
Dynamic Agent-Ordering and Nogood-Repairing in Distributed Constraint
Satisfaction Problems

Lingzhong Zhou, John Thornton and Abdul Sattar
School of Information Technology,

Griffith University, Queensland, Australia
{l.zhou, j.thornton, a.sattar}@griffith.edu.au

Abstract

The distributed constraint satisfaction problem (CSP) is a
general formalization used to represent problems in dis-
tributed multi-agent systems. To deal with realistic prob-
lems, multiple local variables may be required within each
autonomous agent. A number of heuristics have been devel-
oped for solving such multiple local variable problems. How-
ever, these approaches do not always guarantee agent inde-
pendence and have low efficiency search mechanisms.
In this paper, we are interested in increasing search efficiency
for distributed CSPs. To this end we present a new algo-
rithm using unsatisfied constraint densities to dynamically
determine agent ordering during the search. Variables hav-
ing a total order relationship only exist in the local agent.
The independence of agents is guaranteed and agents with-
out neighboring relationships can run concurrently and asyn-
chronously. As a result of using nogoods to guarantee com-
pleteness, we developed a new technique called nogood re-
pairing, which greatly reduces the number of nogoods stored
and communication costs during the search, leading to fur-
ther efficiency gains. In an empirical study, we show our new
approach outperforms an equivalent static ordering algorithm
and a current state-of-the-art technique in terms of execution
time, memory usage and communication cost.

Introduction
The constraint satisfaction paradigm is a well recognized
and challenging field of research in artificial intelligence,
with many practical and important applications. A con-
straint satisfaction problem (CSP) is a problem with a finite
number of variables, each of which has a finite and discrete
set of possible values, and a set of constraints over the vari-
ables. A solution of a CSP is an instantiation of all variables
for which all the constraints are satisfied.

When the variables and constraints of a CSP are dis-
tributed among a set of autonomous and communicating
agents, this can be formulated as a distributed constraint
satisfaction problem (distributed CSP), where agents au-
tonomously and collaboratively work together to get a so-
lution. A number of heuristics have been developed for
solving distributed CSPs, such as synchronous backtrack-
ing, asynchronous backtracking (ABT) (Yokooet al. 1998),

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

asynchronous weak-commitment search (AWC) (Yokooet
al. 1998) and the distributed breakout algorithm (DB)
(Yokoo & Hirayama 1996). However, these algorithms can
only handle one variable per agent. In (Armstrong & Durfee
1997), dynamic prioritization is used to allow agents with
multiple local variables in distributed CSPs. Here, each
agent tries to find a local solution, consistent with the lo-
cal solutions of higher priority agents. If no local solution
exists, backtracking or modification of the prioritizationoc-
curs. The approach uses a centralized controller, where one
agent controls the starting and ending of the algorithm, and
a nogood processor which records all nogood information.
However, these centralized mechanisms are often not appro-
priate for realistic distributed CSPs. In (Yokoo & Hirayama
1998), AWC search was extended to deal with multiple local
variables in distributed CSPs. Although nogood learning is
used (Hirayama & Yokoo 2000), their approach still requires
a large space to store nogoods during the search.

In this paper, we integrate two new techniques:Dynamic
Agent Orderingand Nogood Repairingto form a new al-
gorithm (DAONR). Dynamic agent ordering uses constraint
density measures to locally compute adegree of unsatisfac-
tion for each agent. These values are used to dynamically set
the order in which agents are allowed to change their par-
ticular variable instantiations. In effect, the agents’ orders
are decided naturally by their unsatisfied constraint densities
during the search. By using a nogood repairing approach, all
nogood repairs are tried inside a local agent without send-
ing nogood messages to neighboring agents. As each local
computation is independent from other agents, the benefits
of parallelism are retained, resulting in an approach that is
suitable for agent oriented design and efficient in terms of
memory and communication cost.

In the rest of the paper, we formalize the definition of a
distributed CSP. Then, we describe the new algorithm and
investigate its performance in an empirical study. Finally, we
discuss the possibility of using the new algorithm to solve
other variants of distributed CSPs.

Distributed Constraint Satisfaction Problems

Formalization

In a distributed constraint satisfaction problem:



1. There exists an agent setA:

A = {A1, A2, ..., An}, n ∈ Z+;

2. Each agent has a variable setXi and domain setDi,

Xi = {Xi1,Xi2, ...,Xipi
};

Di = {Di1,Di2, ...,Dipi
}, ∀i ∈ [1, n], pi ∈ Z+;

3. There are two kinds of constraints over the variables
among agents:

(a) Intra-agent constraints, which are between variables of
same agent.

(b) Inter-agent constraints, which are between variables of
different agents.

AgentAi knows all constraints related to its variables. A
variable may involve both intra-agent and inter-agent con-
straints.

4. A solutionS, is an instantiation for all variables that sat-
isfies all intra-agent and inter-agent constraints.

Since agents are distributed in different locations or in dif-
ferent processes, each agent only knows the partial problem
associated with those constraints in which it has variables.
A global solution then consists of a complete set of the
overlapping partial solutions for each agent. Communica-
tion among agents is necessary and important in distributed
CSPs, since each agent only knows its variables, variable
domains and related intra-agent and inter-agent constraints.
Hence, to evaluate a search algorithm, we not only need to
measure the search speed but also to consider the communi-
cation cost.

The Dynamic Agent Ordering Algorithm
Motivation
In a CSP, the order in which values and variables are pro-
cessed significantly affects the running time of an algorithm.
Generally, we instantiate variables that maximally constrain
the rest of the search space. For instance, selecting the vari-
able with the least number of values in its domain tends to
minimize the size of the search tree. When ordering values,
we try to instantiate a value that maximizes the number of
options available for future instantiations.

The efficiency of algorithms for distributed CSPs is simi-
larly affected by the order of value and variable selection.In
the case where agents control multiple variables, the order
in which agents are allowed to instantiate shared variables
also becomes important. Agent communication and exter-
nal computation (instantiating variables to be consistentwith
inter-agent constraints) is more costly than local computa-
tion (instantiating variables to be consistent with intra-agent
constraints), and wrong or redundant computation can oc-
cur as a result of inappropriate agent ordering. It is therefore
worth investigating agent orderings in order to develop more
efficient algorithms.

The task of ordering agents is more complex than ordering
variables, as more factors are involved, i.e. not only con-
straints and domains but also the structure of neighboring
agents. Deciding on agent ordering is analogous to granting

a priority to each agent, where the priority order represents
a hierarchy of agent authority. When the priority order is
static, the order of agents is determined before starting the
search process, and the efficiency of the algorithm is highly
dependent on the selection of variable values. If the priority
order is dynamic, this can be used to control decision mak-
ing for each agent and the algorithm is more able to flexibly
exploit to the current search conditions.

We propose a new algorithm which uses constraint den-
sity (related to both intra-agent and inter-agent constraints)
to order agents in a distributed CSP. When a search becomes
stuck (i.e. an inconsistency is found), a nogood is generated,
and the agent starts nogood repairing until a local solution
found. The algorithm calculates the unsatisfied constraint
densities and the degree of unsatisfaction for each agent,
then broadcasts to the neighboring agents. Since the agent
uses the local information and globally available informa-
tion for local computation, it can still run asynchronously
and concurrently.

Agent Ordering
To develop a dynamic agent ordering algorithm requires the
specification of those features of the search space that should
determine the ordering. In this study we develop a measure
of thedegree of unsatisfactionfor each agent, such that the
agent with the highest degree of unsatisfaction has the high-
est priority. In a standard CSP, the degree of unsatisfaction
can simply be measured as the number of constraints unsat-
isfied divided by the total number of constraints. However,
in a distributed CSP, we have the additional consideration
of the relative importance of intra- versus inter-agent con-
straints. As inter-agent constraints affect variables in more
than one agent, and these variables in turn can affect the
intra-agent problems, we decided to develop separate mea-
sures for the intra- and inter-agent problems, such that the
inter-agent constraints are given greater importance. To do
this we looked at two problem features: (i) the degree of
interconnectedness between constraints (or constraint den-
sity) and (ii) the degree of interconnectedness between inter-
agent constraints and the intra-agent local problem.

To measure constraint density, we firstly divided the prob-
lem for a particular agent into an intra-agent constraint prob-
lem and an inter-agent constraint problem:

Intra-Agent Constraint Density: For the intra-agent
problem, the maximum constraint density is simply defined
as the ratio of the number of constraints over the number of
variables, i.e. for agenti:

intraDensityi =
|intraCi|

|intraVi|

where intraCi is the set of intra-agent constraints for
agenti and intraVi is the set of variables constrained by
intraCi. Assuming that each constraint has the sametight-
ness1, then we would expect a larger density to indicate a
more constrained and hence more difficult problem.

1i.e. the ratio of the number unsatisfying assignments over the
total number of possible assignments.



Inter-Agent Constraint Density: The constraint density
measure for the inter-agent problem contains two additional
features which increase the relative importance of the inter-
agent measure in comparison to the intra-agent measure.
Firstly, for agenti, instead of dividing by the total num-
ber of variables constrained byi’s inter-agent constraints
interCi, we divide only by the number of variables that are
constrained byinterCi andcontrolled byi, i.e. |interVi|.

In addition, when counting agenti’s jth inter-agent con-
straint,ci,j , we also count the number ofintra-agent con-
straintsmi,j that share a variable withci,j . This means the
more interconnectedci,j is with the intra-agent problem, the
larger the value ofmi,j and the greater the effect ofci,j on
the overall inter-agent constraint density, given by:

interDensityi =
|interCi| +

∑|interCi|
j=1

mi,j

|interVi|

The sum staticDensityi = intraDensityi +
interDensityi now provides a general measure of the
overall density of the problem for a particular agent. The
greater this measure, the more constrained or difficult we
would consider the problem to be.

Dynamic Constraint Density: The dynamic constraint
density for a particular agent is based on the static density
measure, except that only unsatisfied constraints are counted
in the numerator. In this way the density of a current level
of constraint violation during a search can be measured. Us-
ing the functionsintraUnsat(i, j), which returns one if the
jth intra-agent constraint for agenti is unsatisfied, zero oth-
erwise, andinterUnsat(i, j), which returns one if thejth
inter-agent constraint for agenti is unsatisfied, zero other-
wise, we define the following measures:

intraUnsati =

∑|intraCi|
j=1

intraUnsat(i, j)

|intraVi|

and

interUnsati =

∑|interCi|
j=1

(interUnsat(i, j) × (mi,j + 1))

|interVi|

These measures then range from a value of zero, if all
constraints are satisfied, tointraUnsati = intraDensityi

and interUnsati = interDensityi if all constraints are
unsatisfied. Combining these measures, we define:

dynamicDensityi = intraUnsati + interUnsati

and

degreeUnsati =
dynamicDensityi

staticDensityi

degreeUnsati now ranges from a value of zero, if all con-
straints for agenti are satisfied, to one, if all constraints are
unsatisfied, while embodying the increased importance of
inter-agent constraints in the overall evaluation. It is this
measure we use to dynamically decide agent priority in our
proposed algorithm (for further details see (Zhou, Thornton,
& Sattar 2003)).

Nogood Repairing
Constraint solvers often fall in a situation where there is no
consistent assignment of variables at hand. This situation
can arise because the values assigned to one or more vari-
ables conflict with each other, i.e., violates one or more con-
straints. A set of conflicting values is referred to as anogood.
Obviously, a nogood cannot be a subset of a solution.

While nogoods are not part of the solution(s), they pro-
vide useful information to the constraint solvers. They can
be recorded, and referred to whenever necessary to avoid
the same assignment of variables. This can result in sig-
nificant computational advantages, especially in Distributed
Constraint Satisfaction Problems. Whenever an agent de-
tects a nogood, it is sent to all relevant (neighboring) agents
so they can avoid repeating the same inconsistent assign-
ment. However, this may affect storage for each agent and
the communication load among agents. We propose that it is
not necessary to send all nogoods to other agents as it may
be possible to fix the nogood within the local agent. This can
therefore reduce the communication load and save memory
usage for each agent.

In this study, we classify nogoods into three categories:

1. Intra-nogood: This nogood is purely constructed by local
variable instantiations;

2. Mix-nogood: The category of nogood is constructed by
both local and neighboring agents’ variable instantiations;

3. Inter-nogood: This nogood is purely constructed by the
variable instantiations between neighboring agents.

We use different methods to deal with these nogoods. If a
nogood is an intra-nogood, the local agent does not need to
send any outgoing messages. It will reassign the related lo-
cal variables to repair the nogood. If a nogood is a mixed
nogood, the agent tries to reinstantiate related local vari-
ables. If the nogood cannot be repaired, a nogood message
is sent to the related neighboring agents. If a nogood is an
inter-nogood, it has to be sent to related neighboring agents
immediately.

By using nogood repairing, local variables have to be as-
signed priorities, one of which represents an authority over
each variable inside an agent. The initial priority value of
each variable is 0. If the values of two variables are the same,
the priority is decided by the numeric order of the variable
indexes. This total order relationship only exists among lo-
cal variables. There is no total order between variables in
different agents. As a result, the independence of each agent
can be guaranteed.

We illustrate the nogood repairing approach in Figure 1:

1. In Figure 1 (a), Agent 1’s variable 4 cannot be instan-
tiated with any color, as each color in its domain is
inconsistent with the colors instantiated for variables 1,2
and 3 respectively. This can be expressed as the nogood
{A1, v4, {A1, v1, ‘Y

′}, {A1, v2, ‘R
′}, {A1, v3, ‘B

′}},
where Agent 1’s (A1) variablev4 cannot be instantiated
with any color becauseA1’s variablev1 is instantiated
with ‘Y’, A1’s variablev2 is instantiated with ‘R’ and
A1’s variablev3 is instantiated with ‘B’. As this nogood
only involves intra-agent constraints it is an intra-nogood.



2

1 A1

A 2 A 2

A1 A1

A 2 A 2

A1 A1A1 A 2

A 2 A 23A 3A

A 2A1

R1 2

B2

1

R1 2

R

B

(a)

R

R
1 12 2

(b)

BR
1 2

R
1 2

1 2

BR
1 2

BR
1 2

1 2 B

R B2

1

4

3

B2

1

4

3

B

(d)(c)

Y

YY Y Y

Y

Y Y

Y

Y

Y

Y

21 21
BRB

4

3

11 R

R B

1 Y

4

3

A

Figure 1: A Distributed 3-coloring Problem and Nogood Repairing

To effect a repair, the priority ofv4 will be increased to
the highest priority in the nogood plus one. For example,
assuming all variables’ priorities are 0 inA1, after this
nogood is found,v4’s priority would be increased to
1. A1 then randomly instantiatesv4 (e.g. with ‘R’). In
this casev1’s value will not be changed, since it is now
consistent withv4. However,v2’s value is inconsistent
with v4 and has to be changed (e.g to ‘B’). Althoughv3

has the lowest priority (by index order), its original value
is still consistent with all other variables in the agent and
so it is not changed. As result, this nogood is repaired
internally and all constraints are satisfied.

2. In Figure 1 (b), Agent 2 discovers the mix-nogood
{A2, v2, {A1, v1, ‘B

′}, {A1, v2, ‘R
′}, {A2, v1, ‘Y

′}}. In
previous algorithms (Yokoo & Hirayama 1998),A2 will
send the nogood toA1, which will record it locally and so
avoid repeating the instantiation. In our new algorithm,
this nogood can be repaired insideA2 without sending a
nogood message. For example, assuming allA2’s vari-
ables have priority 0,A2 will increasev2’s priority to 1,
and changev2’s value (e.g. to ‘Y’), to be consistent with
A1. ThenA2 can reassignv1 (e.g. to ‘R’), and the nogood
is fixed. In this solution, only local computation occurs,
no extra message is sent and no extra memory is needed
to store the nogood.

The case can still arise that after all local computationA2

cannot find a consistent instantiation withA1. When this
occursA2 will send a nogood message toA1. As A1 was
processed beforeA2 it follows thatA1 has the higher pri-
ority. In order to repair the situationA2’s priority must be
increased. This is achieved by settingA2’s degreeUnsat
to A1’s degreeUnsat − ∆ 2 so thatA2’s degreeUnsat
is slightly less thanA1’s.

3. Figure 1 (c), shows a more detailed example of a mix-
nogood that cannot be repaired by local computation.
In this caseA3 cannot reassign any consistent color for
v2, and so it must increase its priority by decreasing its
degreeUnsat. A3 then sends a nogood message toA2,
and reassigns its variablev2 to ‘B’. A2 then reassigns its
variablev2 to ‘Y’, repairing the nogood and finding a so-
lution. This procedure can also be applied to the inter-
nogood, as an inter-nogood can only be repaired by re-
lated neighboring agents. Figure 1(d) clearly shows this
scenario.

Although the problem in Figure 1(b) only contains bi-
nary constraints, the nogoods generated during the search
are non-binary. Dealing with these nogoods locally can re-

2Where∆ is the predefined precision ofdegreeUnsat, which
in this case is10

−6.



duce not only communication costs and memory storage but
also computation costs. For example, in the absence of no-
good repairing, when a local agent discovers a nogood re-
lating to neighboring agents, each neighboring agent has to
do the same nogood checking to avoid the inconsistent in-
stantiation. This repeating of work can be avoided if the
nogood can be repaired locally using our nogood repairing
approach. In addition, dealing with a non-binary constraint
is more complicated than dealing with a binary constraint.
One local computation (using nogood repairing) instead of
multiple local computations (without using nogood repair-
ing) can greatly affect the search speed. This situation often
happens in distributed CSPs.

Algorithm Implementation
The Dynamic Agent Ordering and Nogood Repairing
(DAONR) algorithm was implemented as follows:

1. In the initial state, each agent concurrently instantiates
their variables to construct a local solution, while check-
ing consistency to guarantee that all intra-agent con-
straints are satisfied. Each agent then sends its local so-
lution to its neighboring agents (i.e. those with which it
shares at least one inter-agent constraint);

2. Each agent then starts to construct a local solution
which attempts to satisfy both intra- and inter-agent con-
straints. In detail, each agent only considers inter-agent
constraints with agents having higher priorities (lower
degreeUnsat). Assuming the overall problem is satis-
fiable, if an agent is unable to instantiate a variable with
any values in its domain, a nogood is discovered. Based
on our nogood repairing approach (described in the pre-
vious section), an agent autonomously chooses the best
option to repair the nogood, i.e. the agent will only send
a nogood message if it cannot repair the nogood locally;

3. After assigning its own variables, an agent sends a mes-
sage to neighboring agents. This message contains the
degreeUnsat value and the local instantiation of the
agent.

4. The search will stop when each agent detects that its and
all other agents’degreeUnsat values are equal to zero.

The DAONR algorithm is shown in more detail in Al-
gorithm Dynamic Agent Ordering and Nogood Repair-
ing. Note that all variables from a neighboring agent,iff
degreeUnsat < local degreeUnsat, have a higher prior-
ity than any local variables.

Algorithm Dynamic Agent Ordering and Nogood Repairing

1. while received(Senderid, variable values, degreeUn-
sat) do

2. calculatelocal degreeUnsat;
3. if local degreeUnsatand all other agents’de-

greeUnsats= 0
4. then the search is terminated;
5. else add (Senderid, variable value, degree-

Unsat) to agentview;
6. if local degreeUnsat> degreeUnsat

7. then AssignLocal Variables;

Algorithm AssignLocal Variables
1. if local instantiation is consistent withagentview

from neighboring agents, anddegreeUnsat< lo-
cal degreeUnsat

2. then send(Senderid, variable values, lo-
cal degreeUnsat) to neighboring agents;

3. else select an inconsistent variablev with the highest
priority and assign a value from its domain;

4. if no value for this variable
5. then if nogood is new
6. then Nogood Repairing(v);
7. else assign a value with minimal violations

to the variables with lower priorities;
8. Assign Local V ariables;

Algorithm NogoodRepairing (v)
1. if nogood is intra-nogood or mix-nogood
2. then v’s priority = the highest priority of local vari-

ables in nogood + 1;
3. if no values forv
4. then priority of the local agent = minimum

of degreeUnsat of related neighboring
agents -∆;

5. else assign a value with minimal violations
to the variables with lower priorities;

6. else priority of the local agent = minimum of
degreeUnsat of related neighboring agents -
∆;

Experimental Evaluation
We evaluated our algorithm (DAONR) on a benchmark set
of 3-coloring problems and against Asynchronous Weak-
commitment search (AWC), recognized as the state-of-the-
art for distributed CSPs where each agent has control over
multiple variables (Yokoo & Hirayama 1998; Hirayama &
Yokoo 2000). We implemented the latest version of AWC
using nogood learning and obtained comparable results to
those reported in (Hirayama & Yokoo 2000). All our results
are averaged over 100 trails.

To simulate an autonomous agent environment we used
an agent oriented design, implementing threads in FreeBSD
that allow agents to run asynchronously and concurrently.
All experiments were run on a Dell OptiPlex GX240 with
a 1.6GHz P4 CPU and 256MB of PC133 DRAM. We used
the same 3-coloring problem generator described in (Minton
et al. 1992) and improved in (Yokoo & Hirayama 1998) to
evaluate the performance of our algorithms. We chose this
domain as the 3-coloring problem has been used in many
other studies, and this type of problem is often used in con-
nection with scheduling and resource allocation problems.
To build the problem set, we randomly generatedn agents
with (n×5) variables per problem. All instances were taken
from the hard region of 3-coloring with a constraint to vari-
able ratio of 2.7, assigning 50% of constraints as inter-agent
and 50% as intra-agent constraints (within each problem).
Each agent was also constrained to have at least one inter-
agent constraint.

Figure 2 shows the averagedegreeUnsatfor each of the



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

A
ve

ra
ge

 d
eg

re
eU

ns
at

Execution Time (seconds)

DAONR
AWC

Figure 2: The averagedegreeUnsatplotted against time

Agents Method Checks NG LI Time (s)
3 DAONR 88 2 5 0.025635

AWC 128 2 4 0.040312
4 DAONR 107 3 11 0.033438

AWC 151 14 9 0.073125
5 DAONR 1487 17 24 0.075625

AWC 2710 43 31 0.132812
6 DAONR 4390 46 38 0.091562

AWC 5340 72 69 0.170625
7 DAONR 9980 84 77 0.378125

AWC 13410 203 119 0.714062
8 DAONR 14281 338 187 0.957425

AWC 18344 827 254 1.376250
9 DAONR 18620 1063 403 1.113546

AWC 21706 1814 436 2.005250
10 DAONR 25122 1750 753 3.062500

AWC 29295 2533 1023 4.150650

Table 1: Results for distributed 3-coloring problems with n
agents and n×5 Variables

two algorithms over the 10 agents with 50 variable problem
set, and Table 1 shows the number of checks, the number of
nogoods (NG) produced, the number of local instantiations
(LI) broadcasted and the running time for all agents over the
complete problem set. From these results it is clear that the
new algorithm is considerably more efficient than AWC in
terms of the number of messages sent and execution time.

Conclusion and Future Work
We have demonstrated a new algorithm that uses constraint
density to dynamically order agents and a nogood repairing
technique to increase the search speed, reduce communica-
tion cost and save memory usage in distributed CSPs. We
argue that our algorithm is more feasible and offers greater
agent independence than the existing algorithms for dis-
tributed CSPs, especially for situations with multiple local
variables in each agent.

Our algorithm can be used to solve dynamic distributed

CSPs and distributed over-constrained CSPs. Dynamic dis-
tributed CSPs are common in realistic problems, where con-
straints may be lost or added over time. By using our algo-
rithm, real-time calculations can build new relations among
agents, and changes of constraints and/or variables in one
agent will not affect other agents’ local computations. When
a distributed CSP has no solutions, it is over-constrained.To
deal with this kind of problem, we can setup a gate value
(between 0 and 1) for thedegreeUnsat values. After all
degreeUnsat values reach the gate value, the problem is
solved.

Finally, for problems where individual constraints have
varying degrees of tightness, we can amend our constraint
density measures to consider tightness directly. Currently
wecountthe number of intra- and inter-agent constraints for
each agent when calculating density. Alternatively, we can
sum the tightness of these constraints, where tightness is de-
fined as the number of possible unsatisfying assignments for
a constraint divided by the total number of possible assign-
ments.

References
Armstrong, A., and Durfee, E. 1997. Dynamic prioritiza-
tion of complex agents in distributed constraint satisfaction
problems. InThe Fifteenth International Joint Conference
on Artificial Intelligence, 620–625.
Hirayama, K., and Yokoo, M. 2000. The effect of nogood
learning in distributed constraint satisfaction.The 20th In-
ternational Conference on Distributed Computing Systems
( ICDCS 2000).
Minton, S.; Johnston, M. D.; Philips, A. B.; and Laird, P.
1992. Minimizing conflicts: a heuristic repair method for
constraint satisfaction and scheduling problems.Artificial
Intelligence161–205.
Yokoo, M., and Hirayama, K. 1996. Distributed break-
out algorithm for solving distributed constraint satisfaction
problems. Proceedings of the Second International Con-
ference on Multiagent Systems (ICMAS-96)401–408.
Yokoo, M., and Hirayama, K. 1998. Distributed con-
straint satisfaction algorithm for complex local problems.
In the Third International Conference on Multiagent Sys-
tems (ICMAS-98), 372–379.
Yokoo, M.; Durfee, E. H.; Ishida, T.; and Kuwabara, K.
1998. The distributed constraint satisfaction problem: For-
malization and algorithms.IEEE Transaction on Knowl-
edge and Data Engineering10(5):673–685.
Zhou, L.; Thornton, J.; and Sattar, A. 2003. Dynamic agent
ordering in distributed constraint satisfaction problems. In
Proceedings of the 16th Australian Joint Conference on Ar-
tificial Intelligence, AI-2003, Perth.


