0.09
94 All 86.89% 69.12% 0.09
173 Training 91.53% 41.91% 0.03
181 All 89.62% 60.29% 0.04

Table 4: Results (six automata with one-word transitions).

Nr. of states Used set Classification Error
Training set Test set

57 Training 96.45% 44.12% 0.09
58 All 95.36% 63.24% 0.10
87 Training 97.27% 43.38% 0.03
89 All 96.45% 63.24% 0.04
143 Training 98.36% 41.91% 0.002
150 All 96.99% 63.24% 0.007

Table 5: Results (six automata with two-word transitions).

Conclusions
In this work, recurrent neural networks were used to classify
natural language sentences. The goal was the classification
of the sentences as grammatical or ungrammatical. Once
the neural network was trained, automata that represented in
some sense the grammar of the language recognized by the
neural network were extracted. The results demonstrated
acceptable performance of the extracted automata, very
close to 100% for the case of two-word transitions. These
results were similar to those obtained by the respective
RNNs, proving the capacity of RNNs to simulate finite
state automata. Using a higher level of quantization, better
results were found. Therefore, it was also shown the ability
of the Growing Neural Gas algorithm to discover properly
statistical features found in the state space of this RNN. Ad-
ditionally, it may be deduced that automata represent some
of the syntactic characteristics, although it is known that
they cannot broadly represent the structures found in natural
language. It is observed that automata with two-word
transitions presented better results in classification, though
automata with one-word transitions could possibly describe
more effectively the grammar. This could be related to the
complexity of the clustering process. Furthermore, analyz-
ing the recurrent net as a chaotic dynamical system might
help to understand its ability to learn complex languages, in
order to obtain better solutions.

In general, the results proved the capacity of RNNs to
learn at least some of the grammatical structures found in
the natural language, considering a correct classification per-
centage of 100% in the training examples both for the case
of a window of size 1 and size 2 when the improved learning
algorithm was developed, specially due to a correct chosing
of the weight adjustments and the process of unfolding the
temporal operation of the net. However, the results in the
test set were inferior, possibly due to the lack of represen-
tative structures found in the training set. It is expected a
better generalization using more examples, but perhaps an

increased difficulty in training. Furthermore, this problem
cannot be treated as a common pattern classification task,
considering the way in which sentences are presented to the
network, using a temporal processing. RNNs can succes-
fully represent a complex set of syntactic structures if they
are able to incorporate internal representations of the data.
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