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Abstract

An approach to fuse multiple images based on
Dempster-Shafer evidential reasoning is proposed in
this article. Dempster-Shafer theory provides a com-
plete framework for combining weak evidences from
multiple sources. Such situations typically arise in the
image fusion problems, where a ‘real scene’ image has
to be estimated from incomplete and unreliable observa-
tions. By converting images from their spatial domain
into the evidential representations, decisions are made
to aggregate evidences such that a fused image is gen-
erated. The proposed fusion approach is evaluated on a
broad set of images and promising results are given.

Introduction
Multi-sensor systems provide a more comprehensive per-
ception of the monitored event. With many emerging sensor
technologies, the capability of integrating evidences from
various signals, which are based on different mechanisms,
becomes highly demanding. The study of data fusion has
experienced an explosion in recent years. (Li, Manjunath, &
Mitra 1995; Koren, Laine, & Taylor 1995; Rockinger 1997;
Nikolov et al. 1998; Petrovic & Xydeas 1999)

Image fusion can be performed roughly at three stages:
pixel level, feature level, and decision level. Varieties of
approaches have been proposed including weighted average,
PCA based fusion, Laplacian pyramid based fusion, contrast
pyramid based fusion, etc. Detailed literature reviews can
be found at (Zhang & Blum 1999; Yuan, Yuan, & Buckles
2002).

From the evidence point of view, fusion reduces the im-
precision and uncertainty by making use of redundancy and
complementary information of the source images. That is,
weak evidences from inputs are utilized to provide the best
estimation.

Evidence theory was first proposed by Shafer in 1970s,
which is based on Dempsters research. The advantages are
that it distinguishes between the lack of belief and disbelief
and allows the probability to be assigned to the union of the
propositions in the frame of discernment. Such lack of be-
lief typically arises in image fusion problems where a ‘real
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scene’ image is to be estimated from incomplete and unreli-
able observations.

Evidence theory has been very successful in many ar-
eas including pattern classification (Denoeux 1997), object
recognition (Borotschnig et al. 1998), database integration
(Lim, Srivastava, & Shekhar 1994), sensor fusion (Murphy
1999), etc. However, when dealing with pixel level im-
age fusion, critical problems arise. First, a meaningful evi-
dential representation founded on human cognitive grounds
is the key to pixel level fusion. Second, the environment-
caused and sensor mechanism-caused disparity is inevitable
and cause confusion during information aggregation. Gen-
erally, a preprocessing step is employed to adjust source im-
ages to a comparable status. Techniques include computing
first order derivatives of pixel values, applying histogram ad-
justment, constraints optimization (Socolinsky 2000) etc.

In this article, we propose the evidence functions of im-
ages derived from wavelet feature and develop a decision
fusion scheme following the Dempster-Shafer combination
method. Successful experiments are performed on differ-
ent kinds of images and results are compared with collateral
works.

The rest of this article is organized as follows. Sec-
tion 2 introduces the background information on Dempster-
Shafer theory. Section 3 presents the image representation in
the wavelet domain and demonstrates fusion using evidence
function as well as developing the aggregation schemes. Ex-
amples are illustrated in section 4, followed by the discus-
sion. Section 5 summaries and concludes this article.

Dempster-Shafer Evidence Theory
Let θ represent a finite set of hypotheses for a problem do-
main, called the frame of discernment. A piece of evidence
that influences our belief concerning these hypotheses in-
duces a mass function m, defined as a function from 2θ to
[0, 1] that satisfies the following constraints:

m(φ) = 0 and
∑

A⊆θ

m(A) = 1 (1)

m(A) can be interpreted as the belief that one is willing to
commit to hypothesisA (and to none of its subsets) given the
available evidence. The subsets A of θ such that m(A) < 0
are called the focal elements of m. the belief Bel(A) and
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the plausibility Pl(A) ofA ⊆ θ can be computed fromm as
follows:

Bel(A) =
∑

B⊆A

m(B) (2)

Pl(A) =
∑

A∩B �=φ

m(B) = 1 −Bel(A) (3)

Bel(A) measures the extent to which one believes in A,
given the evidence pointing to that hypothesis either directly
through m(A) or indirectly through m(B) for all B ⊆ A.
The extent to which one doubts hypothesisA is based on the
mass of belief committed toA or its subsets, and is therefore
represented by 1 − Pl(A).

An important aspect of D-S theory concerns the aggrega-
tion of evidence provided by different sources. If two mass
functions m1 and m2 induced by distinct items of evidence
are such that m1(B) > 0 and m2(C) > 0 for some non-
disjoint subsets B and C of θ, then they are combinable by
means of Dempster’s rule. The orthogonal sum of m1 and
m2, denoted m = m1 ⊕m2, is defined as

m(φ) = 0 (4)

m(A) =
∑

B∩C=Am1(B)m2(C)
1 − ∑

B∩C=φm1(B)m2(C)
(5)

Consequently, the mass function resulting from the com-
bination of several items of evidence does not depend on the
order in which the available information is taken into con-
sideration and combined.

Decision Making and Fusion
The direct evidence lies in the brightness of pixels. Typi-
cally, images observed through different channels suffer dis-
parity due to the sensor mechanism, resolution, quantiza-
tion error, error introduced by numerical reconstruction al-
gorithm, etc. In most cases, features in the source images
are likely to appear differently from one sensor image to an-
other, but are usually closely related. It is important to note
that the relationships between the image features are local in
nature. However, the design of effective fusion algorithms
is difficult because the optimality of combining different im-
ages depends on the local relationship between sensor im-
agery. For example, fusion based on averaging works well
for images that are approximately the same except for the
additive noise. On the other hand, averaging can cause a
quality reduction in case of reversal of polarity, as shown in
Figure 1. Therefore, it is desirable that a fusion algorithm
combine different local regions according to local feature
relationships.

In contrast, wavelets decomposition transfers an image
into spatial-frequency domain, where evidence is implied by
the static and dynamic coefficient components. The integra-
tion evidence of the dynamic components and static compo-
nents circumvents the disparity problem as well as provides
a human cognitive favored image evidential representation.

In the rest of this section, we first give a brief review of the
wavelet description of images, which provides a base for the

(a) (b)

(c)

Figure 1: Fusion of reverse polarity images with average
combination approach (Sharma 1999). Figure (a) and (b)
are source images. Figure (c) illustrates the fusion result
with average combination method.

definition of evidence function. An integration and decision
scheme is described in detail at the end.

Image Description

The discrete wavelet transform (DWT) of a discretely sam-
pled image is computed using an orthogonal filter base.
One of the most frequently used wavelet bases is the Haar
wavelet, which contains a high-pass filter and a low-pass fil-
ter of length two.

The 2-D wavelet transformation includes a decomposition
stage and a reconstruction stage. The decomposition is an
iteration process that includes filtering and down-sampling
operations. Let j denote the decomposition level. Given the
conjugate quadrature filters (CQF), each row of the image
undergoes decomposition with high-pass and low-pass fil-
ters, resulting in two images whose horizontal resolution is
reduced by a factor of two, that is, down-sampled by two.
Next, the high-pass and low-pass subband images obtained
by two decompositions are each separately filtered column-
wise to obtain four subband images: low-low band cj+1,
low-high band dH,j+1, high-low band dV,j+1, and high-high
band dD,j+1.

After one iteration, the cj+1 band is again subjected to
the row-column filtering and sampling to obtain a further
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decomposition. This process is iterated either until the low-
pass image has no more interesting features or a preset num-
ber of times is reached.

The reconstruction stage is an inverse process except that
instead of down-sampling an up-sampling operation is per-
formed before the filtering. Rows and columns of the high-
pass subband images dD,j+1, dV,j+1, dH,j+1 and the low-
pass subband image cj+1 are filtered with CQF filters to ob-
tain the low-pass subband image cj at level j. This process
is repeated until the original resolution level is reached.

Evidence Representation of Images

One of the essential problems of pixel level fusion with
Dempster-Shafter reasoning is construction of the eviden-
tial representation of images. Fortunately, DWT transforms
a spatial image into a spatial-frequency representation that
consists of coefficients having clear meaning with respect
to the occurrence of changes. Such changes are gener-
ally recognized as edges in the spatial domain. There-
fore, the decisions on combining wavelet coefficients es-
sentially preserve edges and aggregate background informa-
tion. (Mallat & Zhong 1992; Yuan, Yuan, & Buckles 2002;
Nikolov et al. 1998)

Wavelet decomposition consists of static and dynamic
bands. The static band is the band that is processed only
with low-pass filters. It contains the background informa-
tion and most of the bias of the observation, e.g. lighting
conditions.

The dynamic bands show the changes over a neighbor-
hood. The evidence of these bands is independent from the
static evidence. Therefore, different evidence functions are
derived for static and dynamic bands.

Let Iq denote source images, where q ∈ {1, . . . , Q}. Let
Dq denote the wavelet decompositions of J levels of image
Iq. Given the decomposition level j ∈ {1, . . . , J} and band
number k ∈ {H,V,D}, the coefficients of a dynamic band
at level j band k is denoted as dk,j(p). Therefore, the evi-
dence function for dynamic bands is given as follows:

Nk,j
q =

|dk,j
q |

max(dk,j
q )

, q ∈ {1, . . . , Q} (6)

md
i (p) =

Nk,j
i (p)

max[
∑Q

q=1 (Nk,j
q )(p)]

, i ∈ {1, 2} (7)

The evidence value of empty set m(f) is defined to be
zero. Notice that the evidence function is produced by nor-
malization over multiple decompositions, i.e. cross normal-
ization, such that the unity property of the summation is pre-
served.

Let cL(p) denote site p at the static band. The correspond-
ing evidence function is given as follows:

mL
i (p) =

cLi (p)

max[(
∑Q

q=1 c
L
q )(p)]

(8)

Evidence Aggregation
Assume the observations are independent, and uncertainty
exists in every image. After images are converted into
wavelet based evidence functions, such uncertainty is es-
sentially the insufficiency of the evidence on the occurrence
of local changes. Thereby, the belief matrix Belk,j

q is con-
structed for each wavelet band as well as its uncertainty ma-
trix Uk,j

q .
The belief matrix is the aggregation of evidence values

at every site p, while the uncertainty matrix is the comple-
mentary to the belief, i.e. 1 − Bel(p). The discernment of
site p, namely q(p), is the union of the belief Belk,j

q (p) and
the uncertainty Uk,j

q (p) across the same bands in all decom-
positions. The decision is made based on the cumulative
believes:

sk,j(p) =

{dk,j
q (p)|Confk,j

q (p) = max[Confk,j
i (p)],

i = 1, . . . , Q} (9)

and

Confk,j
q (p) =

1
1 −K

[Belk,j
q (p) ∩ θk,j

q′ (p)]

=
1

1 −K

∏
[Belk,j

q (p) × θk,j
q′ (p)],

q 
= q′ (10)

where K =
∑

q �=q′ Belk,j
q (p) ×Belk,j

q′ (p).
Confk,j

q (p) is the confidence supported by its belief
Belk,j

q (p). It is the intersection of the belief carried by de-
composition q and the discernments of all the other decom-
positions. Factor K adjusts the probability of the empty set
over the confidence that the constraint in the equation 1 is
satisfied.

The fusion is the combination of the coefficients that have
the highest confidence with respect to the status of pixel
brightness, i.e. the pixel gray level remains constant or
varies.

The fusion of the static bands cLq is straightforward, since
the belief matrices represent the existence of the objects in
extremely low resolution. While under such low resolution,
the belief at site p is actually the joint beliefs of a region in
the original image. Therefore, a different scheme is applied.

sL(p) =

{cLq (p)|cLq (p) = max[cLi (p)], i = {1, . . . , Q} (11)

Experiments and Discussion
In this section, we first illustrate fusion examples with med-
ical diagnosis images. Then comparisons with other widely
used approaches are discussed.

Our first experiment demonstrates fusion of retinal im-
ages. In the computer-aided examination of possible leaky
or broken blood vessels, it is prerequisite to fuse multiple
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(a)

(b)

Figure 2: Evidence functions of the retinal images.

retinal images into a meaningful combination. Figure 2 il-
lustrates evidence functions of one dynamic band. The cor-
responding source images are shown in Figure 3. The evi-
dence values are cross normalized on each wavelets decom-
position band. The demonstrations contain a 3-D plot of the
evidence functions with a 2-D contour image underlying it.
From the 2-D contour image, it is clear that the evidence
functions provide high belief on different but overlapping
regions. The 3-D plot illustrates how much each evidence
function supports the belief.

Using the decision scheme developed in section 3, evi-
dential functions of the source images are fused and the final
result can be reconstructed using the inverse wavelets trans-
form. Figure 3(a) and 3(b) are source angiographical retinal
images. Figure 3(c) illustrates the fused image that success-
fully aggregates the details from each input.

Another example is illustrated in figure 4. Figure 4(a) is
the CT scan that exposes the bony structure. Figure 4(b) is a
MRI image of the same patient giving details on soft tissues.
The fusion process effectively combines source images into
a complete description of the patients inner cranial view as
shown in Figure 4(c).

To evaluate the performance, we adopt the mutual infor-
mation of the reference image and fused image, the root
mean square error as well as the normalized cumulative edge
distance (Yuan, Yuan, & Buckles 2002) as the measure of fu-
sion performance. Due to the requirement of having a real

(a) (b)

(c)

Figure 3: Fusion of retinal images.

scene image (as opposed to an artificial ‘truth’ image) as
reference, it is infeasible to use either mutual information or
root mean square error for comparison on cases such as the
previous medical images.

Table 1 lists the comparison of the performance of five
fusion methods, including fusing with average (AVE), PCA
based fusion (PCA), Laplacian pyramid based fusion (LAP),
contrast pyramid based fusion (CP) and evidential reason-
ing based fusion (DS). Eight image scenes are used includ-
ing the two just discussed. With mutual information, larger
value represents higher similarity between the reference im-
age and the fusion result, while smaller values in RMSE and
NCED stand for less error and therefore represents better fu-
sion performance. It is clear that fusion based on evidence
combination outperforms the other methods in most cases.

Conclusion
In this article, we present an evidential reasoning driven fu-
sion approach based on Dempster-Shafer theory. The pro-
posed fusion approach is founded on human perception and
provides a better interpretation of combining wavelets based
evidence than the traditional multi-resolution fusion method.

By converting an image into its evidential representation,
a fusion scheme derived from Dempster-Shafer theory is de-
veloped and is used to aggregate evidence using belief and
plausibility, where the evidence function for combination is
generated from the cross normalization over the wavelets
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(a) (b)

(c)

Figure 4: Fusion of CT scan and MRI scan.

bands. Compared to other widely used fusion methods, the
D-S based evidence combination scheme makes better deci-
sion on combining feature evidence. Promising results are
given and compared with results generated by several other
fusion methods.
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