
A Simple Method for Identifying Compelled Edges in DAGs

S.K.M. Wong and D. Wu
Department of Computer Science

University of Regina
Regina Saskatchewan

Canada S4S 0A2
Email: {wong, danwu}@cs.uregina.ca

Abstract

Identifying compelled edges is important in learning the
structure (i.e., the DAG) of a Bayesian network. A
graphical method (Chickering 1995) was proposed to
solve this problem. In this paper, we show that a joint
probability distribution defined by a Bayesian network
can be uniquely characterized by its intrinsic factoriza-
tion. Based on such an algebraic characterization, we
suggest a simple algorithm to identify the compelled
edges of a Bayesian network structure.

1. Introduction
Bayesian networks have been widely used for managing un-
certainty using probability (Pearl 1988). A Bayesian net-
work consists of a graphical structure, a directed acyclic
graph (DAG) and a set of conditional probability distribu-
tions (CPDs). These two components define a joint proba-
bility distribution.

The conditional independencies satisfied by a joint prob-
ability distribution can be represented by different DAGs.
The notion of an equivalence class of DAGs was studied
by (Verma & Pearl 1990; Chickering 1995). An equivalence
class of DAGs consists of all the Bayesian networks which
define the same joint probability distribution but differ in
their respective DAGs.

Although different DAGs in the same equivalence class
have different graphical structures, certain directed edges re-
tain their directionality in all those equivalent DAGs. These
edges are referred to as compelled edges. It is useful to iden-
tify these compelled edges in learning a Bayesian network
from data. Chickering (Chickering 1995) proposed a graph-
ical algorithm for identifying such edges.

In this paper, we show that a joint probability distribution
defined by a Bayesian network can be uniquely expressed
as a product of marginals divided by another product of
marginals. We refer to such a characterization of a joint
probability distribution as an intrinsic factorization. All
Bayesian network structures having the same intrinsic fac-
torization belong to the same equivalence class. Based on
this algebraic classification of Bayesian networks, we sug-
gest a simple method to identify all the compelled edges in
a given DAG.
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The paper is organized as follows. We first review the
notion of equivalent DAGs in Section 2. Our algebraic char-
acterization of a joint probability distribution defined by a
Bayesian network is discussed in Section 3. In Section 4,
we describe our algorithm for identifying compelled edges
of a Bayesian DAG. The conclusion is given in Section 5.

2. Equivalent DAGs
In the paper, we use upper case letters to represent set of
variables and lower case letters to represent a single vari-
able unless otherwise mentioned. Let U denote a finite set
of discrete variables. We use p(U) to denote a joint proba-
bility distribution (jpd) over U . We call p(V ), V ⊂ U , the
marginal (distribution) of p(U) and p(X|Y ) the conditional
probability distribution (CPD), or simply conditional. By
XY , where X ⊆ U , Y ⊆ U , we mean X ∪Y . Similarly, by
ab, where a ∈ U , b ∈ U , we mean {a} ∪ {b}. According to
the definition of conditional probability,

p(X|Y ) =
p(XY )
p(Y )

, whenever p(Y ) > 0,

we thus say that in the above expression, the denominator
p(Y ) is absorbed by the numerator p(XY ) to yield condi-
tional p(X|Y ). It is noted that p(W ) can be absorbed by
p(V ) to yield p(V − W |W ) if and only if W ⊂ V .

A Bayesian network (BN) defined over a set U =
{a1, a2, . . . , an} of variables consists of two components:
(i) a directed acyclic graph (DAG) D. Each vertex in D
represents a variable ai ∈ U . The parents of the vertex ai

are denoted pa(ai). The graphical structure of the DAG en-
codes a set of conditional independency information; (ii) a
quantification of D. Each variable ai in D is quantified with
a conditional probability p(ai|pa(ai)). These two compo-
nents define (induce) a joint probability distribution (jpd)
over U as follows:

p(U) =
n∏

i=1

p(ai|pa(ai)). (1)

We call the equation in (1) the Bayesian factorization. It is
worth mentioning that by looking at the factors in the above
Bayesian factorization, the DAG can be drawn by direct-
ing an arrow from each node in pa(ai) to the node ai. A
v − structure in a DAG D is an ordered triple of nodes
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(a, b, c) such that (1) D contains edges a → b and c → b,
and (2) a and c are not directly connected in D. The skeleton
of a DAG is the undirected graph obtained by dropping the
directionality of every edge in the DAG. Since a BN is high-
lighted by its graphical structure, namely, the DAG, We thus
will use the term BN or DAG interchangeably if no confu-
sion arises.

It has been noted (Verma & Pearl 1990) that DAGs of
different BNs may define the same jpd.

Definition 1 (Chickering 1995) Two DAGs D and D′
are

equivalent if for every BN induced by D, there exists another
BN induced by D′

such that both induced BNs defines the
same jpd, and vice versa.

We use D1 ≈ D2 to denote that DAG D1 is equivalent to
DAG D2, or equivalently, BN1 ≈ BN2.

Graphical criteria (Verma & Pearl 1990; Chickering 1995)
have been proposed to determine whether two given DAGs
are equivalent or not.

Theorem 1 (Verma & Pearl 1990) Two DAGs are equiva-
lent if and only if they have the same skeleton and the same
v-structures.

It is not hard to see that the relation “≈” induces an equiv-
alence relation. Let {D} denote all the DAGs defined over
a fixed set U of variables. Naturally, the characteristics of
the equivalence relation ≈ can be used to group the DAGs
in {D} into different equivalence classes.

It is noted that since equivalent DAGs define the same
jpd, they certainly encode the same set of conditional in-
dependency information. Therefore, all the DAGs in the
same equivalence class encode the same conditional inde-
pendency information.

Figure 1: Four equivalent DAGs comprise an equivalence
class.

Example 1 Consider the four DAGs shown in Figure 1. By
Theorem 1, they are equivalent to each other. Moreover, no
other DAGs defined over the same set of variables are equiv-
alent to any of them, therefore, they comprise an equivalent
class.

Given an equivalence class of DAGs, it is noticed that
some edges retain their directionality in all the equivalent
DAGs in the equivalence class.

Definition 2 An edge x → y in a DAG D is a compelled
edge, if for any D′ ≈ D, x → y is also in D′

. Otherwise, it
is reversible.

Example 2 It can be verified that in the DAGs shown in Fig
1, the edges b → e, c → e, e → g, e → h, f → h,
e → i, and f → i appear in all of the equivalent DAGs,
therefore, they are compelled edges. On the other hand, the
edge a → c, for example, is reversible .

It has been discussed in (Chickering 1995) that the com-
pelled edges in a DAG have particular importance in learn-
ing the structure of Bayesian networks from observed data.
Moreover, an algorithm was developed to identify all com-
pelled edges in a given DAG. The algorithm first defines a
total ordering over all the edges in the give DAG and then
finds out all the compelled edges based on the total ordering.
However, the presentation of the algorithm and the proof of
its correctness are rather complicated and hard to be com-
prehended. For details of the discussion of the importance
on identifying compelled edges and the algorithm, readers
are referred to (Chickering 1995).

3. Algebraic Representation of Equivalent
DAGs

In this section, we first briefly review different graphical
representations of equivalence class of DAGs, we then give a
novel algebraic representation of equivalent DAGs by study-
ing the form of Bayesian factorization. This algebraic rep-
resentation of equivalent DAGs will serve as the basis for a
simple and easy to understand method for identifying com-
pelled edges.

Since all the DAGs in the same equivalence class de-
fine the same jpd and represent the same conditional inde-
pendency information, it is thus highly desirable to have a
unique representation to represent the whole class of equiv-
alent DAGs. Several graphical representations have been
proposed. Verma (Verma & Pearl 1990) proposed the notion
of rudimentary pattern and complete pattern to characterize
the equivalence class using a partially directed graph. An-
derson (Andersson, Madigan, & Perlman 1997) suggested
the notion of essential graph, which is a special chain graph
(Frydenberg 1990), to represent Markov equivalent DAGs.
More recently, Studeny (Studeny 1998) used the notion of
largest chain graph (different than the essential graph) to
characterize the equivalence class of Bayesian networks.

Since all the equivalent DAGs also defines the same jpd,
we believe that this “same” jpd should be the representation
of the whole equivalence class and it should also possess the
ability to discern different DAGs in the same equivalence
class. In the following, we present a novel algebraic repre-
sentation to represent the whole equivalence class based on
the notion of Bayesian factorization.

Definition 3 Consider a DAG defined over a set U =
{a1, . . . , an} of variables with its Bayesian factorization
as follows:

p(U) = p(a1) · p(a2|pa(a2)) · . . . · p(an|pa(an)), (2)

=
p(a1)

1
· p(a2, pa(a2))

p(pa(a2))
. . . · p(an, pa(an))

p(pa(an))
,(3)

=
∏

i, j

p(ai, pa(ai))
p(pa(aj))

, (4)
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where {ai, pa(ai)} �= {pa(aj)} for any 1 ≤ i, j ≤ n.
Each p(ai|pa(ai)) in equation (2) is called a factor. We call
the equation in (3) the fraction factorization of the DAG.
The expression in equation (4) is obtained by canceling any
applicable numerator and denominator in equation (3) and is
called the intrinsic factorization of the DAG.

The intrinsic factorization has been proved to be the in-
variant property of an equivalence class of DAGs.

Theorem 2 (Wong & Wu 2002) Two DAGs are equivalent
if and only if they have the same intrinsic factorization.

Theorem 2 implies that all the DAGs in the same equiva-
lence class have the same intrinsic factorization. It immedi-
ately follows:

Corollary 1 The intrinsic factorization of a given DAG D
is unique and it characterizes and describes algebraically the
whole equivalence class that the given DAG D belongs to.

Example 3 Consider the four DAGs defined over U =
{a, b, c, d, e, f, g, h, i} as shown in Fig 1. The intrinsic
factorization for the DAG in (i) is as follows in equation (6):

p(U) = p(a) · p(b) · p(c|a) · p(d|a) · p(e|bc)
p(f |c) · p(g|e) · p(h|ef) · p(i|ef) (5)

=
p(b) · p(ca) · p(da) · p(ebc) · p(fc) · p(ge)

p(a) · p(bc) · p(c) · p(e)
·

p(hef) · p(ief)
p(ef) · p(ef)

. (6)

Similarly, the intrinsic factorization for the DAGs in Fig 1
(ii), (iii) and (iv) can be obtained in the same fashion. It can
be easily verified that the four different DAGs do have the
same intrinsic factorization shown in equation (6).

4. Compelled Edges Identification
In this section, we will present a very simple method to iden-
tify compelled edges in a given DAG based on its intrinsic
factorization. The idea behind our proposed method is very
intuitive. As will be demonstrated shortly, the intrinsic fac-
torization of a given DAG represents the whole equivalent
class and it contains all the information needed to restore
each equivalent DAG (more precisely, to restore its Bayesian
factorization.) This observation gives rise to the proposed
method for identifying compelled edges.

Example 4 Continue on Example 3 and consider the intrin-
sic factorization of the Bayesian network shown in Figure 1
(i) repeated as follows:

p(U) =
p(b) · p(ca) · p(da) · p(ebc) · p(fc) · p(ge)

p(a) · p(bc) · p(c) · p(e)
·

p(hef) · p(ief)
p(ef) · p(ef)

. (7)

We now demonstrate how we can restore each equivalent
DAG (its Bayesian factorization) in the equivalence class
characterized by the above intrinsic factorization.

In order to transform the intrinsic factorization in equation
(7) into a Bayesian factorization, we need to absorb all the
denominators in equation (7) as follows.

p(U) =
p(b) · p(ca) · p(da) · p(ebc) · p(fc) · p(ge)

p(a) · p(bc) · p(c) · p(e)
·

p(hef) · p(ief)
p(ef) · p(ef)

, (8)

=
p(b)
1

· p(ca)
p(a)

· p(da)
1

· p(ebc)
p(bc)

· p(fc)
p(c)

·

p(ge)
p(e)

p(hef)
p(ef)

· p(ief)
p(ef)

, (9)

= p(b) · p(c|a) · p(da) · p(e|bc) · p(f |c) · p(g|e)
·p(h|ef) · p(i|ef), (10)

= p(b) · p(c|a) · p(d) · p(a|d) · p(e|bc) · p(f |c) ·
p(g|e) · p(h|ef) · p(i|ef), (11)

or

p(U) =
p(b)
1

· p(ca)
1

· p(da)
p(a)

· p(ebc)
p(bc)

· p(fc)
p(c)

·

p(ge)
p(e)

p(hef)
p(ef)

· p(ief)
p(ef)

, (12)

= p(b) · p(c) · p(a|c) · p(d|a) · p(e|bc) · p(f |c) ·
p(g|e) · p(h|ef) · p(i|ef), (13)

or

p(U) =
p(b)
1

· p(ca)
p(c)

· p(da)
p(a)

· p(ebc)
p(bc)

· p(fc)
1

·

p(ge)
p(e)

p(hef)
p(ef)

· p(ief)
p(ef)

, (14)

= p(b) · p(a|c) · p(d|a) · p(e|bc) · p(f) · p(c|f) ·
p(g|e) · p(h|ef) · p(i|ef), (15)

In equations (9), (12), and (14), we have absorbed each
denominator in the intrinsic factorization by an appropri-
ate numerator, these absorptions resulted in equations (11),
(13), and (15), respectively. We thus have finally obtained
three different Bayesian factorizations, which exactly corre-
spond to the three equivalent DAGs shown in Fig 1 (ii), (iii)
and (iv), respectively. Therefore, we have successfully re-
stored all the DAGs that are equivalent to the one shown in
Fig 1 (i).

There are a few observations that can be made with re-
spect to the above demonstration in Example 4.

1. Different DAGs in the same equivalence class are ob-
tained, depending on how each denominator in the intrin-
sic factorization is absorbed. It is obvious that different
absorption will result in different Bayeisn factorizations,
hence, produce different but equivalent DAGs.

2. It is noted that during the course of absorbing denomi-
nators, some denominator is “forced” to be absorbed by
a particular fixed numerator, no other choices. In other
words, some denominator has no flexibility so that it has
to be absorbed by a fixed numerator.
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Before we move on, let’s scrutinize the denominator ab-
sorption we have made in Example 4. Note that for a denom-
inator p(X) to be absorbed by a numerator p(Y ), it must be
the case that X ⊂ Y . Under this restriction, the possible
absorption of the denominators a, bc, c, e, ef , and ef can be
summarized by the following expressions,

a =⇒ {ca, da}, (16)

bc =⇒ {ebc}, (17)

c =⇒ {ca, ebc, fc}, (18)

e =⇒ {ebc, ge, hef, ief}, (19)

ef =⇒ {hef, ief}, (20)

ef =⇒ {hef, ief}, (21)

where X =⇒ {Y1, . . . , Yn} means that the denomina-
tor p(X) can possibly be absorbed by p(Y1), . . . , p(Yn).
We further call the set {Y1, . . . , Yn}, denoted AS(X),
the absorption set for X . It is noted that Yi ∈
AS(X) if X ⊂ Yi. We will use |AS(X)| to de-
note its cardinality. It is also noted that the set D =
{Xi | p(Xi) is a denominator in the intrinsic factorization}
is a multiset, and we will use |Xi| to denote the number of
occurrence of Xi in the multiset D.

Recall that the DAG of a Bayesian network can be drawn
based on its Bayesian factorization, more precisely, based
on its factor p(ai|pa(ai)), by directing an edge from each
node in pa(ai) to the node ai. Following this line of rea-
soning, it follows that if a denominator, say p(X), has no
choice but is “forced” to be absorbed by a fixed numerators,
say p(Y ), then it is expected that the edges y → x, where
y ∈ Y − X , x ∈ X , will appear in every resulting Bayesian
factorizations. Therefore, they will be compelled edges by
definition. For instance, in expression (17), the only numer-
ator that is applicable to absorb p(bc) is p(ebc), hence, the
factor p(e|bc) will be obtained by this absorption and the
edges b → e and c → e will appear in all possible resulting
Bayesian factorizations, which implies that they are com-
pelled edges as can be verified by Fig 1. Special attention
should be paid to the two identical denominators p(ef) and
p(ef) in expressions (20) and (21), respectively. Although
these two denominators are syntactically identical, both of
them have to be absorbed in order to obtain the Bayesian
factorization. The applicable numerators for both of them is
the absorption set {hef, ief}, which contains exactly two
elements, the same number of the occurrence of p(ef) as
denominators. This indicates that one of the p(ef) must
be absorbed by p(hef), and the other p(ef) must be ab-
sorb by p(ief), no other choices. These absorptions imply
that the factors p(h|ef) and p(i|ef) will be obtained and the
edges e → h, f → h, e → i, and f → i will appear in
all possible resulting Bayesian factorizations, which implies
that they are compelled edges as can be verified by Fig 1 as
well. Since the numerators p(hef), p(ief), and p(ebc) have
been designated to absorb the denominators p(ef), p(ef),
and p(bc), respectively, this changes the absorption set for e
from {ebc, ge, hef, ief} shown in expression (19) to the
new refined singleton set {ge}, which implies that the de-
nominator p(e) will have to be absorbed by the numerator
p(ge) to obtain p(g|e). Therefore, the edge e → g is also a

compelled edges as can be verified by Fig 1.
The above analysis resulted in the following refined ex-

pressions for the absorptions of denominators, contrasting
with those in the expressions (16-21),

a =⇒ {ca, da}, (22)

bc =⇒ {ebc}, (23)

c =⇒ {ca, fc}, (24)

e =⇒ {ge}, (25)

ef =⇒ {hef, ief}, (26)

ef =⇒ {hef, ief}, (27)

from which the compelled edges can be found out right away
if a denominator can only be absorbed by a fixed denomina-
tor.

Based on the above discussions, we thus propose the fol-
lowing procedure to identify compelled edges in a given
DAG. The correctness of the procedure will be given shortly.

PROCEDURE Find-Compelled-Edges
Input: a given DAG D.
Output: Compelled edges in D collected in the set E.
{

1: Obtain the intrinsic factorization of the given D,
and let E = ∅.

2: Let D = {d1, . . . , dm} be a multiset, where
p(di) is a denominator in the intrinsic factorization
obtained in step 1.

3: For each di ∈ D, i = 1, . . . , m,
compute di’s absorption set AS(di);

4: For each di ∈ D s.t. |di| = 1, i = 1, . . . , m,
If AS(di) is a singleton set,

AS(dj) = AS(dj) − AS(di), for all j �= i,
5: For each di ∈ D s.t. |di| > 1, i = 1, . . . , m,

If |AS(di)| = |di|,
AS(dj) = AS(dj) − AS(di), for all j �= i,

6: For each di ∈ D, i = 1, . . . , m,
If k = |AS(di)| = |di|,

E = E ∪{p(Yj − di|di)|Yj ∈ AS(di), j = 1, ..., k},
7: Return E.

}

Compelled edges, from the perspective of the intrinsic
factorization of a given DAG, is obtained by identifying
whether a denominator p(X) can be absorbed by only one
numerator or can be possibly absorbed by multiple numera-
tors. If a denominator p(X) can only be absorbed by only
one numerator p(Y ), then the factor p(Y − X|X) will ap-
pear in all possible resulting Bayesian factorizations, there-
fore, the edges y → x, where y ∈ Y − X , x ∈ X , will be
compelled edges.

Step 1-5 in the procedure computes the absorption set for
each denominator. In step 6, for any denominator p(X) and
its absorption set AS(X), we try to see whether it can be
absorbed by a unique numerator or by multiple choices of
different numerators. There are two cases:

1. if p(X) is a denominator such that |X| = 1, consider
AS(X).
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• If |AS(X)| > 1, in other words, p(X) can be absorbed
by at least two different numerators, then there is no
chance to have any compelled edges produced by ab-
sorbing p(X).

• If |AS(X)| = 1, in other words, p(X) will be absorbed
by only one denominator p(Y ), then the factor p(Y −
X|X) obtained will give rise to compelled edges y →
x, where y ∈ Y − X , x ∈ X .

2. if p(X) is a denominator such that |X| > 1, consider
AS(X).
• If |AS(X)| = |X|, then there exists a one-to-one cor-

respondence between each member of Y ∈ AS(X)
and each occurrence of p(X) as denominator, in which
case every p(X) will be absorbed by a unique p(Y ).
Therefore, compelled edges will be obtained by such
absorptions.

• If |AS(X)| > |X|, then it has more numerator p(Y ),
where Y ∈ AS(X) than the denominator p(X), in
which case each denominator is not uniquely absorbed
by a numerator. Therefore, there is no chance to obtain
the compelled edges.

The analysis of the two cases has been exactly captured by
step 6 in the procedure.

The above discussion actually proves the following theo-
rem.

Theorem 3 Given a DAG D, the output of the procedure
“Find-Compelled-Edges” above is exactly the compelled
edges in D.

The procedure “Find-Compelled-Edges” only involves
some set operations and can be implemented easily.

5. Conclusion
In this paper, we have demonstrated that the notion of in-
trinsic factorization can serve as the algebraic characteriza-
tion of the equivalence class of DAGs, based on which we
have presented a simple method for identifying compelled
edges in a Bayesian network. The new method is intuitively
simple and can be easily implemented. It reveals the impor-
tance of the intrinsic factorization of an equivalence class of
Bayesian networks. The application of intrinsic factoriza-
tion in this paper suggests more research on the factorization
of the jpd defined by a Bayesian network is worth pursuing.
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