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Abstract

In this paper, we discuss a formalism for modeling regions
that are exposed to movement or deformation. The basis of
our formalism is the RCC theory, which uses topological re-
lations between regions to reason about them. By using fuzzy
set theory and the notion of conceptual neighbors, we are able
to deal with regions that can move or change over time. In ad-
dition, we introduce an algorithm for reasoning about these
fuzzy sets, based on the path-consistency algorithm devel-
oped by Allen for reasoning in the interval algebra.

Introduction and Motivation
In the last two decades, the amount of work on qualitative
spatial reasoning based on sets of relations among objects
has increased steadily. Early approaches mainly used exten-
sions of Allen’s interval algebra (Allen 1983) for reasoning
about space. In (Guesgen & Hertzberg 1993), for example,
we introduce a form of spatial reasoning that extends Allen’s
relations to the three dimensions of space by applying very
simple methods for constructing higher-dimensional mod-
els and for reasoning about them. Freksa (1990) uses the
same set of relations and shows that for an important class
of problems, only a small subset of all possible combina-
tions of spatial relations can occur. By restricting himself
to sets of conceptually neighboring relations, he can restrict
the complexity of the constraint satisfaction algorithms sig-
nificantly.

Hernández (1991) introduces an extension of Allen’s ap-
proach to represent the spatial features occurring in 2D pro-
jections of 3D scenes. He suggests to establish spatial re-
lations between objects by splitting them up into two as-
pects: projection and orientation. Mukerjee and Joe’s work
(1990) is similar to Hernández’s approach. Objects of a
two-dimensional world are characterized by the directions
in which the objects are moving and by associating with the
objects trajectories along which they are moving.

Kettani and Moulin (1999) use the notion of spatial con-
ceptual maps to generate and describe routes in a qualitative
way. Their spatial models are based on the notion of object
influence areas. These areas determine how people reason
about objects, evaluate metric measures, qualify distances
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between objects, etc. Musto et al. (2000) also use a quali-
tative approach to describe routes (or courses of motion, as
they call them). They use qualitative motion vectors to ab-
stract from irrelevant details of a course of motion.

In recent years, the RCC theory (Randell, Cui, & Cohn
1992) has gained a particular interest in the research com-
munity. This first-order theory is based on a primitive re-
lation, called connectedness, and uses eight topological re-
lations, defined on the basis of connectedness, to provide a
framework to reason about regions. Although the regions are
usually considered to be static, there has been some success
with applying the RCC theory to a dynamic environment. In
(Cui, Cohn, & Randell 1992), for example, the RCC theory
is used as basis for qualitative simulations.

The application that we have in mind here is not a qualita-
tive simulation of a changing environment (as in (Cui, Cohn,
& Randell 1992)) but a robust technique for reasoning about
spatial descriptions that may or may not change from one
time instance to the other. Assume, for example, that a fire
agent has to decide what action to perform next.1 The agent
has a description of the world to base its decision on. How-
ever, by the time the agent has made its decision, the world
might have changed: fire, which previously had not spread
over a residential area, might now be overlapping that area,
or a road adjacent to a collapsing building might now be
covered with debris from that building.

This paper is another attempt at extending the RCC theory
to make it suitable for reasoning about space in dynamic en-
vironments (in particular, regions with movement or defor-
mation). Similar to the approach discussed in (Cui, Cohn, &
Randell 1992), we utilize the neighborhood structure that is
inherent in the RCC theory. In addition to that, we define
fuzzy sets for the relations between regions based on the
neighborhood structure and the direction of the movement
or deformation of the regions.

The paper is organized as follows. We start with a brief
review of the RCC theory and its application to dynamic en-
vironments. We then show how information about move-
ment and deformation can be encoded in the RCC theory by
associating fuzzy sets with the relations. Finally, we will

1This example is taken from the RoboCup Rescue Simulation
project (Kitano et al. 1999). The aim of this project is to simulate
a disaster area (e.g., an area after an earthquake) and to implement
agents (e.g, fire agents) that act intelligently in this simulation.
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Relation Interpretation

DC(X, Y ) X disconnected from Y

EC(X, Y ) X externally connected to Y

PO(X, Y ) X partially overlaps Y

EQ(X, Y ) X identical with Y

TPP(X, Y ) X tangential proper part of Y

TPPi(X, Y ) Y tangential proper part of X

NTPP(X, Y ) X nontangential proper part of Y

NTPPi(X, Y ) Y nontangential proper part of X

Figure 1: The RCC8 relations arranged in a graph showing the conceptual neighbors.

introduce the means to reason about these fuzzy sets.

Brief Review of the RCC Theory
The basis of the RCC theory is the connection relation,
which is a reflexive and symmetric relation, satisfying the
following axioms:

1. For each region X: C(X,X)

2. For each pair of regions X , Y : C(X,Y )→ C(Y,X)

From this relation, additional relations can be derived, which
include the eight jointly exhaustive and pairwise disjoint
RCC8 relations (see Figure 1):

RCC8 = {DC,EC,PO,EQ,TPP,TPPi,NTPP,NTPPi}

There are different ways to reason about RCC8 relations.
Since the RCC theory is expressed in first-order predicate
logic, theorem provers can be used to infer new relations
from a set of given ones. More popular, however, is reason-
ing based on a composition table similar to the one used in
(Allen 1983), which describes how relations depend on each
other. In particular, given the relation R1 between the re-
gions X and Y , and the relation R2 between the regions Y
and Z, the composition table determines the relation R3 be-
tween the regions X and Z, i.e., R3 = R1◦R2. In the case of
a set of regions X with more than three regions, the compo-
sition table can be applied repeatedly to three-element sub-
sets of X until no more relations can be updated, resulting
in a set of relations that is locally consistent.

The RCC theory was originally intended for static de-
scriptions, but it can also be applied to reason about dynamic
environments, i.e., environments with movements or defor-
mations of the regions. Assuming that these movements
or deformations are continuous, conceptual neighborhoods
(Freksa 1992) can be used to describe the way in which re-
lations can change. Two relations on regions X and Y are
conceptual neighbors if the shape of X or Y can be contin-
uously deformed such that one relation is transformed into
the other relation without passing through a third relation.

Figure 1 shows the conceptual neighbors for the RCC8 rela-
tions.

Although conceptual neighborhoods provide the basis for
reasoning about space with movement and deformation, it is
not sufficient for many real-world problems, since it disre-
gards any information about the direction of the movement
or deformation. If, for example, we know that two regions
are partially overlapping and moving away from each other,
then we can conclude that in the next time instance they are
either still partially overlapping or externally connected to
each other. It is not possible that one region becomes a tan-
gential proper part of the other region (although the concep-
tual neighborhood graphs suggests this as well).

Modeling Movement and Deformation
Movement and deformation is closely related to the notion
of direction. The idea of incorporating directions into a
static spatial theory is not new. Renz (2001), for example,
introduces the directed interval algebra, which uses 26 base
relations to describe the relationship between two directed
intervals. However, this approach cannot directly be applied
to the RCC theory, because movement or deformation is not
aligned to a particular axis in this theory (see Figure 2). A
purely qualitative approach to modeling movements or de-
formations of regions in the RCC theory, similar to the one
used in the directed interval algebra, would lead to descrip-
tions that are too coarse to make meaningful inferences. On
the other hand, precise mathematical descriptions of move-
ments or deformations are often too complex. In this paper,
we are suggesting a formalism that is more powerful than
the analog of the directed interval algebra for regions but
more feasible from the computational viewpoint than a pre-
cise mathematical one.

As indicated above, our approach is based on the notion
of conceptual neighbors. Given a particular relation between
two regions X and Y , this relation may change due to move-
ment or deformation of the regions. However, it is likely
that the new relation is a conceptual neighbor of the origi-
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Figure 2: All possible movements/deformations in the di-
rected interval algebra for the meets relation as opposed to
some examples of movements/deformations in the RCC the-
ory for the EC relation.

nal relation, or if this it not the case, at least a neighbor of
the neighbor of the original relation, and so on. To quantify
this fact, we replace the original relation with a fuzzy set on
RCC8 relations (i.e., we replace the original crisp relation
with an imprecise one).

A fuzzy set R̃ of a domain D is a set of ordered pairs,
(d, µR̃(d)), where d is an element of the underlying domain
D and µR̃ : D → [0, 1] is the membership function of R̃.
In other words, instead of specifying whether an element d
belongs to a subset R of D or not, we assign a grade of
membership to d. The membership function replaces the
characteristic function of a classical subset of D.

Each RCC8 relation can be associated with a character-
istic function, which yields a value of 1 if and only if the
argument is equal to the RCC8 relation denoted by the char-
acteristic function:

µR : RCC8 −→ {0, 1}

µR(R′) =

{
1, if R′ = R

0, else

This function is converted into a membership function by
replacing its range with the unit interval:

µ
R̃

: RCC8 −→ [0, 1]

The value of the membership function depends on the move-
ment and deformation of the regions and the distance of the
relations in the conceptual neighborhood graph.

For example, if two regions X and Y are externally con-
nected (i.e., EC(X,Y )) and moving towards each other, we
would assume that neither DC(X,Y ) nor EC(X,Y ) can
be observed in the next time instance, but all the other re-
lations are plausible with decreasing membership grades
m1 ≥ m2 ≥ m3 · · · ≥ 0. Figure 3 illustrates this obser-
vation.

Since there is no algorithm for computing the initial mem-
bership grades m1,m2, . . . , in general, the grades have to be
determined on an intuitive basis. Choosing the right grade
for each degree of neighborhood can therefore be a prob-
lem. On the other hand, there are experiments showing that
fuzzy membership grades are quite robust, which means that
it is not necessary to have precise estimations of these grades
(Bloch 2000). The explanation given for this observation is
twofold: first, fuzzy membership grades are used to describe
imprecise information and therefore do not have to be pre-
cise, and second, each individual fuzzy membership grade
plays only a minor role in the whole reasoning process, as it
is usually combined with several other membership grades.

If the membership grades are combined by using the
min/max combination scheme, as it is the case in the rest
of this paper, we do not need numeric membership grades
but can perform reasoning on symbolic values m1,m2, . . . ,,
which solves the problem of determining the initial member-
ship grades. The fact that there is an ordering m1 ≥ m2 ≥
m3 · · · ≥ 0 on the grades suffices to guarantee that we can
select the largest/smallest grade from a given set of mem-
bership grades, which is essentially what fuzzy reasoning is
based upon.

Non-atomic RCC8 relations (i.e., disjunctions of RCC8

relations) can be transformed into fuzzy RCC8 relations by
using the same technique as described in the previous sec-
tion. A non-atomic RCC8 relation is given by a set of atomic
RCC8 relations, which is interpreted in a disjunctive way.
We therefore transform each atomic relation in the set into
a fuzzy RCC8 relation and compute the fuzzy union of the
resulting sets.

There are different ways of computing the union, intersec-
tion, and compliment of fuzzy sets. Here, we have chosen
the min/max combination scheme (Zadeh 1965) to define the
membership function of the union, intersection, and comple-
ment of fuzzy sets, respectively:

µ
R̃1∪R̃2

(R) = max{µ
R̃1

(R), µ
R̃2

(R)}

µ
R̃1∩R̃2

(R) = min{µ
R̃1

(R), µ
R̃2

(R)}

µ
R̃

C

1

(R) = 1− µ
R̃1

(R)

Reasoning about Fuzzy Regions
In order to be able to reason about fuzzy RCC8 relations, we
have to define the composition of fuzzy RCC8 relations. In
the crisp case, the composition of two relations can be rep-
resented as a characteristic function of the following form:

µR1◦R2
: RCC8 −→ {0, 1}

The function yields a value of 1 for arguments that are ele-
ments of the corresponding entry in the composition table;
otherwise, a value of 0:

µR1◦R2
(R) =

{
1, if R ⊆ R1 ◦ R2

0, else

For example, if R1 = EC and R2 = TPPi, then the char-
acteristic function of the relation R1 ◦ R2 = EC ◦ TPPi =
{EC,DC} is defined as follows:

µEC◦TPPi(R) =

{
1, if R ∈ {EC,DC}
0, else
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Figure 3: The assignment of membership grades to the RCC8 relations with EC(X,Y ) as reference relation.

Adopting the min/max combination scheme from fuzzy
set theory, we can now define the fuzzy composition R̃1 ◦ R̃2

of two fuzzy RCC8 relations R̃1 and R̃2 as the following
fuzzy RCC8 relation:

{(R, µ
R̃1◦R̃2

(R)) | R ∈ RCC8}

where µ
R̃1◦R̃2

is given by the following:

µ
R̃1◦R̃2

(R) = max
R
′

1,R′

2∈RCC8

µ
R′1◦R′2

(R)=1

{min{µ
R̃1

(R′
1), µ

R̃2

(R′
2)}}

The fuzzy composition of relations plays a central role
in a number of algorithms for reasoning about fuzzy RCC8

relations. One of these algorithms is an Allen-type algo-
rithm for computing local consistency in networks of fuzzy
RCC8 relations. Input to this algorithm is a set of regions
and a set of (not necessarily atomic) fuzzy RCC8 relations.
The aim of the algorithm is to transform the given relations
into a set of relations that are consistent with each other.2

This is achieved through an iterative process that repeatedly
looks at three regions X , Y , and Z, and their fuzzy relations
R̃1(X,Y ), R̃2(Y,Z), and R̃3(X,Z), computes the composi-
tion of two of the relations, and compares the result with the
third relation:

R̃3(X,Z) ← R̃3(X,Z) ∩ [R̃1(X,Y ) ◦ R̃2(Y,Z)]

Figure 4 shows pseudocode for the extended algorithm;
a more elaborate discussion of the algorithm can be found
elsewhere (Guesgen, Hertzberg, & Philpott 1994).

Unlike Allen’s original algorithm, the fuzzy version of the
algorithm does not make a yes/no decision about whether a
relation is admissible or not, but computes a new member-
ship grade for that relation. The new membership grade is
compared with the initial membership grade of the relation.

2In this context, consistency means that the membership grades
are consistent with each other.

If the new grade is smaller than the initial grade, the mem-
bership grade of the relation is updated with the new grade.

Research in the area of spatio-temporal reasoning has
shown that Allen’s algorithm in general only computes lo-
cal consistency. To obtain a globally consistent network of
relations, additional methods have to be used, which usually
involves some form of backtracking in the non-fuzzy case.
In networks with fuzzy relations, we are seeking some level
of optimality, which means that a plain backtracking algo-
rithm is insufficient. Instead, the algorithm must continue
after a consistent instantiation is found, if this instantiation
is not ‘good enough’ (in terms of the membership grades
of the instantiation). One way to achieve this goal is by
applying an optimization technique like branch and bound
(Freuder & Wallace 1992), which operates in the same way
as backtracking search with some variations:

1. The best instantiation so far is recorded.
2. A search path is abandoned when it is clear that it

cannot lead to a better solution.
3. Search stops when all search paths have been either

explored or abandoned, or when a perfect instantia-
tion has been found.

Conclusion
In many real-world situations, spatial relations among ob-
jects are subject to change over time, due to the fact that re-
gions may alter their position or shape. The purpose of this
paper is to introduce a formalism for reasoning about spatial
relations that is robust under movement and deformation of
regions. This is achieved by converting the RCC8 relations
into fuzzy sets and applying a fuzzy RCC8 algorithm to the
resulting sets.

Unlike (Cui, Cohn, & Randell 1992), the intention is not
to provide a formalism for qualitative simulation, but to pro-
vide the basis for reasoning in environments that may (or
may not) change from one time instance to the other. As a re-
sult, our formalism does not keep track about the changes in
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Fuzzy RCC8 Algorithm

• Let R̃ be a set of fuzzy RCC8 relations between regions {X1, X2, . . . , Xn}.

• While R̃ is not empty:

1. Select a relation R̃(Xi, Xj) ∈ R̃

2. R̃ ← R̃ − {R̃(Xi, Xj)}
3. For k ∈ {1, . . . , n} with k 6= i, j:

R̃(Xk, Xj)← R̃(Xk, Xj) ∩ [R̃(Xk, Xi)◦R̃(Xi, Xj)]

If R̃(Xk, Xj) changed, then R̃ ← R̃ ∪ {R̃(Xk, Xj)}

R̃(Xi, Xk)← R̃(Xi, Xk) ∩ [R̃(Xi, Xj)◦R̃(Xj , Xk)]

If R̃(Xi, Xk) changed, then R̃ ← R̃ ∪ {R̃(Xi, Xk)}

Figure 4: Fuzzy version of Allen’s algorithm for the RCC8 relations. Without loss of generality, we assume that R̃(Xi, Xj) is
defined for every i, j ∈ {1, 2, . . . , n} with i 6= j, possibly as universal relation {(DC, 1), (EC, 1), (PO, 1), . . .}.

the environment, nor does it allow to reason about sequences
of changes. Future work might address these problems.

The paper focuses on two reasoning techniques: one
based on Allen’s algorithm, the other on branch and bound
techniques. In general, however, reasoning over fuzzy
RCC8 relations does not have to be restricted to these tech-
niques. A network of fuzzy RCC8 relations can be viewed
as a constraint network, and the problem of finding a con-
sistent instantiation for such a network as a constraint sat-
isfaction problem. This means that in principle any fuzzy
constraint satisfaction algorithm (Guesgen & Philpott 1995)
can be used to reason about fuzzy RCC8 relations.
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