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Abstract

We present a flexible framework for implementing reason-
ing with uncertainty: Semistructured Probabilistic Databases.
This framework bridges the gap between the process of ob-
taining probabilistic information from data and its use in AI
applications by providing the facilities to store and query di-
verse and complex probabilistic data.

Introduction
The election commissioner of Anytown is facing the follow-
ing problem: The Rhinoceros Party candidate has just won
the election for the State Senate seat, despite a complete lack
of apparent support in terms of monetary contributions, yard
signs, pre-election or exit polls. The ballot initiative to legal-
ize AI conferences, adamantly opposed by the Rhinoceros
candidate, won in a landslide. The commissioner suspects
voting irregularities. How can she argue her case in court1?

As we know, courts can be intimidated by mathematical
formalism. Thus, the commissioner must produce mathe-
matical evidence that the outcome of an election is not in
keeping with trends and predictors. In order to do so, she
must be able to refer to past data and to the probabilistic
analysis of both the data and recent polls.

The commissioner’s office has access to previous polls,
voter registration records, previous votes in the district,
votes in other electoral districts and demographics for
her district and others. From this data, analyses must be
performed to demonstrate the discrepancies between the
predicted and the observed results. During this analysis,
the statistical and probabilistic information, derived by the
analysts, should be stored in a way that facilitates later
comparisons. Due to small sample sizes, possible sample
biases, etc., the probabilities obtained come with expected
errors and are represented as probability intervals (e.g.,
42% with a 3% error becomes the interval [0.39, 0.45]). The
commissioner and her analysts may ask:
• What demographic groups voted Rhinoceros in the past?
• What other districts went Rhinoceros?

Copyright c© 2003, American Association for Artificial Intelli-
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1For the purpose of argument, we will ignore any recent
Supreme Court decisions, and will concentrate on the aspects of
the problem about which we can reason logically.

• What percentage did the Rhinoceros candidate re-
ceive in various polls, and how does that compare to the
percentages the winners of previous elections received in
corresponding polls?
• What were the joint probability distributions of voters

voting for particular candidates in State Senate, State House
and local Mayoral races?
• What is the likelihood of voters voting for both the

Rhinoceros Senate candidate and the ballot measure to
legalize AI conferences?

While finding the answers to these questions from the data
is a matter of statistical analysis, once the results are ob-
tained, they need to be preserved for future recall and reuse,
as well as for integration with the results of other analyses.
This particular part of working with uncertain information
is what we concentrate on in this paper. We present the data
model and the query language that allow convenient storage
and efficient retrieval of complex probabilistic information.

Related Work
Interval probabilities have been a focus of a number of stud-
ies in recent years. (Walley 1991) and others (Kyburg Jr.
1998; Biazzo & Gilio 1999; Biazzo et al. 2001) use a behav-
ioral semantics for interval probabilities based on gambles.
(Biazzo & Gilio 1999; Biazzo et al. 2001) extend the theory
of imprecise probabilities to incorporate logical inference
and default reasoning. At the same time, (Weichselberger
1999) gives a possible world semantics for probability in-
tervals. His semantics applies to Kolmogorov-style proba-
bility structures based on atomic events. It is reformulated
in (Dekhtyar & Goldsmith 2002) to explicitly include joint
interval probability distributions of discrete random vari-
ables. Interval probability distributions of discrete random
variables generate a set of linear constraints on the accept-
able probability values for individual instances. It is pos-
sible to extend possible-worlds semantics to more complex
sets of constraints (Cano & Moral 2000). The terminology
adopted here comes from the work on Temporal Probabilis-
tic Databases by (Dekhtyar, Ross, & Subrahmanian 2001)
via (Dekhtyar & Goldsmith 2002), the latter paper contain-
ing a detailed comparison of the frameworks and terminolo-
gies. The possible world semantics for interval probabilities
also occurs in the discussion of Bounded Parameter Markov
Decision Processes in (Givan, Leach, & Dean 2000).
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The work on probabilistic databases for the most part
concentrated on relational representations (Barbara, Garcia-
Molina, & Porter 1992; Cavallo & Pittarelli 1987; Laksh-
manan et al. 1997; Dey & Sarkar 1996), although, more re-
cently, an object-oriented probabilistic database framework
have also been proposed (Eiter et al. 2001). Interval prob-
abilities were introduced to databases in (Lakshmanan et
al. 1997) and have been studied in (Eiter et al. 2001;
Eiter, Lukasiewicz, & Walter 2001). The first semistructured
framework for probabilistic databases have been proposed
in (Dekhtyar, Goldsmith, & Hawkes 2001). That framework
used point probabilities. (Hung, Getoor, & Subrahmanian
2003) proposed a framework for management uncertainty in
the structure of XML documents. The work described in this
paper incorporates the flexibility of the semistructured prob-
abilistic object model of (Dekhtyar, Goldsmith, & Hawkes
2001) with the power of imprecise probabilities.

Extended Semistructured Probabilistic
Objects (ESPOs)

The basic objects represented in the ESPO model are inter-
val probability distributions. However, other data must be
stored with them. For instance, for every probability table
stored, we must be able to easily find information about its
source (such as poll data), or whether it had been derived
from other tables. We must record all probabilistic condi-
tions under which the probabilities were obtained.

We propose a new model, Extended Semistructured Prob-
abilistic Objects (ESPOs) for storage and management of
interval probability distributions. ESPOs store two types of
information: stochastic, namely, the random variables and
their (joint) probability distribution and context — the non-
stochastic information associated with the distribution.

More formally, let V = {v1, . . . , vn} be a universe
of random variables with domains dom(v1), . . . , dom(vn).
If V = {u1, . . . , uk} ⊆ V then we write dom(V ) for
dom(u1)×. . .×dom(uk). Let, R = {A1, . . . , Am} be a list
of relational attributes with domains dom(Ai), 1 ≤ i ≤ m
which represent context (non-stochastic) variables of the
system. Finally, let C[0,1] denote our probability space: the
set of all subintervals of [0, 1].

An Extended Semistructured Probabilistic Object
(ESPO) S is a tuple 〈T, V, P, C〉 where (i) V ⊆ V is a set
of participating random variables; (ii) P : dom(V ) →
C[0,1] is a (possibly incomplete) probability table; (iii)
T = {〈A, a, W 〉}, A ∈ R, a ∈ dom(A) and W ⊆ V
is context, (iv) C = {(u, x)}, u ∈ V − V , x ∈ dom(u)
is the set of conditionals. A collection of ESPOs is called
an ESP-relation, and a collection of ESP-relations forms an
ESP-database.

Consider our election example. Voting in each election is
represented as a separate random variable, its domain con-
sisting of the set of possible choices. Information about
voter groups, such as gender, race, education, party affili-
ation, as well as information about the source of the proba-
bility distribution (poll origin, date, question format) form
the list of context variables. There are three concurrent
races in Anytown: State Senate, State House and Mayor,

S

qNum: 12, {senate}
qNum: 17, {legalize}
date: October 23, 2002
gender: male

senate legalize [ l, u]

Rhino yes [0.04, 0.11]

Rhino no [0.1, 0.15]

Donkey yes [0.22, 0.27]

Donkey no [0.09, 0.16]

Elephant yes [0.05, 0.13]

Elephant no [0.21, 0.26]

mayor: Donkey

←− context

←−random vars

←−prob. table

←−conditional

Figure 1: A Sample Extended Semistructured Probabilistic
Object (left) and its XML representation (right)

plus a ballot initiative to legalize AI conferences. They are
represented by random variables senate, house, mayor,
legalize. The first three variables will have the domain
{Rhino,Elephant,Donkey}. The legalize variable has a
binary {yes, no} domain. Combining random and context
variables we can store, for example, information about (i)
the joint probability distribution of voting for specific Senate
and House candidates for married women based on the inde-
pendent poll conducted 2 weeks prior to the election date, or
(ii) information about the probability that a University edu-
cated Elephant party member voted in the last election. The
ESPO model combines random and context variables, and
in addition, allows the following.
• Specifying conditionals. Representing conditional prob-

ability distributions (such as the distribution of votes for
Senate candidates by voters who intend to vote for the ballot
initiative) is of utmost importance in the ESPO model. The
model allows us to associate with each collection of random
and context variables a list of conditions under which the
distribution takes place. Thus, ESPOs feature a conditional
part. In the example above legalize = yes would be the con-
ditioning information that would distinguish the abovemen-
tioned probability distribution from a simple probability dis-
tribution of votes for Senate candidates.
• Associating individual random and context variables.

Some context variables are associated with individual ran-
dom variables, and this association needs to be preserved
in joint distributions. For example with a joint probabil-
ity distribution of votes for Senate and Mayor based on a
poll by the Rhinoceros party, it may make sense to store in-
formation about the position of the questions on the survey
form. Then we can associate the information that the Senate
question was the 12th question of the survey, while the the
Mayor question was the 15th by including (qNum:12) and
(qNum:15) in the context of the ESPO and associating them
with the senate and mayor random variables respectively.
The latter is done by specifying the list of associations in the
third part of each context triple.

Consider the ESPO in Figure 1. It stores the joint proba-
bility distribution of votes for the Senate candidate and the
ballot initiative by men who intend to vote for the Donkey
mayoral candidate based on a poll conducted on October 23,
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2002. The Senate vote and the ballot initiative were, respec-
tively, the 12th and 17th questions asked. The context part of
the ESPO includes the date of the poll, the gender of the re-
spondents, and the questions’ order. (Whenever no list of as-
sociated random variables accompanies a context entry, we
assume that the entry is associated with all random variables
of the ESPO.) The joint probability distribution of votes for
Senate and the ballot initiative is stored in the probability ta-
ble. Finally, the conditional part contains information about
the mayoral preferences of the subjects.

Semantics of Interval Probabilities
Consider the probability space P = C[0,1], the set of all
subintervals of the interval [0, 1], and a universe V of dis-
crete random variables v with finite domains dom(v). If
V = {v1, . . . , vk} ⊆ V , we write dom(V ) for dom(v1) ×
dom(v2) × . . . × dom(vk).

An interval probability distribution function (ipdf) of ran-
dom variables V is a function P : dom(V ) → C[0,1]. If
x̄ ∈ dom(V ), we write P (x̄) = [lx̄, ux̄]. A p-interpretation
over V is a point probability distribution I : dom(V ) →
[0, 1] such that

∑
x̄∈dom(V ) I(x̄) = 1. We say that I satisfies

P (denoted I |= P ) iff (∀x̄ ∈ dom(V ))(lx̄ ≤ I(x̄) ≤ ux̄).
An ipdf is called consistent iff there exists a p-interpretation
that satisfies it. Two ipdfs P and P ′ are called equivalent iff
{I|I |= P} = {I ′|I ′ |= P ′}.

Let P (x̄) = [l, u] and let α ∈ [l, u]. We say that α is
reachable by P at x̄ iff there exists a p-interpretation I |= P
such that I(x̄) = α. The reachability property is shown to
be continuous (Dekhtyar & Goldsmith 2002), i.e., if α <
β are both reachable by P at some x̄, then so is any γ ∈
[α, β]. P is called tight iff (∀x̄ ∈ dom(V ))(∀α ∈ [lx̄, ux̄])
α is reachable by P at x̄. This notion corresponds to that of
“coherence” in (Walley 1991).

Given an ipdf P ′, its tight equivalent is an ipdf P such
that (i) P is tight and (ii) P ′ ≡ P . It can be shown that each
consistent ipdf has a unique tight equivalent. A tightening
operator T was introduced in (Dekhtyar & Goldsmith 2002),
which maps each ipdf onto its tight equivalent:

T (P )(x̄) =
[
max(lx̄, 1 − ∑

x̄′∈dom(V ) ux̄′ + ux̄),

min(ux̄, 1 − ∑
x̄′∈dom(V ) lx̄′ + lx̄)

]
.

Extended Semistructured Probabilistic Query
Algebra (ESP-Algebra)

ESPOs are complex objects that store probabilistic data and
associated information in one place. The question of query-
ing data stored in ESPOs is addressed in this section. Be-
cause probabilistic data exhibits certain important mathe-
matical properties that need to be accounted for during query
operations, standard relational, object or semistructured
query languages are not immediately appropriate. Here, we
provide a query algebra that specifies the semantics of dif-
ferent atomic query operations on ESPOs. This algebra can
then be incorporated into any specific query language with
appropriate structure. ESP-Algebra defines five operations
on ESPOs: selection(σ), projection(π), conditionaliza-
tion(µ), cartesian product(×) and join (�, �).

Selection operation finds ESPOs in an ESP-relation that
satisfy a particular selection condition. Acceptable selec-
tion conditions are boolean combinations of atomic selection
conditions for each type of information that can be stored in
an ESPO. These types are:
(1)Simple context: expressions for checking the values of
context variables of the form var op value. E.g., gender =
male and date ≤ 11/01/2002 are valid simple context se-
lection conditions.
(2) Extended context: expressions of the form c/V for
checking both the values of context variables and their as-
sociations with the ESPO’s participating random variables.
Here, c is a simple context selection condition and V ⊂ V
is a set of random variables. E.g. qNum = 12/{senate}
evaluates to true on an ESPO that has context entry qNum:
12 associated with random variable senate.
(3) Participating random variables: expressions checking
that ESPOs contain particular random variables. The ex-
pressions are of the form v ∈ V where v, is a name of a
random variable. E.g., house ∈ V evaluates to true on an
ESPO S if house is in the list of participating random vari-
ables of S.
(4) Conditioning information: expressions that check for the
presence of conditionals in ESPOs. These expressions have
the form u = {a1, . . . , ak} where u is a random variable
and a1, . . . , ak ∈ dom(u), e.g., house = {Donkey}.
(5) Probability Table: expressions that select rows of ES-
POs’ probability tables based on the values of random vari-
ables in them. E.g., legalize = yes.
(6) Probabilities: expressions that select rows of ESPOs’
probability tables based on the probability values. These ex-
pressions have the form of l op value (check of lower bound
value) or u op value (check of upper bound value). Exam-
ples are u ≤ 0.4 and l > 0.2.

When an atomic condition c of one of the first four types
is valid for some ESPO S, the selection operation σc(S) re-
turns S. When the atomic conditions are either on proba-
bilities or the probability table, the ESPO returned retains
the same context, participating variables and conditional in-
formation, but will only include probability table rows that
match the selection condition. Figures 2.(a) and 2.(b) show
the results of the queries σlegalize=yes(S) and σu<0.16(S),
where S is the ESPO from Figure 1.

Projection is the operation of removing variables from an
ESPO. It takes as its parameter the list F of variables to be
kept in the output object(s). Projecting out context variables
is a straightforward task: the unwanted entries are removed
from the context of the resulting ESPO. A more interesting
operation is the removal of unwanted random variables.
When a random variable is removed from a joint probability
distribution, the probability distribution is adjusted to reflect
the marginal probability distribution of the remaining
random variables. Given an ESPO S = 〈T, V, P, C〉
and a set F ⊂ V , the projection πF (S) is the ESPO
S′ = 〈T,F , P ′, C〉, where P ′ is the marginal interval
probability distribution of P over the random variables
from F computed as follows: let interval probability dis-
tribution P ′′ : dom(F) −→ C[0,1] be defined as: P ′′(x′) =
[
∑

x̄′′∈dom(V −F) l(x̄′,x̄′′),min(1,
∑

x̄′′∈dom(V −F) u(x̄′,x̄′′))].
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σlegalize=yes(S)

qNum: 12, {senate}
qNum: 17, {legalize}
date: Oct. 23, 2002
gender: male

senate legalize [l, u]

Rhino yes [0.04, 0.11]

Donkey yes [0.22, 0.27]

Elephant yes [0.05, 0.13]

mayor: Donkey

σu<0.16(S)

qNum: 12, {senate}
qNum: 17, {legalize}
date: Oct. 23, 2002
gender: male

senate legalize [l, u]

Rhino yes [0.04, 0.11]

Rhino no [0.1, 0.15]

Elephant yes [0.05, 0.13]

mayor: Donkey

π{senate}(S)

qNum: 12, {senate}
date: Oct. 23, 2002
gender: male

senate [l, u]

Rhino [0.18, 0.26]

Donkey [0.35, 0.43]

Elephant [0.31, 0.39]

mayor: Donkey

µlegalize={yes}(S)

qNum: 12, {senate}
date: Oct. 23, 2002
gender: male

senate [l, u]

Rhino [0.09, 0.25]

Donkey [0.48, 0.63]

Elephant [0.12, 0.3]

mayor: Donkey
legalize yes

(a) (b) (c) (d)

Figure 2: Selection (a,b), Projection (c), and Conditionalization (d) operations applied to the ESPO in Figure 1.

Then, P ′ = T (P ′′).
Suppose, our election commissioner is observing the

ESPO S from Figure 1 and wants the probability distribu-
tion for votes in just the State Senate election. She can issue
the query π{senate}(S). The result of this query is shown in
Figure 2.(c). It is computed as follows: the legalize vari-
able is removed from the ESPO, leading to the removal of
context entries associated exclusively with legalize. Some
rows of the probability table collapse; the lower and upper
probability bounds of collapsed rows are added together to
obtain new lower and upper probabilities for the rows in the
new probability table (this produces distribution P ′′). Fi-
nally, the tightening operation is applied to assure that only
reachable probabilities will be contained in the result. In
our example, the tightening operation leads to adjustment of
lower probability values for all three rows in the result.

Conditionalization is the operation of conditioning the
joint probability distribution. Given an ESPO S =
〈T, V, P, C〉 and an atomic conditional selection condition
c : v = {a1, . . . , ak}, v ∈ V , this operation, denoted µc,
replaces the probability table P with the conditional proba-
bility distribution of random variables V − {v} given c, and
adds c to the conditional part of the result.

The computation of conditional probabilities, straight-
forward for point probability distributions, turns out to
be a non-trivial problem when interval probabilities are
present. This question had been addressed in general
form by a number of people, including Walley (Walley
1991), Jaffray (Jaffray 1992) and Weichselberger (We-
ichselberger 1999). Dekhtyar and Goldsmith (Dekhtyar
& Goldsmith 2002) solve the problem of computing the
result of conditionalization of interval probability dis-
tributions for the semantics used by ESPO model. We
present here the final formula, while referring the reader
to (Dekhtyar & Goldsmith 2002) for a more detailed
discussion of its derivation. Let X = {a1, . . . , ak}. Then
µ{v = X}(S) = S′ = . . . T, V − {v′}, P ′, C ′ . . ., where
C ′ = C ∪{v = X} and P ′ : V −{v} −→ C[0,1] is defined
as follows:

P ′(ȳ) =
[

l[X]ȳ

min
(
1−∑

x′ �∈X l(ȳ′,x′) ,
∑

ȳ∗�=ȳ , x∈X u(ȳ∗,x)+l[X]ȳ
) ,

u[X]ȳ

max
(∑

ȳ∗�=ȳ , x∈X l(ȳ∗,x)+u[X]ȳ , 1−∑
x′ �∈X u(ȳ′,x′)

)
]

,

where
l[X]ȳ = max

(∑
x∈X l(ȳ,x) ; 1 − ∑

ȳ′ �=ȳ or x′ �∈X u(ȳ′,x′)

)
and
u[X]ȳ = min

(
1 − ∑

ȳ′ �=ȳ or x′ �∈X l(ȳ′,x′) ;
∑

x∈X u(ȳ,x)

)
.

Suppose, instead of being interested in the probability dis-
tribution of Senate votes for all voters based on ESPO S,
the commissioner is interested in finding the probability dis-
tribution of votes for Senate candidates for the voters who
decided to vote for the ballot initiative to legalize AI con-
ferences. To get the answer to this question, the commis-
sioner issues the query µlegalize={yes}(S) which returns an
ESPO containing the conditional probability distribution of
random variable senate given that legalize=yes. The re-
sult of this query, shown in Figure 2.(d), contains a new
entry legalize = {yes} in its conditional part, and has the
conditional probability distribution for the senate variable.

We note, however, that (Jaffray 1992) has shown that con-
ditioning interval probabilities is a dicey matter: the set
of point probability distributions represented by P ′(ȳ) will
contain distributions I ′ which do not correspond to any I in
P . The unfortunate consequence of this is that conditional-
izing is not commutative: P ((A|B)|C) �= P (A|(B|C)) for
many A, B, and C. Thus, a conditionalization operation is
included into ESP-Algebra with the caveat that the user must
take care in the use of and interpretation of the result.

Cartesian Product (×α). Cartesian product in the Ex-
tended SP-Algebra constructs a joint probability distribution
from the input ESPOs. In order for Cartesian product opera-
tion to be applicable to a pair of ESPOs S = 〈T, V, P, C〉
and S′ = 〈T ′, V ′, P ′, C ′〉, S and S′ must have disjoint
sets of participating random variables (V ∩ V ′ = ∅) and
matching conditional parts (C = C ′), in which case, they
are Cartesian product-compatible. Finding the joint prob-
ability distribution of random variables from V and V ′

means computing the probability P ′′((ā, b̄)) for each in-
stance ā ∈ dom(V ) and b̄ ∈ dom(V ′), given their respec-
tive probabilities P (ā) and P ′(b̄). This computes the prob-
ability of the conjunction of two events. Since the probabil-
ity of the conjunction depends on the relationship between
the events, there is no unique way to compute it. We em-
ploy probabilistic conjunction strategies (Lakshmanan et al.
1997), operations ⊗α : C[0,1] × C[0,1] → C[0,1], which
compute the probability intervals for the conjunction of two
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events under specific assumptions about their relationships.
In particular, under the assumption of independence be-
tween the two events (or the two respective sets of ran-
dom variables), we get [l, u] ⊗ind [l′, u′] = [l · l′, u · u′].
When we have no information about the relationship be-
tween the events (ignorance assumption), the appropriate
probabilistic conjunction strategy is [l, u] ⊗ign [l′, u′] =
[max(0, l + l′ − 1),min(u, u′)].

Given two Cartesian product-compatible ESPOs S and
S′, the result of their cartesian product under the proba-
bilistic conjunction strategy ⊗α, denoted S ×α S′, is an
ESPO S′′ = 〈T ′′, V ′′, P ′′, C ′′〉 where (i) V ′′ = V ∪ V ′;
(ii) C ′′ = C = C ′; (iii) P ′′((ā, b̄)) = P (ā) ⊗α P ′(b̄); (iv)
T ′′ = T ∪∗ T ′ 2.

Join (�α, �α). Join in the ESP-Algebra is similar to
cartesian product in that it computes the joint probability
distribution of the input ESPOs. The difference is that join
is applicable to the ESPOs that have common participat-
ing random variables. Let S = 〈T, V, P, C〉 and S′ =
〈T ′, V ′, P ′, C ′〉, and let V ∗ = V ∩ V ′ �= ∅ and C = C ′.
If these conditions are satisfied, we call S and S′ join-
compatible. Consider three value vectors x̄ ∈ dom(V −V ∗),
ȳ ∈ dom(V ∗) and z̄ ∈ dom(V ′ − V ∗). The join of S and
S′ is the joint probability distribution P ′′(x̄, ȳ, z̄) of V and
V ′, or, more specifically, of V − V ∗, V ∗ and V ′ − V ∗.

To construct this joint distribution, we recall from prob-
ability theory that under assumption α about the rela-
tionship between the random variables in V and V ′,
p(x̄, ȳ, z̄) = p(x̄, ȳ) ⊗α p(z̄|ȳ) and, symmetrically,
p(x̄, ȳ, z̄) = p(x̄|ȳ) ⊗α p(ȳ, z̄). p(x̄, ȳ) is stored in P , the
probability table of S. p(z̄|ȳ) is the conditional probability
that can be found by conditioning p(ȳ, x̄) (stored in P ′) on
ȳ. The second equality can be exploited in the same manner.

This gives rise to two families of join operations, left
join (�α) and right join (�α) defined as follows. For
ȳ ∈ dom(V ∗) let Sȳ = µV ∗=ȳ(S) = 〈T, V − V ∗, Pȳ, Cȳ〉
and S′

ȳ = µV ∗=ȳ(S′) = 〈T ′, V ′ − V ∗, P ′
ȳ, C ′

ȳ〉. Then
S �α S′ = 〈T ′′, V ∪V ′, P ′′, C ′′〉, where C ′′ = C = C ′ and
P ′′(x̄, ȳ, z̄) = Pȳ(x̄)⊗α P ′(ȳ, z̄) and, S �α S′ = 〈T ′′, V ∪
V ′, P ′′, C ′′〉, where C ′′ = C = C ′ and P ′′(x̄, ȳ, z̄) =
P ((x̄, ȳ)) ⊗α P ′

ȳ(z̄).

Conclusion

So, can Probabilistic Databases help elect qualified officials?
The answer to this question is, of course, no.3 However, the
Semistructured Probabilistic Database framework proposed
here can help researchers bridge the gap between obtaining
statistical data and using that data in AI applications.

2T ∪∗ T ′ = {(A, a, V ∗)| (i) (A, a, V ∗) ∈ T and no
(A, a, V∗) ∈ T ′ or (ii) (A, a, V ∗) ∈ T ′ and no (A, a, V∗) ∈ T
or (iii) (A, a, V ∗

1 ) ∈ T and (A, a, V ∗
2 ) ∈ T ′ and V ∗ = V ∗

1 ∪ V ∗
2 }

In other words, T ∪∗ T ′ takes the union of the contexts in T and
T ′ and merges the associated variables for common context.

3In order for qualified officials to be elected, qualified candi-
dates must be willing to run, and they must run good campaigns.
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Superior de Ingenieria Infor mática.
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