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Abstract

This paper deals with the problem of merging descriptions
of approximate spatial location specified at different levels
of granularity. We distinguish between the roughness of an
approximation at a given level of granularity and the inde-
terminacy that arises when approximations are transformed
from one level of granularity to another. Indeterminacy arises
in particular when an approximation is transformed (lifted)
to a finer level of granularity and when a approximation in a
gappy level of granularity (e.g., a map with ’white spaces’ of
unknown territories) is transformed (generalized) to a coarser
level of granularity.

Introduction
Understanding approximate reference to spatial and tempo-
ral location is fundamental to the analysis of sentences like

A John is in Hyde Park.
B The Rocky Mountains are located in

Montana, Idaho, Wyoming, Nevada, Colorado, Utah,
Arizona, and New Mexico.

In this context it is important to understand (a) the role of
frames of reference and their structure and (b) the way ob-
jects and frames of reference relate to each other. There is
an extended body of literature dealing with these questions
(SC78; Tal83; Lev96).

Frames of reference hereby are hierarchical tree-like
structures like the subdivision of London into Burroughs
such as Westminster, Camden, etc at one level of granularity
and Parks and neighborhoods like Hyde Park and Soho at
another level of granularity. Within a given frame of refer-
ence approximate location can be specified at multiple levels
of granularity. For example, as an alternative to (A) one can
say

A′ John is in London.

and to (B) one can say

B′ The Rocky Mountains are located in the
western part of the United States.
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Often it is necessary to switch between levels of granular-
ity. This paper focuses on cases where a location is specified
at one level of granularity and one wants to derive a descrip-
tion of this location at a coarser or finer level of granularity.
This kind of reasoning is required, for example, in order to
derive conclusions from descriptions of approximate loca-
tion which come from different sources or are collected in
different contexts or for different purposes.

This paper emphasizes the distinction between the rough-
ness of an approximation at a given level of granularity
and the indeterminacy that arises when the approximation
is transformed to a different level. In order to address this
issue we start with a discussion of hierarchically organized
frames of references and levels of granularity within them.
We then discuss the notion of rough approximation with re-
spect to these levels of granularity. Afterwards the notion of
approximation is generalized in order to take the indetermi-
nacy into account.

Frames of reference
In this section we review the notions of granular partitions,
levels of granularity, and mereological fullness which were
originally discussed in (BS02) and (Bit02).

Granular partitions
A granular partition is a triple,

G = < (Z,⊆), (∆,≤), π > .

Here (Z,⊆) is a cell structure with a partial ordering defined
by ⊆ which forms a finite tree. (∆,≤) is the target domain
which is a partial ordering which satisfies the axioms of gen-
eral extensional mereology (GEM) (Sim87). The projection
mapping π : Z → ∆ is an order-homomorphism from Z
into ∆ such that for all z1, z2 ∈ Z and for all o1, o2 ∈ ∆ we
have:1

z1 ⊆ z2 ⇒ (π z1) ≤ (π z2)
(π z1) ≤ (π z2) ⇒ z1 ⊆ z2

(∃x)(x ≤ (π z1) and x ≤ (π z2)) ⇒ (z1 ⊆ z2 or z2 ⊆ z1).

Consider Figures 1 and 2. The left part of Figure 1 shows
a tree with minimal cells labeled ‘a‘, ‘b‘, ‘c‘, ‘d‘, ‘e‘, ‘f ‘ and

1The notion of granular partitions introduced in (BS02) is more
general. Here we focus on granular partitions which are mereolog-
ically strong monotonic.
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non-minimal cells labeled ‘r‘, ‘s‘, ‘t‘, ‘u‘. The targets of the
cells are regions which are shown in Figure 2, e.g., π(‘a‘) =
a, π(‘b‘) = b, etc. (The target of the root cell which is the
plane as a whole is omitted here.) Another example of a
granular partition is a map of the states of the United States.
Here the cell structure is formed colored regions with labels
like ‘Montana‘. Targets in reality are the actual states like
the state Montana. For more examples see (BS02).

δ0 = {r}
δ1 = {s, f}
δ2 = {t, u, e, f}
. . .
δmin = {a, b, c, d, e, f}

Figure 1: A tree structure with levels of granularity

Figure 2: Depictions of the levels of granularity δ1, δ2, δmin.

Since we are only interested in those entities in ∆ which
are targeted by cells in Z it will be sufficient to refer to the
cell structure as a proxy for the granular partition as a whole.
Consequently we will write (Z,⊆) as an abbreviation for
< (Z,⊆), (∆,≤), π >. We then use the names of objects in
order to refer to the denoted portions portions of reality as
well as to the targeting cells synonymously.

Levels of granularity
Let G = (Z,⊆) be a granular partition and let G the cor-
responding tree representation. A level of granularity δ in
G is then a cut in the tree-structure, where a cut in G is a
subset of Z defined inductively as follows: (1) {r} is a cut,
where r is the root of the tree; (2) Let d(z) denote the set of
immediate subcells of z and let C be a cut and z ∈ C where
d(z) �= ∅, then (C −{z})∪ d(z) is a cut. This definition en-
sures that (i) the elements forming a level of granularity are
pair-wise disjoint, i.e., ¬∃z1, z2 ∈ C : z1 ⊂ z2 or z2 ⊂ z1;
(ii) levels of granularity are exhaustive in the sense that
∀z ∈ Z : if z �∈ C then ∃z′ ∈ C : z ⊆ z′ or z′ ⊆ z.2

Cuts in the tree structure in the left of Figure 1 are listed in
the right part of the figure. For further details see (RS95).

We define a partial order on cuts C and C ′ of a given tree
as: C � C ′ if and only if ∀x ∈ C : ∃y ∈ C ′ such that x ⊆

2Our definition captures only certain necessary conditions that
characterize levels of granularity, namely (i) and (ii), which are
purely mereological in nature. For a more complete characteri-
zation also metrical notions are needed, for example in order to
require that objects forming a certain level of granularity have
roughly the same size. For the purpose of this paper, however, the
presented definition is sufficient.

y. The corresponding lattice is called the granularity lattice,
G of G. This lattice has the root cell as maximal element –
which has the coarsest level of granularity – and the set of
leaf-cells as as minimal element – which has the finest level
of granularity. For every pair of cuts in a tree there exists
a greatest lower and a least upper bound. In our example
above we have the ordering: δmin � δ2 � δ1 � δ0.

Mereological fullness
We can now distinguish two classes of granular partitions:
Partitions which are such that whichever level of cells we
choose, cells at that level sum up to cells at the next superor-
dinate level. The partition in Figures 1 and 2 is of this type.
We call such granular partitions full.

On the other hand there are granular partitions which do
not have this property. As an example consider the partition
in Figures 1 and 2 without a as a minimal cell but by as-
suming that the root cell covers the whole plane and that δ1

and δ2 sum up to δ0 respectively. In this case the level δmin
fails to sum up to the whole plane and in particular the cell
b fails to sum up to the cell t ∈ δ2. Instead of the cell a we
have ’empty space’ or a hole (which can be thought of as
space we know nothing about). Another example of a non-
full granular partition would be a partition which is formed
by the cells Hyde Park, Soho, Buckingham Palace, Down-
town, London, York, Edinburgh, Glasgow, England, Scot-
land, Great Britain, Germany, Europe and the corresponding
nesting.

Formally we define fullness as follows. Let G be a gran-
ular partition with tree representation G. A level of granu-
larity δ in G is full if and only if the mereological sum of its
cells is identical to the root-cell in the underlying granular
partition:

Full(δ) ≡ δ = {z1, . . . , zn} and root(G) = z1 + . . . + zn.

Obviously, the root cell is always full. A granular partition
is full if and only if all of its levels of granularity are full.
Otherwise it is non-full. For further discussion see (BS02).

Approximating location
The exact location of a spatial object is the region of space
taken up by the object. Every spatial object is located at a
single region of space at every moment in time. In this paper
we consider the world at some fixed time instant t. For the
purpose of this paper it will be sufficient to identify spatial
objects with the region at which they are located exactly at
t.

Approximate location is a binary relation between a the
exact region r of a spatial object and cells z1, . . . zn, which
belong to a certain level of granularity δ in a granular parti-
tion G = (Z,⊆). In the remainder we call G the reference
partition or frame of reference for the approximation and we
write δ in order to refer to a level of granularity in G.

Let R be a set of regions satisfying the axioms of GEM.
We approximate regions in r ∈ R by functions from the cells
in the level of granularity δ to the set Ω = {fo, po, no}. The
function which assigns to each region r ∈ R its approxi-
mation relative to δ will be denoted λδ : R → (δ → Ω)
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or λδ : R → Ωδ . Here Ωδ is a set of functions of signa-
ture α : δ → Ω which is called the approximation space of
the granularity-level δ. The value of (λr)z is fo if r cov-
ers all the of the cell z, it is po if r covers some but not
all of the interior of z, and it is no if there is no overlap
between r and z.3 For example, in Figure 3 (iii) we have
δ = {a, b, c, d, e, f} and ((λ s) a) = po, ((λ s) b) = fo, and
((λ q) b) = no.

Figure 3: Rough location of the regions q, s, v, t and z
within the levels of granularity δ1, δ2, and δmin.

We also write X instead of (λ x) in order to refer to the
rough approximation of x. Each approximation X ∈ Ωδ

stands for a set of approximated regions [[X]] which is de-
fined as: [[X]] = {r ∈ R | λr = X}. In Figure 3 (iii) we
have z, v ∈ [[V ]]. In Figure 3 (i) we have z, v, q, t ∈ [[V ]].

Indeterminacy and rough approximation
Approximations are determinate in the sense that within a
given level of granularity for every x there exists a unique
approximation X such that x ∈ [[X]]. We how discuss how
indeterminacy arises and how it is modeled.

How indeterminacy arises
Consider Figure 4 in which we have regions, x, x1, x2, x3,
which are approximated within a granular partition consist-
ing of five cells: z1, z2, z3, z4 and z = z1 +z2 +z3 +z4. As-
sume that the region x has an approximation (λ x)z = po.
If this is all we know about the approximate location of x,
then there is indeterminacy at the finer level of granularity
formed by the cells z1, z2, z3, z4. In Figure 4 this indetermi-
nacy is shown with respect to the cell z1: x could be like x1

and partially overlap z1; it could be like x2 and not overlap
z1 at all; or it could be like x3 which completely covers z1.
The same indeterminacy occurs in the cases of z2 . . . z4.

Figure 4: How indeterminacy arises in mereologically full
granular partitions.

A similar effect of indeterminacy arises when we derive
knowledge about approximation with respect to a coarser

3For details on the presented formalism see (BS98).

level of granularity from knowledge about approximation
with respect to a finer but non-full level of granularity. Con-
sider Figure 5 (b). Here we have a region x2 which is ap-
proximated within a granular partition consisting of four
cells: z1, z2, z3. We want to derive the approximation of
x2 with respect the root cell z. At the fine level of granu-
larity we have X2 zi = fo for 1 ≤ i ≤ 3 at the coarser
level of granularity. This is consistent with (X2 z) = fo as
one would normally expect but also it is also consistent with
(X2 z) = po – the case which is drawn in Figure 5 (b).

Figure 5: How indeterminacy arises in mereologically non-
full granular partitions.

Consequently, in the context of rough approximations in-
determinacy is characterized by a number of possible ap-
proximation values.

Indeterminate approximation
Consider the following subsets of the set Ω = {fo, po, no}:
{fo}, {po}, {no}, {fo, po}, {po, no}, {fo, po, no}. We call
this set of subsets the indeterminate counterpart of Ω, and
denote it by Ω̃. A function which assigns to each region
r ∈ R a mapping of signature α̃ : Z → Ω̃, i.e., an element
of Ω̃δ , will be called an indeterminate approximation func-
tion, denoted by λ̃δ : Z → Ω̃δ . Correspondingly we call a
mapping α̃ : Z → Ω̃ an indeterminate approximation and a
set of those functions an indeterminate approximation space
denoted by Ω̃δ . The value of (λ̃r)z is interpreted as a dis-
junction of possible relations between r and z. For example,
the value of (λ̃r)z is {po, no} if either r covers some but
not all of the interior of z or if there is no overlap between r
and z. We also write X̃ instead of (λ̃ x) in order to refer to
a rough approximation of x which is subject to this sort of
indeterminacy.

Let λ̃ : Z → Ω̃δ be an indeterminate approximation func-
tion. We now define a binary relation CR ⊂ Ωδ × Ω̃δ inter-
preted as x is a crisping of y:

CR(λ x, λ̃ x) ≡ ∀z ∈ δ((λ x)z ∈ (λ̃ x)z).

This means that (λ x) is a crisping of (λ̃ x) if and only if for
all cells z of the underlying granularity level δ we get (λ x)z
by choosing one element of (λ̃ x)z.

Valid and invalid crispings
There are valid and invalid crispings. To see the difference
consider the the following example. In Figure 4 indeter-
minacy arises when we try to derive an approximation of
x with respect to the cells z1, . . . , z4 from (X z) = po.

(i) (ii) (iii)
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This is reflected by the indeterminate approximation func-
tion (λ̃ x) zi = {no, po, fo} for 1 ≤ i ≤ 4. The configura-
tions (a), (b), and (c) in the figure show a valid crispings of
(λ̃ x). The crispings are valid because they represent ways
x could be given what we know from (X z) = po.

Now let λ̃ x be as defined above and consider two cases:
(i) Let α be a crisping CR(α, λ̃ x) with α zi = fo for 1 ≤
i ≤ 4. This α is clearly not a valid crisping of λ̃ x because
α implies that x covers the whole of z which contradicts our
assumption (X z) = po; (ii) Let α′ be a mapping such that
with CR(α′, λ̃ x) and α′ zi = no with 1 ≤ i ≤ 4. This is not
a valid crisping because α′ implies that x does not overlap z
which contradicts our assumption (X z) = po.

In non-full granular partitions, on the other hand, all com-
binatorially possible crispings, including (α zi) = fo and
(α′ zi) = no with 1 ≤ i ≤ 4 are valid as one can see in
Figure 5.

Let #A be the number of elements of the set A. A crisp-
ing (λ x) of an indeterminate approximation (λ̃ x) of a non-
empty region x at a granularity-level δ is valid if and only
if (a) (λ x) �= ⊥ and (b) (∀z ∈ δ((#(λ̃ x) z > 1) ⇒
(λ x) z = fo)) ⇒ x ∈ [[(λ x)]]. Here (a) rules out case (ii)
and (b) rules out case (i).

Stratified approximation spaces
Within a given frame of reference, approximate location can
be specified at multiple levels of granularity. As pointed out
in the introduction it is often useful to switch between lev-
els of granularity. We now introduce the formal structures
that facilitate switching between approximations at different
levels of granularity.

We define a stratified approximation space 4 as a structure

(G, Ω̃δ1 , . . . , Ω̃δn , Gen, Lift),

which consists of a granularity lattice, G; for each level
of granularity δ1, . . . , δn a corresponding indeterminate ap-
proximation space Ω̃δi with 1 ≤ i ≤ n; and two trans-
formation functions Gen[δi, δj ]and Lift[δj , δi] whenever
δi � δj .

The transformation Gen[δi, δj ] : Ω̃δi → Ω̃δj transfers
by coarsening an approximation α ∈ Ω̃δi from the level
of granularity δi, to an approximation α′ ∈ Ω̃δj on a
coarser level δj . Consider Figure 3 (ii) and (iii). Given
(Ṽ a) = {po}, (Ṽ b) = {po}, (Ṽ l) = {no} for
l ∈ {c, d, e, f} we want the transformation Gen[δmin, δ2] to
yield (Gen[δmin, δ2] Ṽ ) t = {po} and (Gen[δmin, δ2] Ṽ ) l =
{no} for l ∈ {e, u, f}. Consider Figure 5 (b). Given
(X̃2 l) = {fo} for l ∈ {z1, z2, z3} we want the transforma-
tion Gen[δz1,z2,z3 , δz] to yield (Gen[δz1,z2,z3 , δz] X̃2) z =
{po, fo}.

The transformation Lift[δj , δi] : Ω̃δj → Ω̃δi transfers
approximations from a coarser level of granularity δj to a
finer level δi in a similar manner.

4Stratified approximation spaces are a specific version of the
stratified map spaces defined in (SW98).

Generalization
Let (λ r) ∈ Ω̃δ be an approximation of granularity δi. A
granulation mapping Gen[δi, δj ] transforming approxima-
tions from the approximation space Ω̃δi to the coarser ap-
proximation space of level Ω̃δj is then defined as follows.
Let γλ̃ r

g⊆h = {(λ̃ r)g | g ⊆ h} ∈ PΩ̃ be the set of sets
of relations that under the assumption of indeterminacy may
hold between r and the subcells of h at granularity level δi.

Consider our five-cell granular partition with z1, z2, z3, z4

and z = z1 + z2 + z3 + z4 and assume (Ỹ1 zi) = {po} for
1 ≤ i ≤ 4. Then we have γỸ1

z1,...,z4
= {{po}}; If (Ỹ2 z1) =

{no} and (Ỹ2 zi) = {po, fo} for 2 ≤ i ≤ 4 then γỸ2
z1,...,z4

=
{{no}, {po, fo}}; and so on.

The elements of Ω̃ are ordered by the subset relation. We
obtain a lattice structure by taking the lattice operations join
and meet to be set union and intersection and by adding the
empty set as bottom element: (Ω̃ ∪ {},∪,∩). These oper-
ations generalize to operations on finite sets

⋃
A and

⋂
A

in the standard way. Assuming that the underlying granular
partition is mereologically full we can then define the gen-
eralization mapping ((Gen[δi, δj ] λ̃) r)h by distinguishing
the following cases:

⋂
γ

(λ̃r)
g⊆h

⋃
γ

(λ̃r)
g⊆h ((Gen[δi, δj ] λ̃) r)h

1 {po} − {po}
2 {no} {no} {no}
3 {no} �= {no} {no, po}
4 {fo} {fo} {fo}
5 {fo} �= {fo} {po, fo}
6 {po, fo} − {po, fo}
7 {no, po} − {no, po}
8 {no, po, fo} − {no, po, fo}
9 {} − {po}

Here row (1) is interpreted as: if
⋂

γ = {po} then no matter
what value

⋃
γ has, the result of ((Gen[δi, δj ] λ̃) r)h is

{po}. Row (2) is interpreted as: if
⋂

γ = {po} and
⋃

γ =
{no} then ((Gen[δi, δj ] λ̃) r)h = {no}.

For example, given Ỹ1 as defined above on level
{z1, z2, z3, z4} then we have

⋂
γỸ1

z1,...,z4
= {po} and there-

fore (Gen[δz1,...,z4 , δz] Ỹ1)z = {po}. Given Ỹ1 as de-

fined above then we have
⋂

γỸ2
z1,...,z4

= {} and therefore

(Gen[δz1,...,z4 , δz] Ỹ2)z = {po}.
The definitions represented in the table assume that the

underlying granular partition is mereologically full. Oth-
erwise we could not make the conclusions associated with
rows (2) and (4). Notice also that under the assumption of
mereological fullness the generalization of a crisp approxi-
mation yields a crisp approximation since under these con-
ditions only the cases 1, 2, 4 and 9 occur.

For generalization mappings between levels of granularity
in mereologically non-full partitions, the rows (2) and (4)
need to be revised as follows:

⋂
γ

(λ̃r)
g⊆h

⋃
γ

(λ̃r)
g⊆h ((Gen[δi, δj ] λ̃) r)h

2′ {no} {no} {no, po}
4′ {fo} {fo} {po, fo}
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Consider case (2′). Since the exact location r of an object is
always a non-empty region, and since the underlying granu-
lar partition is mereologically non-full it is always possible
that the ‘bigger’ region h ⊇ g is partially overlapped by r
even if none of the subcells of h is in δ is overlapped by
r (e.g., Figure 5 (c)). For this reason we have {no, po} as
possible relations even if we have

⋂
γ =

⋃
γ = {no}. Con-

sider case (4′). Since the underlying partition is mereologi-
cally non-full, it is always possible that the cells of finer level
of granularity do not sum up to cells at coarser level of gran-
ularity (e.g., Figure 5 (b)). For this reason we have {po, fo}
as possible relations even if we have

⋂
γ =

⋃
γ = {fo}.

Notice that in mereologically non-full granular partitions
it is not necessarily the case that for all h it holds that
Σ{z1 ⊆ h | z1 ∈ δ} �= h where ΣA is the mereological
sum of all elements of the set A. Therefore there are non-
valid crispings in the resulting indeterminate approximation
if Σ{z1 ⊆ h | z1 ∈ δ} = h holds for some h.

Lifting
The lifting transformations are defined as follows:

((λ̃ r) ◦ Lift[δj , δi]) h = ω2 if and only if
(λ̃ r)g = ω1 and g ⊆ h and g ∈ δi and h ∈ δj and
(i) if ω1 = {no} then ω2 = ω1 and
(ii) if po ∈ ω1 then ω2 = {no, po, fo} and
(iii) if ω1 = {fo} then ω2 = ω1

Since g is a subcell of h it follows that: (i) if h does not over-
lap a given region r then neither does g; and (ii) if h is a part
of r then so is g. Indeterminacy arises only in cases where r
and h partially overlap. This is because in this case r and g
may or may not overlap. In fact r may even contain g. For
lifting, mereological fullness does not need to be considered,
since it is not an additional source for indeterminacy.

Degrees of indeterminacy
Let X̃ and Ỹ be indeterminate approximations then X̃ is
of less or equal indeterminacy than Ỹ if and only if every
crisping of X̃ is also a crisping of Ỹ :

X̃ � Ỹ ≡ ∀X( if CR(X, X̃) then CR(X, Ỹ )).

Here � is clearly reflexive, transitive, and antisymmetric.
The application of Gen and Lift increases indeterminacy

in the sense that if generalization and lifting (lifting and gen-
eralization) transformations are applied successively to the
approximation X̃ the resulting approximation is of greater
or equal indeterminacy than X̃:

X̃ � Gen[δ1, δ2](Lift[δ2, δ1](X̃))
X̃ � Lift[δ2, δ1](Gen[δ1, δ2](X̃))

Conclusions
People often use systems nested regions (cells) that form hi-
erarchically organized tree structures (granular partitions) in
order to specify spatial location in an approximate manner.
Approximate location is specified in terms of relations be-
tween cells of a certain level of granularity in the granular

partition and the object/region in question. We called this
rough approximation.

We then discussed the distinction between roughness of
approximation the indeterminacy that arises when a rough
approximation is generalized or lifted, i.e., transformed to a
coarser or finer level of granularity. Rough approximations
are crisp no matter how coarse the underlying level of granu-
larity. This means that between the object/region in question
and each of the cells of a given level of granularity one and
only one relation holds. Indeterminacy, on the other hand,
is characterized by the fact that between the object/region
in question and each of the cells of a given level of gran-
ularity a disjunction of possible relations is specified. This
indeterminacy arises when a given (crisp) approximation is
transformed (lifted) to a finer level of granularity or an ap-
proximation in a mereologically non-full granular partition
is transformed (generalized) to a coarser level of granularity.
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