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Abstract

This paper presents new technique for discovering tem-
poral patterns when considered primitives are intervals.
Apriori technique is the most used one to deal with tem-
poral patterns using point primitives. An extension of
this technique is proposed by Höppner to deal with in-
terval primitives. In this paper, we show that it is not
necessary to discover all patterns, instead it is sufficient
to discover the set of optimum ”interesting” patterns,
which is smaller than the set of all significant patterns.
For this task, we will introduce a new approach proposal
to reduce the combinatorial explosion of generated pat-
terns. The resulting technique, called TPGIP (Temporal
Patterns Generation with Interval Primitives), is used
to discover the optimal set of interesting patterns effi-
ciently. Then, TPGIP explores some symmetric proper-
ties of interval algebra and uses partial patterns structure
to propose an efficient approach to explore the patterns
set in order to generate the candidate patterns. Some
experimental and comparative results are shown at the
end of this paper.

Key words: Temporal Sequence, Temporal Pattern, Tempo-
ral Matrix, Interval Primitives.

Introduction
Since its introduction, Discovery of Sequential Patterns
(AGRAWAL, IMIELINSKI , & SWAMI 1993) has become one
of the core of data mining tasks. Most of discovering ap-
proaches have been developed essentially in the punctual
context, assume static data, and they did not consider the
time complexity. The primitives are considered as a sin-
gle point in time. This problem has been addressed in
many domains such as planning (MOIZUMI 1998), speech
recognition (RABINER & JUANG 1993), telecommunication
networks (DOUSSON& DUONG 1999; OSMANI & L ÉVY
2000), and DNA applications (ANDRADE, CASADIO, &
MASOTTI 2001;JENSSENet al. 2002).

The problem of finding common characteristics of tem-
poral data requires a notion of similarity. It has an elegantly
simple problem statement, that is, to find the set of all inter-
val primitives and their temporal relationships expressed in
term of Allen’s temporal logic (ALLEN 1983).
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It is widely recognized that the set of temporal patterns
could rapidly grow to be unwieldy: The number of discov-
ered patterns grow exponentially with the number of prim-
itives and the database long. In this paper, we show that it
is not necessary to find all patterns to guarantee the patterns
set construction. We show that it is sufficient to consider
only the optimum subset of interesting patterns. Further, all
other patterns may be generated from the optimum subset.
Moreover, we can guarantee completeness of the optimum
subset of patterns, i.e. given the optimum subset of patterns;
all others can be found.

The outline of this paper is as follow: In section 2 we
develop the suitable notions of temporal patterns needed to
model the patterns problem when considered primitives are
intervals. Next, we present the evaluation function in order
to fix the observblity interval of temporal pattern. With this
definition, the task of interesting pattern enumeration is well
defined. In section 4, we propose an efficient technique, in-
troducing effective and simple optimization of Apriori tech-
nique (AGRAWAL & SRIKANT 1994). This optimization re-
duces the number of passes, and at the same time, at each
iteration pass, it reduces the number of considered patterns.
In section 5, we show some results of the new technique and
we give some comparative results.

Normalization
Most works where the objective is to discover similarities
consider point primitives with discrete set of dates. This
characteristic reduces the time and the space complexities
but offer lower expressiveness. Moreover, it does not cover,
for example, the primitives duration. In our approach, we
consider the works presented by (HÖPPNER2001;OSMANI
& L ÉVY 2000) and based on interval algebra properties
(ALLEN 1983).

The interval algebra considers the possible relations (see
Figure 1) between two interval primitives as the set of all
possible combinations of the two intervals on a directed line.
There exist thirteen relations consisting on seven basic rela-
tions: equals (eq), before (b), meets (m), overlaps (o), con-
tains (c), starts (s), is-finished-by (f), plus the converses of
the last six relations. The set of the interval relations is noted
I and defined as follow:

I = {b, b−1,m,m−1, o, o−1, if, if−1, c, c−1, s, s−1, eq}
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Definition 1 (Interval Primitive) An interval primitive is a
triplet (bA, sA, fA) such thatsA denotes the primitive iden-
tifier and [bA, fA] the occurrence interval ofsA, wherebA
andfA are point primitives andbA < fA.
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Figure 1: Allen’s interval relationships

The normalization process consists to organize the inter-
val primitives by exploiting the partial order property be-
tween intervals. However, for the cases where two inter-
val primitives are identical, we define an additional ordering
relation (for example identifier names lexicographic order).
Than, the set of the ordered interval primitives forms a series
of triplets known as thesequenceof the interval primitives
given as follow:

(b1, s1, f1), (b2, s2, f2), . . . , (bi, si, fi), . . . , (bn, sn, fn)
wherebi < fi andbi ≤ bi+1.

Remark 1 When the interval limits are not required, we
note the intervals sequence as(s1, . . . , si, . . . , sn)

The second property of the normalization process is the
maximality of interval primitives in the sense that if the se-
quence contains two primitives(bi, si, fi) and (bj , sj , fj)
and thatsi = sj then si{b,m}sj . If this assumption is
violated, the two primitives are substituted by their union
(min(bi, bj), si,max(fi, fj)).
Definition 2 (Temporal Pattern) A temporal pattern of di-
mensionn, notedn− TP , is defined as a pair(s,R) where
s represents the series of interval primitives and the matrix
R ∈ In×n refers the relationships between these primitives.

Example 1 Figure 2 presents an example of interval prim-
itives sequence. From this example, we can extract the fol-
lowingn− TP :

• 1− TP : ((s1); (eq))
• 2− TP : ((s2, s3); (eq,m), (m−1, eq))
• 3− TP : ((s3, s4, s5); (eq, o, b),

(o−1, eq, o),
(b−1, o−1, eq))

• 4− TP : ((s2, s3, s4, s5);(eq,m, b, b),
(m−1, eq, o, b),
(b−1, o−1, eq, o),
(b−1, b−1, o−1, eq))

• 5− TP : ((s1, s3, s4, s5,s6); (eq, b, b, b, b),
(b−1, eq, o, b, b),
(b−1, o−1, eq, o, b),
(b−1, b−1, o−1, eq, o),
(b−1, b−1, b−1, o−1, eq))

• 6− TP : ((s1, s2, s3, s4,s5, s6); (eq, b, b, b, b, b),
(b−1, eq,m, b, b, b),
(b−1,m−1, eq, o, b, b),
(b−1, b−1, o−1, eq, o, b),
(b−1, b−1, b−1, o−1, eq, o),
(b−1, b−1, b−1, b−1, o−1, eq))

Time

1t          2t   3t                      4t            5t      6t   7t        8t          9t                                10t    11t

A

B

Figure 2: The interval primitives sequence

We denote bydim(P ) the dimension of the temporal pat-
ternP ; it represents the number of intervals inP . We define
TP (S), the set of temporal patterns overS, informally as
the set of all temporal patterns of arbitrary dimension. Of
course, many interval primitives maintain the same tempo-
ral relationships.

Definition 3 (Pattern Instance) GivenP andQ two k −
TP . Q is said an instance ofP if and only if there exists
an injective functionπ fromsP to sQ such that the relations
between these primitives are preserved, i.e.:

• ∀i ∈ {1, . . . , k} : sP (i) = sQ(π(i)) and
• ∀i, j ∈ {1, . . . , k} : RP [i, j] = RQ[π(i), π(j)]

We noteIP the set of instances of the patternP . Figure
2 gives an example. If we consider two patternsP andQ
such thatIP corresponds to the set of patterns respecting the
relationship ”A before B” and IQ corresponds to the set of
patterns respecting the relationship ”B overlaps A”. The
instances sets are:

IP = {(s1, s2), (s1, s4), (s1, s6), (s3, s6)}
IQ = {(s4, s5)}
The instances set can be reduced to the disjointed in-

stances (they did not shared any interval primitives). Then,
we denote the set of disjoined instances ofP by IdP ⊆ IP
and the result will beIdP = {(s1, s2), (s3, s6)}.

The core of the proposal technique is the candidate gener-
ation. To make easier this generation, we utilize the sliding
window (MANNILA , TOIVONEN, & VERKAMO 1997), and
we enlarge the observability interval notion, for an effective
selection of the interesting patterns.

Observability interval
The sliding window constitutes a more used tool to sweep
the primitives sequence. If we consider punctual primitives,
the sliding window is defined as a maximal period of time

456    FLAIRS 2003   



where pattern may be observed. In the case of interval prim-
itives, the sliding window corresponds to the maximal inter-
val where patternP may be partially observed (all primitives
of P are relation inI \ {b, b−1} with the sliding window).
In (HÖPPNER& KLAWONN 2001), the continued period in
which an instance of patternP can be observed inside the
sliding window, is identified as the observability interval of
this instance.

Definition 4 (Obsevability interval) Let us considerP the
temporalk-pattern andw the width of sliding window. We
define the obsevability interval of an instance ofP , denoted
byOP , as follow:

OP =
{

[f(sP )1 , b(sP )1 + w], k = 1
OQ ∩ [f(sP )k , b(sP )k + w], k > 1

whereQ v P anddim(Q) = k − 1.

In (HÖPPNER2001), Frank Ḧoppner declares the pattern
”interesting” if the total duration of the observability in-
tervals of the pattern instances set, within the sliding win-
dow, exceeds an optimum threshold of the sliding window.
Whereas, this adaptation is not relevant and it generates a
redundancy in the observability interval. This is due to the
use of the observability intervals of all instances without re-
strictions.

GivenP = (sP , RP ) an instance of thei-patternP such
that{ b, b−1, c, c−1} 6⊆ RP andQ = (sQ, RQ) an instance
of thej-patternQ such that{ b, b−1, c, c−1} 6⊆ RQ. The
maximality assumption guarantees that all instances of both
P andI are disjoined. LetM be the temporal pattern result-
ing from the join of an instance ofP with an other one ofQ.
In the sliding window, we have the following possible three
scenarios.

case 1: We consider an instance ofP and two instances of
Q, respectivelyQ1 andQ2. M has at least two instances
who shared thei-patternP . LetM1 andM2 be these two
instances obtained by the join ofP with respectivelyQ1

andQ2. Then, the respective observablity are[bQ1 , fP ]
and[bQ2 , fP ] and the durationdM of M is:

dM = dM1 + dM2

= (fP − bQ1) + (fP − bQ2)
≥ fP − bQ1 = dM1

> fP − bQ2 = dM2

case 2: Let P1 andP2 be two instances ofP , and we con-
sider a single instance ofQ. LetM1 andM2 be the two
instances ofM corresponding respectively to the join of
the instances ofP with Q. The respective observability
intervals[bQ, fP1 ] and[bQ, fP2 ]. The duration ofM is:

dM = dM1 + dM2

= (fP1 − bQ) + (fP2 − bQ)
≥ fP1 − bQ = dM1

> fP2 − bQ = dM2

case 3: We consider two instances ofP , P1 andP2, and
two instances ofQ, Q1 andQ2. LetM1 andM2 be two
instances resulting from the respective join ofP1 andP2

with Q1 andQ2. If RM1=RM2 , the resulting patterns re-
fer the same temporal patternM , the respective observ-
ablity intervals are[bQ1 , fP1 ] and[bQ2 , fP2 ]. The duration
of M is compued as follow:

dM = dM1 + dM2

= (fP1 − bQ1) + (fP2 − bQ2)
≥ fP1 − bQ1 = dM1

> fP2 − bQ2 = dM2

Consequently, we realize the following points:

• The observability interval of the first instance of given
temporal pattern covers completely the observability in-
terval of all other instances in the same sliding window
i.eOM2 ⊆ OM1 .

• The observation of the first instance of given temporal pat-
tern is sufficient to observe all other instances in the same
sliding window.

• The gap between the composites interval of the first in-
stance is optimal.

Example 2 Let us consider the example in Figure 3. The
pattern ”A is-finished-byB” has only one instance(s1, s3)
for all considered window width, whereas the pattern
”A before B” for a suitable window (for example for win-
dow width greater thant9 − t5) has two instances not dis-
jointed(s1, s4) and(s1, s5), who the respective observabil-
ity intervals are[t6, t5 + w] and [t8, t5 + w]. Thus, we con-
clude[t8, t5 + w] ⊆ [t6, t5 + w].
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Figure 3: Pattern’s observability intervals

This observability interval property is one of ideas applied
in our proposed approach to reduce the combinatorial ex-
plosion of generated patterns relative to the approches using
Apriori technique.

Candidate generation
The proposal technique is an alternative of Apriori technique
when considered primitives are intervals. TPGIP exploits
the interval algebra structure employing partial order rela-
tion on the intervals primitives. It privileges the temporal
patterns that the gap between the composites interval is op-
timal and exploits of the neighborhood properties for a bet-
ter selection of patterns two by two. Before introduce the
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TPGIP technique, we start with a new notions and relations
in order to facilitate the cross of thek-patterns subset, noted
TPk(S) ⊆ TP (S).
Definition 5 (Prefix and Suffix Pattern) Let P and Q be
respectively then− TP and thek − TP .

1. Q is thek-prefix pattern ofP iff:

sQ = {(sP )i/(sP )i ∈ sP ∧ 1 ≤ i ≤ k}
2. Q is thek-suffix ofP iff:

sQ = {(sP )i/(sP )i ∈ sP ∧ (n− k) < i ≤ n}
Definition 6 (Precedence Relation)Given two temporal
k-patternsP andQ. P precedesQ, notedP ¹ Q, iff:

∃i = max{1,min{j/(sP )j 6= (sQ)j}} : (sP )i ≤ (sQ)i
Theorem 1 The precedence relation defines a partial order
on the patterns subset with the same size.

Proof: Let us supposeM,P,Q ∈ TPk(S). Then, the prece-
dence relation is:

1. reflexive:P ¹ P for i=1.

2. transitive:M ¹ P ∧ P ¹ Q⇒M ¹ Q.
M ¹ P ⇔ ∃i = max{1,min{j/(sM )j 6= (sP )j}} :
(sM )i ≤ (sP )i
P ¹ Q ⇔ ∃r = max{1,min{j/(sP )j 6= (sQ)j}} :
(sP )r ≤ (sQ)r
For l = min(i, r) : (sM )l ≤ (sP )l ≤ (sQ)l
thenM ¹ Q.

3. anti-symmetric:P ¹ Q ∧Q ¹ P ⇒ P = Q
P ¹ Q ⇔ ∃i = max{1,min{j/(sP )j 6= (sQ)j}} :
(sP )i ≤ (sQ)i,
Q ¹ P ⇔ ∃r = max{1,min{j/(sQ)j 6= (sP )j}} :
(sQ)r ≤ (sP )r,
Thereforei = r and(sP )i ≤ (sQ)i ∧ (sQ)r ≤ (sP )r
Then∀i ≤ dim(P ) : (sP )i = (sQ)i, i.e.P = Q.

We will exploit the Theorem 1 to structure the patterns
set. We are interested exclusively by the neighbourhood pat-
terns, saidadjacent patterns.

Definition 7 (Adjacent Patterns) LetP andQ be two tem-
poral k-patterns.P is adjacent withQ iff:

• P ¹ Q and
• the(k− 1)-suffix ofP is the same as the(k− 1)-prefix of
Q.

The new technique is an optimal and iterative traversing
of the patterns set. At iterationk, corresponding to a level,
a subset of candidate patterns is created by the join of the
adjacent interesting patterns discovered during the previous
iteration. This generation supports exclusively the ordered
patterns two by two such that the gap between those inter-
vals composite is optimum. It takes in entryP andQ, two
adjacent interestingk − TP , and generates,C a single can-
didate(k + 1)− TP .

Figure 4 illustrates how to build the matrixRC out ofRP
andRQ. As consequence,RC maintains the matrixRP like
prefix matrix and envelopes them by a new line and a new
column. The principal task of this construction is to gener-
ate this envelope. As the relations of each column are the

opposite relations of the corresponding line, TPGIP com-
putes the relations of the last line ofRC . Thus, it recovers
the relations of the last line ofRQ to extract the lastk−1 re-
lations from the last line ofRC . The first relation of this line
is the temporal relation between(sQ)k−1 and(sP )1, which
is respectively the first interval primitive ofP and the last
interval primitive ofQ.

(c) Candidate pattern C
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Figure 4: Candidate pattern generation

Evaluation and Discussion
This section gives a comparison between our technique and
the Höppner’s one (HÖPPNER2001). We have treated a me-
teorological file application containing 1000 interval prim-
itives divided on three variables. We have tested these two
techniques by comparing the size of temporal set. For the
experiments, we have chosen to vary the window width and
to fix the minimal threshold of the support to 10% of the
width of sliding window. For the output data, we have cap-
tured the size of the temporal subsets associated to the width
of sliding window.

Figure 5 shows the evolution of the pattern set for the
Höppner’s technique with the variation of the width of slid-
ing window. For every width of the sliding window, the evo-
lution follows two trajectories: First the number of patterns
grows exponentially with the growth of algorithm pass until
generating the maximum pattern with the primitives border-
ing met the sliding window. Beyond this point, the decreas-
ing trajectory starts. This trend corresponds to add the inter-
vals not yet incorporated in the maximum pattern and who
are between the primitives bordering the pattern. Then, the
Höppner’s approach illustrates the combinatorial explosion
realative to Apriori technique.

For our proposal technique TPGIP, the problem of com-
binatorial explosion does not appear. Figure 6 contrary to
Figure 5, shows a single decreasing trend for the evolution
of the number of patterns according to the width of sliding
window. Thus, the number of patterns generated by TPGIP,
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at each iteration, is strictly lower than the number of the in-
teresting patterns at previous iteration. For the intervals se-
quence, the iterations number is limited to the sequence di-
mensionn. At the iterationk, the number of candidate pat-
terns, independently with the width of the sliding window, is
at leastn− k + 1. Therefore, the pattern number generated
by our approach is little than

∑n
k=1 k = n(n− 1) \ 2.
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Figure 5: Ḧoppner’s technique
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Figure 6: TPGIP technique

Conclusion
This paper adresses an approach for the discovery of an in-
teresting patterns in temporal sequences according to the ob-
servability interval properties. It proposes a new technique,
called TPGIP (Temporal Patterns Generation with Interval
Primitives), to find a minimal subset of interesting temporal
patterns from what it is possible to generate all other inter-
esting patterns. This technique, applied to interval primi-
tives, explores some properties of interval algebra relations
(ex. symmetric property) to compact generated patterns.
Then, it combines the partial oreder and the locality patterns
over the pattern subset with the same size.

TPGIP performances are compared to Apriori technique.
Encouraging and promising results are observed and re-
ported for the proposed technique to the meteorological ap-

plication data. It shows that the number of generated pat-
terns is polynomial according to the dimension of the pat-
terns and the width of the sliding window. The presented
experimental results show the effectiveness and the perfor-
mance of the proposed approach. This approach guarantees
finding all remainder patterns and declares all them interest-
ing without compute their observability intervals.
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