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Abstract

This paper presents new methods for probabilistic belief revi-
sion and information fusion. By making use of the principles
of optimum entropy (ME-principles), we define a general-
ized revision operator which aims at simulating the human
learning of lessons, and we introduce a fusion operator which
handles probabilistic information faithfully. In general, this
fusion operator computes kind of mean probabilistic values
from pieces of information provided by different sources.

Introduction
Most of the knowledge which is used e.g. in advanced
knowledge base systems, or in cognitive modelling is un-
certain, incomplete, and subject to changes. A formal con-
cept for knowledge management should not only focus on
reasoning techniques, but also make methods for revising
and updating on new information available, and allow for
the fusing of knowledge from different sources. Only such
a combination of methods makes sure that the resulting
knowledge base or belief state, respectively, yields optimal
results. To realize such an ambitious concept, an expressive
and powerful framework with solid theoretical foundations
and sophisticated computation techniques is needed.

Probability theory, the oldest approach to handle uncer-
tain knowledge, meets all these requirements. Instead of
only two extreme truth values, as in classical frameworks,
a continuum of numerical values between 0 (false) and 1
(true) is available to specify degrees of belief. Probabil-
ity theory was also the first framework to address explicitly
the problem of belief change, offering with Bayesian condi-
tioning and Jeffrey’s conditioning elegant methods to adjust
one’s stock of belief to certain or uncertain evidence, respec-
tively. The abundance of probabilistic models (i.e. distribu-
tions), however, makes inference from incomplete knowl-
edge bases quite weak. Here, the use of information theoret-
ical techniques is apt to improve probabilistic reasoning sub-
stantially. The principle of maximum entropy (Jaynes 1983;
Paris 1994) represents given probabilistic knowledge in-
ductively by a “best” model, i.e. without adding informa-
tion unnecessarily, which can be used for inferences (ME-
representation). Its generalization, the principle of mini-
mum cross-entropy (Shore & Johnson 1980; Kern-Isberner
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1998), provides an optimal method to revise a given prior
distribution by new information, generalizing both Bayesian
and Jeffrey’s conditioning (ME-revision). In (Rödder & Xu
1999), first steps towards making use of this paradigm for
fusing information have been taken.

In this paper, we elaborate further on these topics. First,
we will outline how to use the ME-revision method to re-
alize different belief change operations, generally known as
(genuine) revision, updating, and focusing. Then, we will
present a new probabilistic revision operator which is inter-
mediate between revision and updating, and aims at simu-
lating the human learning of lessons. The basic idea here is
the following: Even if previously learned lessons are erro-
neous in some respect, further experiences may correct the
mistakes, without giving up completely the prior knowledge.
Indeed, the prior knowledge can be recovered from the re-
sulting posterior belief state. In particular, the lessons to be
learned need not be compatible with one another. We will
illustrate by an example that the new operator is able to re-
vise even certain prior beliefs which is not possible by the
standard ME-approach.

The second main point of this paper is how to use the
ME-methodology for fusing probabilistic beliefs. We take
up the idea from (Rödder & Xu 1999), but show that a naı̈ve
approach yields undesired, weakening effects. We fix this
problem and define an ME-fusion-operator that computes
kind of mean value from probabilities describing degrees of
belief provided by different experts. In particular, if all ex-
perts agree on that probability, ME-fusion returns this same
probability. So, the fusion method to be presented here han-
dles information faithfully, without allowing weakening or
reinforcing effects.

This paper is organized as follows: We start with describ-
ing the formal logical background of this paper, and recall-
ing some basic facts on the principles of optimum entropy.
The following section deals with probabilistic belief revision
and presents a generalized revision operator. Afterwards,
we describe our ME-fusion technique. We conclude with
highlighting the main contributions of this paper, and give
an outlook on further work.

Formal background and notations
Let L be a propositional logical language, finitely generated
by propositional variables from V = {a, b, c, . . .}. Formu-
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las from L are well-formed in the usual way by use of the
junctors ∧ (and), ∨ (or), and ¬ (not), and will be denoted
by uppercase letters, A, B, C, . . .. To simplify notation, we
will omit the ∧-junctor in conjunctions and simply juxtapose
conjuncts, i.e. AB = A ∧ B. Moreover, instead of ¬A, we
will write A. Ω is the set of all classical-logical interpre-
tations of L. This Boolean frame is extended by a binary,
non-Boolean conditional operator, |. Formulas of the form
(B|A) are called conditionals, or simply rules. In a second
extension step, propositional and conditional formulas are
assigned a real number x ∈ [0, 1], representing a probabil-
ity. Propositional formulas A ∈ L are identified with the
conditional (A|�), where � is any tautology. So, the syn-
tactical objects we will consider in this paper have the form
(B|A)[x], A, B ∈ L, x ∈ [0, 1].

As to the semantics, the models are probability distri-
butions, P , over the propositional variables V . P satis-
fies a conditional (B|A)[x], P |= (B|A)[x], iff P (A) >

0 and P (B|A) = P (AB)
P (A) = x. This satisfaction re-

lation generalizes to sets of conditionals in a straightfor-
ward way. Our probabilities will be subjective probabil-
ities, so the elements ω ∈ Ω should be taken as possi-
ble worlds, rather than statistical elementary events. A set
R = {(B1|A1)[x1], . . . , (Bm|Am)[xm]} of probabilistic
conditionals is consistent iff it has a model P , i.e. iff there
is a distribution P with P |= R. Otherwise, it is called in-
consistent. Given a distribution P , R is called P-consistent
iff there is a model Q |= R such that Q is totally continous
with respect to P (i.e. P (ω) = 0 implies Q(ω) = 0). For a
set R = {(B1|A1)[x1], . . . , (Bm|Am)[xm]} of probabilis-
tic conditionals and a propositional formula W , we define
the conditioning of R by W via

R|W := {(B1|A1W )[x1], . . . , (Bm|AmW )[xm]}

Probabilistic reasoning on optimum entropy
The principles of maximum entropy and of minimum cross-
entropy are well-known techniques to represent (mostly in-
complete) probabilistic knowledge inductively, and to com-
bine new probabilistic information with prior knowledge,
respectively (cf. e.g. (Jaynes 1983)). Entropy and cross-
entropy are notions stemming from information theory. En-
tropy quantifies the indeterminateness inherent to a distri-
bution P by H(P ) = −∑

ω P (ω) log P (ω), and cross-
entropy measures the information-theoretical distance of a
distribution P with respect to a distribution Q by R(Q, P ) =∑

ω∈Ω Q(ω) log Q(ω)
P (ω) .

Given a set R of probabilistic conditionals, the principle
of maximum entropy

max H(Q) = −
∑

ω

Q(ω) log Q(ω) (1)

s.t. Q is a probability distribution with Q |= R.

solves the problem of representing R by a probability dis-
tribution without adding information unnecessarily. The re-
sulting distribution is denoted by ME(R). The principle of
minimum cross-entropy allows us to take prior knowledge,
represented by a distribution P , also into account. It yields

a solution to the following problem: How should P be mod-
ified to obtain a (posterior) distribution P ∗ with P ∗ |= R by
solving the minimization problem

minR(Q, P ) =
∑

ω∈Ω

Q(ω) log
Q(ω)
P (ω)

(2)

s.t. Q is a probability distribution with Q |= R
Both problems are solvable, provided that R is consistent,
or P -consistent, respectively (Csiszár 1975). The principle
of minimum cross-entropy can be regarded as more general
than the principle of maximum entropy. Indeed, maximizing
(absolute) entropy under some given constraints R is equiva-
lent to minimizing cross-entropy with respect to the uniform
distribution, given R. Therefore, we refer to both principles
as the ME-principle, where the abbreviation ME stands both
for Minimum cross-Entropy and for Maximum Entropy.
Since both approaches follow the paradigm of informa-
tional economy, they are particularly well-behaved, as has
been proved by different authors (Shore & Johnson 1980;
Paris 1994; Kern-Isberner 1998; 2001); for more detailed
information on these techniques, we refer the reader to this
literature.

All ME-calculations in this paper have been carried
out with the system shell SPIRIT, which is available
via http://www.fernuni-hagen.de/BWLOR/forsch.html. For
more detailed information on computational issues, cf.
(Rödder & Meyer 1996).

Revising probabilistic beliefs
The ME-principle yields a probabilistic belief revision op-
erator, ∗ME , associating to each probability distribution
P (representing a probabilistic belief state) and each P -
consistent set R of probabilistic conditionals a revised distri-
bution PME = P ∗ME R in which R holds. Classical belief
revision theory (Alchourrón, Gärdenfors, & Makinson 1985;
Gärdenfors 1988) distinguishes between different kinds of
belief change: (genuine) revision takes place when new
information about a static world arrives, whereas updat-
ing tries to incorporate new information about a (possibly)
evolving, changing world (Katsuno & Mendelzon 1991).
Focusing (Dubois & Prade 1997) means applying generic
knowledge to the evidence present by choosing an appropri-
ate context or reference class. All these different facets of
belief change can be realized via the ME-approach, as fol-
lows:

• In its original form, the ME-operator ∗ME corresponds to
updating – a complete set of beliefs about a prior world
which is not assumed to be static is adapted to new prob-
abilistic beliefs. None of the prior beliefs can be expected
still to hold in the new belief state. So, updating is kind of
successive belief change.

• A typical situation where genuine revision can be carried
out is the following: Our explicit knowledge about a spe-
cific world is given by a set R of probabilistic condition-
als, and some new information, S, on that same world ar-
rives. Since R and S refer to the same world, R∪S must
be consistent (erroneous information is excluded here).
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Mostly, also background knowledge is available which is
assumed to be represented by a probability distribution,
P . The prior belief state before coming to know S then is
P ∗ME R, combining background and situational knowl-
edge. Note that although S is assumed to be consistent
with R, it will be incompatible with P in general, in that
P �|= S. The (genuine) revision of P ∗ME R then is de-
fined by P ∗ME (R ∪ S). Prior knowledge R and new
information S are taken to be on the same level, and revi-
sion is done by kind of simultaneous adoption of both to
background knowledge.

• In a probabilistic setting, focusing on a certain evidence,
A, is usually done by conditioning. Since P (·|A) =
P ∗ME {A[1]}, the ME-revision operator offers a straight-
forward way to realize focusing on uncertain evidence
A[x], x ∈ (0, 1), by forming P ∗ME {A[x]}. Hence, ME-
focusing amounts to updating with certain or uncertain
facts.

The formal properties of these revision operators have been
investigated in (Kern-Isberner 2001) and related to those
of classical belief revision operators. Note that indeed,
ME-revision and ME-updating are different, since (P ∗ME

R) ∗ME S �= P ∗ME (R∪ S) in general.
So different forms of belief revision can be realized by

making use of one methodology, but doing so in different
ways. This sheds a new, unifying light on the belief change
framework – usually, the different change operators are con-
sidered as substantially different, a view that is hardly com-
patible with the ease with which humans adapt their stock of
belief to new situations.

With the help of the ME-approach, however, also other,
intermediate forms of belief change can be realized. In the
following, we will present a method that is apt to perform a
revision operation in case that prior and new knowledge are
not compatible, since the prior knowledge is erroneous. This
new method follows the line of considering human learning
as adapting knowledge in packages or lessons. New knowl-
edge may override or refine old experiences, but the prior
knowledge is still present in the new belief state to a certain
degree. The corresponding revision operator will be denoted
by �.

Suppose our prior knowledge is described by a set R of
probabilistic rules, and a package of new information is rep-
resented by another set S of probabilistic conditionals. R
and S need not be compatible, so R ∪ S may be inconsis-
tent. We set priority to S, taking the new information for
granted, so the prior knowledge R has to be weakened to
make a combination of R and S on the same level possible.
The prior belief state to be revised is P1 := ME(R).

Let E1 stand for the first experience where we learnt R.
The degree to which R should be present in the new belief
state is specified by x ∈ [0, 1]. The generalized revision of
P1 = ME(R) by S is defined by

P1 � S := ME(R|E1 ∪ S ∪ {E1[x]}) (3)

P1 � S represents the new information, S, while the prior
knowledge, R, can be recovered from P1�S by conditioning
on E1. This generalized type of belief revision is illustrated
by the following example.

Example 1 Grete, as a young child, learned about birds’
abilities to fly, sing, run, dive, and swim. This knowledge,
R1, was very general, and there was no specification con-
cerning different kinds of birds, like penguins, ostriches,
craws, song-birds, or aquatic birds:

Grete’s young child lesson, R1:
conditional prob. conditional prob.

(sing | bird) 0.80 (fly | bird) 1.00
(run | bird) 0.10 (dive | bird) 0.01
(swim | bird) 0.00

The belief state corresponding to Grete’s young age is given
by ME(R1) in which all rules of R1 are present. Note
that the conditional relationships have been learned in a di-
rected way, so we can not expect, for instance, the con-
ditional (bird | fly) to have a high probability in ME(R1),
too. Indeed, we find ME(R1)(bird | fly) = 0.1311, so, fly-
ing objects are not assumed by default to be birds. How-
ever, a positive correlation between birds and fly has been
established, since the probability that an object is a bird
(ME(R1)(bird) = 0.0702) can be increased considerably by
observing its flying. The low probability of being a bird cor-
responds to the high informativeness that has been attached
to birds by the ME-approach (for the connection between
conditionals, probability, and information, cf. (Rödder &
Kern-Isberner 2003)).

Later, when Grete grew up, her knowledge increased, and
was refined, as is shown in rule set R2; in particular, she
came to know birds that were not able to fly but excellent
swimmers and divers, which is in conflict with her prior
knowledge:

Grete’s child lesson, R2:
conditional prob. conditional prob.

(sing | songbird) 0.99 (dive | songbird) 0.05
(sing | aquab) 0.01 (dive | aquab) 0.50
(sing | penguin) 0.00 (dive | penguin) 0.99
(sing | ostrich) 0.00 (dive | ostrich) 0.01
(sing | craw) 0.01 (dive | craw) 0.05
(fly | songbird) 0.99 (swim | songbird) 0.05
(fly | aquab) 0.96 (swim | aquab) 0.99
(fly | penguin) 0.01 (swim | penguin) 0.99
(fly | ostrich) 0.01 (swim | ostrich) 0.05
(fly | craw) 1.00 (swim | craw) 0.05
(run | songbird) 0.05 (bird | songbird) 1.00
(run | aquab) 0.10 (bird | aquab) 1.00
(run | penguin) 0.05 (bird | penguin) 1.00
(run | ostrich) 0.99 (bird | ostrich) 1.00
(run | craw) 0.99 (bird | craw) 1.00

Let P2 = ME(R1)�R2 be the result of revising ME(R1) by
R2 in a generalized way, as defined in (3), with x = 0.9. In
particular, Grete revised her knowledge from R1, as follows:

P2(sing | bird) = 0.68 P2(fly | bird) = 0.85
P2(run | bird) = 0.22 P2(dive | bird) = 0.17

P2(swim | bird) = 0.18

Note that no new general relationships between the super-
class bird and the above properties are explicitly stated in
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R2; rather, the probabilities of the conditionals in R1 have
been revised implicitly by observing counterexamples.

The degree x to which earlier experience should be
present in the current belief state is part of the modelling
and should be set appropriately by the user. The case where
x is chosen as close to 1 as possible is discussed in (Reucher
& Rödder 2002).

Information fusion via the ME-approach
When building up knowledge bases, one often is presented
with the problem to fuse knowledge coming from differ-
ent experts, or to combine expert knowledge with knowl-
edge from statistical data. In general, information fusion is
concerned with merging information that stems from differ-
ent sources in order to make this merged information us-
able for purposes such as query answering, or decision mak-
ing (for a profound discussion of this notion and a broad
overview, cf. (Bloch, Hunter, & others 2001)). In the frame-
work dealt with in this paper, information is provided by sets
R1, . . . ,Rn of probabilistic conditionals. We assume each
of these sets Ri to be consistent; inconsistent rule bases have
to be split up into consistent subbases. The union ∪n

i=1Ri,
however, may be inconsistent, or even plainly contradictory
in that identical facts or conditionals may be assigned differ-
ent probabilities. In the following, we will explain how to
use ME-methodology for information fusion in this case; in
detail, we will

• merge the rule bases R1, . . . ,Rn into one (consistent)
rule base R := R1 	 . . . 	Rn, and then

• use the principle of maximum entropy to build up a
complete probability distribution FME(R1, . . . ,Rn) =
ME(R1 	 . . . 	Rn) which can be used for further infer-
ences.

Note that, although the terms merging and fusion are often
used synonymously, in our two-step approach we will use
merging for the combination of knowledge bases R1, . . . ,
Rn, and fusion for the overall aggregation of knowledge in
one (ideal) belief state F (R1, . . . ,Rn). The degrees of be-
lief reflected by F (R1, . . . ,Rn) should arise as a compro-
mise of the degrees of belief provided by each agent.

The basic idea is to consider each set Ri of probabilistic
rules as describing the world from a certain point of view,
Wi, provided by an intelligent agent i, and to condition the
rules accordingly. This eliminates inconsistencies between
the rule bases. So, for each agent i, 1 � i � n, a new binary
variable Wi is introduced representing their point of view.
Then the union R1|W1∪. . .∪Rn|Wn is consistent. The fol-
lowing simple example shows, however, that this first, naı̈ve
approach to merge probabilistic rule bases yields undesired
effects when combined with ME-methodology.

Example 2 We consider the following sets R1, R2 of prob-
abilistic rules specified by two different experts: R1 =
{A[0.7]}, R2 = {A[0.8]}. The experts disagree on the
probability of the fact A, so R1 ∪ R2 is obviously incon-
sistent. Conditioning each fact on the corresponding ex-
pert, however, makes both pieces of knowledge compatible
– R1|W1∪R2|W2 is consistent. Thus, P ∗ := ME(R1|W1 ∪

R2|W2) can be computed, and P ∗(A) is to reflect the fused
information. But we find P ∗(A) = 0.6613 – a disappoint-
ingly low value. We might have expected kind of average
between 0.7 and 0.8, the information, however, got weak-
ened. On the other hand, relating explicitly to both experts
yields a reinforcing effect: P ∗(A|W1W2) = 0.8270, a value
which is likewise not within the interval [0.7, 0.8].

These unexpected effects become even more evident
when we assume that both experts agree and specify the
same degree of belief for A: R1

′ = R2
′ = {A[0.7]}.

Here, the most intuitive result of a fusion process would
be to assign A the probability 0.7. Constructing a distri-
bution P ∗′ := ME(R1

′|W1 ∪ R2
′|W2) in the same way as

above, however, yields the probabilities P ∗′(A) = 0.6325
and P ∗′(A|W1W2) = 0.7598.

Although there may be good reasons for such weakening
or reinforcing effects, in general, each knowledge base Ri

should be taken as an independent piece of information. Our
main focus is on a proper definition of the merging operator
	 to combine rule bases R1, . . .Rn. As outlined above,
the actual fusion work will be done by ME-technology in a
straightforward way.

The problems in Example 2 arise from unwanted inter-
actions between the (different) sources of knowledge. So,
further probabilistic information has to be added to ensure
that the Wi provide a comprehensive, non-interfering views
of the world. We define knowledge base merging by

R1 	 . . . 	Rn := R1|W1 ∪ . . . ∪Rn|Wn ∪ (4)

{W1 ∨ . . . ∨ Wn[1], WiWj [0], 1 � i, j � n, i �= j}
The additional information has to be interpreted within the
ME-framework: W1 ∨ . . . ∨ Wn[1] ensures that no infor-
mation from the outside is allowed to intrude into the re-
sulting distribution, and WiWj [0] for i �= j precludes inter-
ferences between information coming from different agents.
The ME-fusion operation is now realized in a straightfor-
ward way:

FME(R1, . . . ,Rn) := ME(R1 	 . . . 	Rn) (5)

FME(R1, . . . ,Rn) yields the desired ideal probabilistic be-
lief state representing the fused pieces of information.

First, we check whether the so-defined fusion operation
yields more intuitive results in Example 2.

Example 3 Let R1 and R2 be as in Example 2, and let
P ∗

1 := FME(R1,R2). Now the fused information concern-
ing A is computed as P ∗

1 (A) = 0.7472, indeed kind of mean
value between 0.7 and 0.8. Let us consider again the case
that both experts agree, i.e. R1 = R2 = {A[0.7]}. ME-
fusion, as defined in (5), yields FME(R1,R2)(A) = 0.7, as
desired.

The following example illustrates the method in a more
complex case.

Example 4 Two physicians argue about the relevance of
a symptom, A, for diseases B, C, D. They both agree that
A is a good indicator of disease B, although they disagree
on its estimated degree of relevance: One physician spec-
ifies his corresponding belief as (B|A)[0.9], whereas the
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other physician considers (B|A)[0.8] more appropriate. In
case that B can definitely excluded, however, the first physi-
cian holds strong belief in C ((C|AB)[0.8]), whereas the
second physician thinks D to be the most probable diag-
nosis ((D|AB)[0.9]). So, the two packages of informa-
tion to be fused are R1 = {(B|A)[0.9], (C|AB)[0.8]} and
R2 = {(B|A)[0.8], (D|AB)[0.9]}, and the final result of
the fusion process is represented by P ∗ := ME(R1 	R2).
From P ∗, we obtain the following probabilistic answers for
the queries listed below:

query prob. query prob.

(B|A) 0.85 (D|ABW1) 0.50
(C|A) 0.51 (C|ABW2) 0.50
(D|A) 0.54 (C|AB) 0.59

(D|AB) 0.78
This table shows that although both experts favor one of C
and D in case that AB is present, no unjustified bias as to
the respective other diagnosis has been introduced by the
ME-approach (P ∗(D|ABW1) = P ∗(C|ABW2) = 0.50).
If only A is known, then P ∗ reflects the expected high
probability for disease B (P ∗(B|A) = 0.85), whereas the
probabilistic belief in C or D, respectively, is quite low
(P ∗(C|A) = 0.51, P ∗(D|A) = 0.54). The probabili-
ties attached to (C|AB) and (D|AB) can be used to find
a proper diagnose if symptom A is present, but diagnose B
can be excluded. In this case, a clear vote for diagnose D
can be derived from the fused knowledge of both experts
(P ∗(D|AB) = 0.78 vs. P ∗(C|AB) = 0.59). This can be
explained as follows: The first physician establishes quite a
strong connection between A and B by stating (B|A)[0.9].
This connection gets lost when it becomes obvious that A,
but not B, is present. In that case, diagnosis D is assigned
the higher probability, so P ∗(D|AB) > P ∗(C|AB) should
be expected. The significant difference in both probabili-
ties can be attributed to a bias towards the second physician
(P ∗(W2|AB) = 0.69) who held, a priori, a weaker belief in
B, given A, and thus is taken to be more reliable.

Conclusion and Outlook
In this paper, we showed how the expressive framework of
probability theory and the powerful information-theoretical
methodology of optimum entropy (ME-methodology) can
be combined to bring forth sophisticated techniques for ad-
vanced probabilistic knowledge management. In particular,
we presented new approaches to probabilistic belief revision
and information fusion by offering solutions to two prob-
lems that are usually associated with ME-reasoning: We
showed that it is indeed possible to revise certain knowledge
by ME-techniques, and we eliminated the weakening effects
observed in a naı̈ve ME-fusion approach. This paper contin-
ues previous work (Rödder & Xu 1999; Kern-Isberner 2001;
Rödder 2000; Kern-Isberner 2002), and once again points
out the versatility of the ME-approach.

The generalization of our new ME-revision operator to
be applicable for iterated revision, as well as the investiga-
tion of the formal properties of the introduced ME-fusion
method, will be topics of forthcoming papers.
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