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Abstract

Prior work has shown that context-specific independence
(CSI) in Bayes networks can be exploited to speed up be-
lief updating. We examine how networks with variables ex-
hibiting mutual exclusion (e.g. “selector variables”), as well
as CSI, can be efficiently updated. In particular, singly-
connected networks, that have an additional common selec-
tor variable, can be updated in linear time, where quadratic
time would be needed without the mutual exclusion require-
ment. The above result has direct applications, as such net-
work topologies can be used in predicting the ramifications
of user selection in some multimedia systems.

Introduction
Using Bayes networks (BNs) to model uncertain knowledge,
and performing inference in this model, are of major interest
in both theoretical and applied AI research (Pearl 1988). As
inference over BNs is hard in the general case (Cooper 1990;
Dagum & Luby 1993; Shimony 1994), efficient algorithms
for sub-classes of Bayes networks are of extreme impor-
tance. Numerous inference algorithms on BNs use a reduc-
tion to a known tractable class, in order to perform infer-
ence. The reduction is usually exponential in some aspect of
the problem instance. Conditioning algorithms (Diez 1996;
Horvitz, Suermondt, & Cooper 1989; Pearl 1988) use a cut-
set whose removal reduces inference into a number of (easy)
inference problems on polytrees - the number of polytree in-
ference problems is exponential in the cutset size. Similarly,
clustering schemes (Jensen, Olsen, & Andersen 1990; Lau-
ritzen & Speigelhalter 1988) aggregate nodes into macro-
nodes organized as a tree, and problem reformulation cost is
exponential in the number of nodes in each macro-node.

Relatively recent work has used local independence struc-
ture, also known as context-specific independence (CSI)
(Boutilier et al. 1996) to improve performance of belief up-
dating in Bayes networks. We argue here than in addition to
taking advantage of CSI, some application networks exhibit
distributions with specific types of mutual exclusion, which
can also be used to improve performance. In particular, we
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examine Bayes networks that are singly connected, except
for one additional multiple-valued “selector” variable S (see
below for the precise definitions). S may have multiple chil-
dren, creating an arbitrary number of undirected cycles.

Intuitively, a selector variable models user selection from
a large set of options. In some user-interface applications,
the user can force one of a set of variables into a particular
state. System behaviour is such that a user action can cause
more than one system action. The goal is to predict system
behaviour, when a distribution over user actions is known.
The prediction is necessary in order to achieve better system
performance, for example by attempting to optimize actions
that are more likely to be executed in the near future. The
unknown user selection is modeled by a selector variable,
and the system is modeled by the rest of the network.

If the network has n nodes, the selector variable has O(n)
possible values. Since the selector may have all network
nodes as its children, a natural way to evaluate such a net-
work is by cutset conditioning, with node S being a single-
ton cutset, resulting in complexity O(n2) (linear time for
each singly connected network problem instance, and O(n)
singly connected problem instances - one for each value of
S). Other known algorithms can do no better. However,
by carefully taking advantage of singly connected network
properties, and the CSI and mutual exclusion properties of
the selector, probability updating can be done in time lin-
ear in the size of the network - the main contribution of this
paper.

The rest of the paper is organized as follows. We be-
gin with a formal definition of the problem (network struc-
tures, as well as selector variables). The equations and al-
gorithm for computing marginal probabilities for all nodes
(also called belief updating) for the null evidence case are
then developed. This is followed by extending the results
to arbitrary conjunctive evidence. Finally, an application for
the presented results is mentioned, and related work on be-
lief updating is examined, suggesting some future work.

Problem Definition
As excellent introductions to Bayes networks abound (Char-
niak 1991; Neapolitan 1990; Pearl 1988), it suffices to
briefly define our notation, as well as to overview the stan-
dard inference problems on BNs. A Bayes network B =
(G, P ) represents a probability distribution as a directed
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acyclic graph G (see Figure 1), where its set of nodes V
stands for random variables (assumed discrete in this paper),
and P , a set of tables of conditional probabilities (CPTs) -
one table for each node X ∈ V . For each possible value
x ∈ D(X) (where D(X) denotes the domain of X - the
set of possible values for X), the respective table lists the
probability of the event X = x given each possible value
assignment to (all of) its parents. Thus, the table size is ex-
ponential in the in-degree of X . Usually, it is assumed that
this in-degree is small - otherwise, representation of the dis-
tribution as a Bayes network would not be a good idea in the
first place. (We thus assume that the in-degree is bounded by
a constant, whenever algorithm runtime results are claimed
in this paper.) The joint probability of a complete state (as-
signment of values to all variables) is given by the product
of |V | terms taken from the respective tables (Pearl 1988).
That is, with Π(X) denoting the parents of X in G, we have:

P (V ) =
∏

X∈V

P (X|Π(X))

(Directed-path) singly connected (DP-singly connected,
as an abbreviation) Bayesian networks are networks where
for every pair of nodes (s, t) in the directed acyclic graph
(DAG) of the network, there is at most one directed path
from s to t (see Figure 1a). The notion defined here is
somewhat more general than polytree topology, where the
requirement is that there be at most one path from s to t in
the underlying undirected graph. Reasoning on polytrees is
known to be easy (Kim & Pearl 1983). All polytrees are
DP-singly connected, but not vice versa. For example, the
network in Figure 1a is not a polytree, even though it is DP-
singly connected.

Probabilistic reasoning (inference) is usually in one of
two forms: belief updating, and belief revision (Pearl 1988).
In either case, a distinction can be made between a problem
with conjunctive evidence, which is a partial assignment E to
some of the variables (presumably observed values for some
of the variables), and a reasoning problem with no evidence
(or null evidence).

The belief updating problem is: compute marginal dis-
tributions for all variables given the evidence, i.e. com-
pute P (X = x|E) for all X ∈ V and for each value
x ∈ D(X). Belief revision, also called most probable expla-
nation (MPE), is finding the assignment A to all the variables
that maximizes P (A|E). We discuss only the belief updat-
ing problem, although our method and results may also be
applicable to belief revision.

We consider applications where the reasoning system
needs to address an external event (e.g. a user) making a
selection, i.e. forcing no more than one of the network vari-
ables into a specific state, with ⊥ denoting that no variable is
forced. The a-priori selection distribution, or its dependence
on some variables, is known - but for simplicity we initially
assume the former. The a-priori distribution is modeled by
a selector variable S with no parents. Without loss of gener-
ality, let the set of children of S be all the other nodes in the
network. The domain of S is the sum of the domains of all
its children, plus a special value ⊥. When S has a specific

value (some value other than ⊥), one of its children is forced
to the respective value.

Formally, let B be a Bayes network over the variables
{X1, . . . , Xn, S} with S being a selector variable (formally
defined below). Assume for clarity that the domains of the
Xi variables are disjoint, and that their values are denoted
xi,j , with 1 ≤ j ≤ |D(Xi)|, respectively. The domain of S
is D(S) =

⋃n
i=1 D(Xi) ∪ {⊥}, where S = xi,j means that

variable Xi is forced to have value xi,j , while S =⊥ means
no variable is forced. The semantics of having the selector
as a parent is:

P (Xi = xi,j |Π′(Xi)) =




1, S = xi,j

0, S = xi,k, k �= j

p(xi,j ,Π(Xi)), otherwise

where Π′(Xi) are the parents of Xi in B, and Π(Xi) =
Π′(Xi) \ {S}. The probabilities p(xi,j ,Π(Xi)) are an arbi-
trary probability table denoting conditional probabilities of
Xi given its parents for the case that S does not select Xi.
Observe that there is no need to maintain a complete prob-
ability table for Xi given all its parents - it is sufficient to
keep the table for Xi given its parents excluding S (for the
state S = ⊥).

Note the mutual exclusion - only at most one variable is
forced. Also, note the following context-specific indepen-
dence - if S is known not to select (force) some variable Xi,
then Xi becomes independent of S given the state of the
other parents of Xi. Our algorithm takes advantage of both
properties.

Algorithm for Null Evidence
Let B be a Bayes network over the variables
{X1, . . . , Xn, S}, with S being a parent-less selector
variable as defined above, and such that B \ {S} is DP-
singly connected (see Figure 1b). Our problem here is to
compute P (Xi) with no evidence.

Consider any node Xi. We distinguish between the three
following cases, and analyze them separately:

1. Hi (where S forces (selects) Xi),

2. H+
i (where S forces an ancestor of Xi in B),

3. Hi (S does not force Xi, nor its ancestors).

Clearly, the hypotheses Hi, H
+
i , and Hi constitute a disjoint

cover of all possible values of S, and thus:

P (Xi = xi,j) =P (Xi = xi,j |Hi)P (Hi)

+ P (Xi = xi,j |H+
i )P (H+

i )

+ P (Xi = xi,j |Hi)P (Hi)

(1)

The case of Hi is straightforward:

P (Xi = xi,j |Hi) = P (S = xi,j |Hi) =
P (S = xi,j)

P (Hi)
(2)

Now consider the case of Hi. Denote by A(Π(Xi)) the
set of all complete assignments (of values to variables) on
Π(Xi). Observe that (by definition of Hi):
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(a) DP-singly connected (b) DP-singly connected + selector (c) DP-singly connected + non-root selector

Figure 1: Several topologies of Bayes networks

P (Xi = xi,j |Hi) = P (Xi = xi,j |S =⊥)

=
∑

A∈A(Π(Xi))

p(xi,j ,A)
∏

Xm∈Π(Xi)

P (Xm = A(Xm)|S =⊥) (3)

Evaluating Eq. 3 is equivalent to standard null-evidence
belief propagation for polytree Bayes networks (i.e. pass-
ing only π-messages (Kim & Pearl 1983)), resulting from
conditioning on S =⊥.

Finally, consider H+
i , assuming P (H+

i ) > 0. By condi-
tioning on all possible assignments on Π(Xi) we get:

P (Xi = xi,j |H+
i ) =

∑
A∈A(Π(Xi))

P (Xi = xi,j |A, H+
i )P (A|H+

i )

=
∑

A∈A(Π(Xi))

P (Xi = xi,j |A)P (A|H+
i ) =

1
P (H+

i )

∑
A∈A(Π(Xi))

P (Xi = xi,j |A)P (A, H+
i ) (4)

Observe that the hypothesis H+
i can be further decom-

posed as follows:

H+
i =

⋃
Xm∈Π(Xi)

(Hm ∪ H+
m)

Since B \ {S} is DP-singly connected, the above decompo-
sition is a disjoint cover, and thus, for each A ∈ A(Π(Xi)),
the term P (A, H+

i ) in Eq. 4 can be decomposed as follows:

P (A, H+
i ) =

∑
Xm∈Π(Xi)

P (A|Hm) · P (Hm)

+
∑

Xm∈Π(Xi)

P (A|H+
m) · P (H+

m)
(5)

The first and the second terms in Eq. 5 distinguish be-
tween forcing a parent Xm of Xi, and forcing one of the
ancestors of Xm, respectively. Now we rewrite Eq. 4 us-
ing the decomposition in Eq. 5, while changing the order of
summation, to get:

P (Xi = xi,j |H+
i ) =

1
P (H+

i )
×

×
∑

Xm∈Π(Xi)


 ∑

A∈A(Π(Xi))

P (Xi = xi,j |A)P (A|Hm)P (Hm) +

∑
A∈A(Π(Xi))

P (Xi = xi,j |A)P (A|H+
m)P (H+

m)




(6)

The only terms in Eq. 6 that are not trivial are P (A|Hm)
and P (A|H+

m). Recall that B \ {S} is DP-singly connected,
and thus the parents of Xi are independent given Hm, and
likewise for H+

m. Thus we have:

P (A|Hm) = P (Xm = A(Xm)|Hm)P (Hm)×
×

∏
Xk∈Π(Xi)\{Xm}

P (Xk = A(Xk)|Hk)

P (A|H+
m) = P (Xm = A(Xm)|H+

m)P (H+
m)×

×
∏

Xk∈Π(Xi)\{Xm}
P (Xk = A(Xk)|Hk)

All terms can now be computed recursively. To compute
marginal probabilities for all variables efficiently, proceed
top-down instead, as shown in Figure 2.

Theorem 1 Given a Bayes net B over the variables
{X1, . . . , Xn, S} with S a selector variable, such that B \
{S} is DP-singly connected, algorithm BeliefProp com-
putes the marginal probabilities P (Xi), for 1 ≤ i ≤ n,
with no evidence, in time linear in the size of B.

Proof: Immediate - observe that the algorithm loops n
times, and each equation takes constant time to compute,
using previously computed terms (assuming in-degree and
variable domain size (excluding S) bounded by a constant).
Topological sort also takes linear time. �

The complexity of BeliefProp is a factor of n better than
the optimal respective cut-set conditioning scheme, where
the cut-set would be the singleton set {S}, and where we
would need to perform one propagation for each possible
state of S. Assuming bounds on the in-degree and domain
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BeliefProp
Topologically sort the Bayes net B,

i.e. make Xm ∈ Π(Xi) ⇒ i > m.
for i = 1 to n do

P (Hi) =
∑

xi,j∈D(Xi)
P (S = xi,j)

P (H+
i ) =

∑
Xm∈Π(Xi)

(P (Hm) + P (H+
m))

P (Hi) = 1 − P (Hi) − P (H+
i )

foreach xi,j ∈ D(Xi) do
Compute P (Xi = xi,j |H+

i ) using Eq. 6.
Compute P (Xi = xi,j |Hi) using Eq. 3.
Compute P (Xi = xi,j) using Eq. 1.

Figure 2: Algorithm for belief propagation

cardinality allows us to take O(n) as the size of the network.
In the standard polytree algorithm, taking the size of the net-
work to include the size of the CPTs (possibly exponential
in the in-degree), allows one to drop these assumptions. Al-
though a similar argument can be made in our case, our al-
gorithm has a further multiplicative factor (the in-degree) in
the equations, and we thus cannot quite claim linear time
for unbounded in-degree, but can drop the requirement on
domain size.

Extensions
Although the above algorithm is sufficient for one applica-
tion discussed below, it is certainly of interest whether the
scheme is applicable to belief updating in the presence of
evidence, as well as relaxing the assumption that S is a root
node. It turns out that we can extend the conditions for using
the algorithm to allow selector S to be a non-root node, as
well as the presence of evidence, as long as all the following
conditions hold:

1. All evidence nodes are not descendants of S,

2. S together with its non-descendants constitute a polytree
T , and

3. Every path, from any node in T to any descendant of S,
contains S.

If these conditions hold (for example, see Figure 1c as-
suming the evidence is only at T1 and/or T2), the follow-
ing simple scheme still performs correct belief updating, and
takes only linear time:

1. Compute the probability of S given the evidence, by (tem-
porarily) removing all descendents of S and performing
belief updating on the resulting polytree.

2. Temporarily remove from the original network all nodes
except for S and its descendents, and use our algorithm.

However, allowing unrestricted conjunctive evidence
complicates things considerably. First, for DP-singly-
connected networks, belief updating with evidence is NP-
hard (Shimony & Domshlak 2002a), thus we cannot expect
to solve the problem in linear time, even without the addi-
tional selector variable. Second, evidence at or below “con-
verging” nodes (e.g. X5, X7 in Figure 1c), also called diag-
nostic evidence, tends to create further dependencies. Nev-

ertheless, if the network (excluding S) is a polytree, efficient
belief updating is still possible:

Theorem 2 Given Bayes net B over variables
{X1, . . . , Xn, S} with S a selector variable, such that
B \ {S} is a polytree, computing marginals P (Xi|E), for
1 ≤ i ≤ n, where E is arbitrary conjunctive evidence, can
be done in time linear in the size of B.

Clearly, however, a different algorithm (presented else-
where (Shimony & Domshlak 2002b) due to lack of space)
must be used. Suffice it to say that the algorithm required for
belief updating with unrestricted evidence uses an intricate
analysis of location of pieces of evidence as in the standard
polytree belief updating algorithm in conjunction with care-
ful conditioning on some states of S, similar to that done in
the algorithm presented here. However, the number of cases
one needs to consider is much larger, though still a constant,
i.e. independent of the size of the network.

Discussion
The issue of selectors in Bayes networks was raised in try-
ing to predict system behaviour in user-interface type appli-
cations, where a user action can cause more than one system
action. The prediction is necessary in order to achieve better
system performance, for example by attempting to optimize
actions that are more likely to be executed in the near future.
The unknown user selection is modeled by a selector vari-
able, and the system is modeled by the rest of the network.

In particular, (Domshlak & Shimony 2002) discusses
an adaptive system that presents multimedia data items
and/or multi-component web pages based on preferential
constraints from the author, as well as on user selection. Due
to the constraints, a selection has multiple, non-trivial rami-
fications. If a user-model (i.e. a distribution over user selec-
tions) is available, one can use it to predict the distribution of
the resulting system actions. In this application, the actions
are retrieving and transmitting certain data items, which may
be time consuming. Response time to the user can be signif-
icantly improved if some of the actions are done ahead of
time, but since resources are limited it is important to know
which are more likely to be required, given the state of the
system (evidence). The results in this paper are directly ap-
plicable there, as user selection(s) is modeled by the selector
variable(s) and system constraints (whether deterministic or
probabilistic) are modeled by the rest of the Bayes network.
Due to lack of space (and the algorithmic focus of this pa-
per) the exact details of this specific prediction scheme are
discussed elsewhere.

We briefly discuss other possible future extensions to our
algorithm. First, consider the case where there is more than
one selector variable, in order to model more than one user
selection (or other external event). If the topology is still
DP-singly connected, except for the common selector vari-
ables, it seems that the above methods can still apply, but
with a significantly larger number of cases (“H”s) to handle.
For m selectors, this complexity should be nKm for some
small constant K. This is exponential in m, but complexity
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of existing algorithms will be O(nm+1), so our scheme has
potential here.

Further possible extensions would be to consider depen-
dent selectors, as well as other topologies. In a general
topology, with one selector, one could apply a join-tree al-
gorithm to the network (excluding S). Possibly, some form
of mutual exclusion can be used for the resulting join-tree in
the presence of S. Due to clustering effects, the mutual ex-
clusion property may hold only partially, but it may still be
possible to use it to gain some performance improvement.
Finally, it may be possible to take advantage of forms of
mutual exclusion other than selectors.

Some related work relevant to taking advantage of vari-
ous belief network special-case characteristics is briefly dis-
cussed below. Our algorithm can be seen as an extension of
the polytree belief updating algorithm (Kim & Pearl 1983).
In fact, some of the quantities computed in our algorithm are
exactly π messages from (Kim & Pearl 1983), and similar
quantities. Likewise, for the general evidence case, our ex-
tended algorithm (Shimony & Domshlak 2002b) uses both
π and λ messages, as well as other types of messages that
are specific to aggregated states of the selector S.

Alternately, one can view our algorithm within the frame-
work of refined conditioning schemes presented in (Dar-
wiche 1995; 2000), but where we take additional advantage
of context specific independence and the selector properties
of S. As written, the scheme proposed in (Darwiche 1995;
2000) would still have a quadratic runtime, even for net-
works that are polytrees (with one additional common se-
lector).

Yet another way to look at our algorithm is within
the framework of Symbolic Probabilistic Inference (SPI
(D’Ambrosio 1993)). Their system attempts to perform
(automated) factoring of the symbolic equations for belief
updating, and in theory could arrive at results similar to
our scheme. However, this is unlikely in practice, without
adding in rules for handling mutual exclusion and specific
search heuristics - an interesting issue for future research.

Summary

We examined a special case of Bayes network - DP-singly
connected, except for a common selector variable S. Belief
updating in Bayes networks with this topology, which are
“almost” DP-singly connected, can be done by conditioning
on S in quadratic time, which is the best that existing algo-
rithms can achieve. We developed a linear-time algorithm
for this problem.

It may be possible to take advantage of our ideas in net-
works with several selector variables, an issue for future re-
search. Interaction of the selector variables with the other
variables may also be generalized.

Networks of the type discussed in this paper can be used
to predict system actions in some applications, and to im-
prove system performance in some criteria (such as average
response time). One such application, adaptive multimedia
presentation, was briefly discussed.
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