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Abstract 

Multi-sensor data fusion has found widespread applications 
in industrial and research sectors.  The purpose of real time 
multi-sensor data fusion is to dynamically estimate an 
improved system model from a set of different data sources, 
i.e., sensors.  This paper presented a systematic and unified 
real time sensor fusion framework (RTSFF) based on 
distributed intelligent sensor network. The RTSFF is an 
open architecture which consists of four layers – the 
transaction layer, the process fusion layer, the control layer, 
and the planning layer. This paradigm facilitates distribution 
of intelligence to the sensor level and sharing of information 
among sensors, controllers, and other devices in the system.  
The transducer layer is populated with intelligent sensors.  
The learning ability of the intelligent sensor model enables 
it to extract characteristics of monitored signal. The 
representation issue is managed at this level.  After 
describing the RTSFF, the paper then focuses on the 
fundamental units of the framework, the highly autonomous 
transducers.  

1. Introduction 
Multi-sensor data fusion has found more and more 
widespread applications in industrial and research 
sectors.  The purpose of real-time multi-sensor data 
fusion is to dynamically estimate an improved system 
model from a set of different data sources, i.e., sensors. 
 The choice of architecture is a fundamental issue when 
designing a fusion system.  Commonly used architectures 
include the three traditional architectures introduced by 
Hall [1], the centralized, the autonomous, and the hybrid. 
However, they did not give any directions on how the 
system should be designed to improve the efficiency of 
sensor fusion algorithms based on the relationship 
between units. The JDL fusion model, originated from 
the sensor fusion sub-panel of the US Joint Directors of 
Laboratories (JDL) [2], is helpful for common 
understanding of the functionalities usually involved 
when building a sensor fusion system.  However, it is a 
data driven sensor fusion model and hard to be used as 
the basis for implementation. The OODA model [3] 
introduced the cyclic control cycle to represent the 
information gathering and decision making loop.  
However, it does not specify the sensor fusion tasks and 
which stage they belong in the structure.  The omnibus 
sensor fusion model [4] tried to combine the sensor 
fusion functions defined in the JDL model and the 
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OODA cyclic structure together. However, the omnibus 
model does not support hierarchical modular architecture 
that could partition tasks to support the distributed 
sensing and data processing.  Thus, the model does not 
support reusable modules that can be implemented and 
tested separately for different applications.  The waterfall 
fusion process model [5] separates different sensor 
fusion functionalities just as JDL model.  Like JDL 
model, it does not provide means for feedbacks and 
actions either. It is notable that except for the JDL sensor 
fusion model, other models are not specifically designed 
for sensor fusion systems.  They are created to model the 
decision making process at the beginning, but were used 
to demonstrate the functionalities, or the cyclic structure 
of the sensor fusion systems. 
 In this paper, we propose a real time sensor fusion 
framework (RTSFF), which includes detail information 
such as architecture, sensor fusion functions, and 
recommendation communication protocols. The framework 
is specifically designed for a distributed transducer network 
and supports hierarchical signal processing and sensor 
fusion functions in a real-time control system.  However, it 
is open to accommodate different sensor fusion algorithms, 
new types of sensor and actuator, and other communication 
protocol standard.  After describing all units in RTSFF, the 
paper gives detailed information on the fundamental units 
of the framework, the highly autonomous transducers 
(HATs). Then a cupola furnace example is used to 
demonstrate how a sensor fusion system is designed for 
distributed HATs for automatic monitoring and fault 
detection. 

2. Real-Time Sensor Fusion Framework 
Figure  1 shows the data flow in the hierarchical distributed 
RTSFF. It is the extension of the sensor fusion architecture 
introduced in [6]. It has four layers of data processing with 
well-defined interface between them. They are the HAT 
layer, the process fusion layer, the control application 
layer, and the planning and decision layer. Each of these 
four layers fulfills different objectives, and requires 
different information. In the figure, physical sensors and 
actuators are represented by circles and the abstract sensors 
and actuators are depicted as the box encompassing those 
circles.  Interfaces between different layers are illustrated 
as integrated part of each layer. The File Based Knowledge 
System (FBKS) is depicted as cylinder (functioning as 
knowledge base).  All other functions of the system are 
outlined as boxes.      



2.1 Four Layers of the RTSFF 
2.1.1 Highly Autonomous Transducer Layer 
Each node in the HAT layer represents one or more 
physical transducers that interact with the environment 
directly. The task of a sensor is to observe a property of the 
environment, while the task of an actuator is to execute a 
control command. The HAT layer is populated with a 
network of these intelligent sensors and actuators.  Except 

for its own health status, the intelligent actuators do not 
provide any more information to benefit the decision 
making process. Thus, in this paper, the focus will be on 
the highly autonomous sensors (HAS)[7]. The online 
model building and feature extraction functions in each 
HAS output unified qualitative behavior descriptors to the 
process fusion layer. Detailed functions for each HAS 
node is shown in Figure 2. The local sensor fusion 
algorithms look at the history of the signal, the information 
feed back form the process fusion layer, and the redundant 
readings if available to detect transducer-level failure and 
update the reliability of the HAS unit. In general, fusion of 
competitive sensing elements increases the robustness of 
the perception. Thus, when redundant readings are 
available, a fault-tolerance layer is added to increase the 
robustness of the unified view of the system.  
2.1.2 Process Fusion Layer 
The process fusion layer accommodates the hardware and 
software that act as glue between the HAT layer and the 
control application layer. It combines the measurements 
and qualitative descriptors from multiple HAS units into a 
more complete description of the environment, usually in 
the form of a map or matrix. In general, fusion of 
observations from complementary or cooperative sensors 
provides an extended and more complete view.  It supports 
more reliable interpretation of the system behavior, and 
therefore supports more accurate diagnosis when abnormal 
behavior occurs. The process fusion layer detects the 
system-level failure based on fusion results, and then 
triggers the diagnostic functions. Depending on the 
application, the relationship between involved HAS units, 
and the available resources such as processing power, 

working memory, etc., different sensor fusion algorithms 
can be used in the process fusion layer. In the cupola 
furnace example (section 4), to fuse the numerical values 
from different HAS units, weighted confidence averaging is 
used.  The fused value is then fed back to the HAS unit to 
update the model for behavior interpretation. To fuse 
qualitative descriptors from HAS units, a map is built to 
show the reliability of each HAS unit and the output of the 
process is also monitored to show the health status of the 

process as a whole. 
2.1.3 Control Application Layer 
The control application layer receives specifications 
from the operator and makes decisions about the 
control strategy based on the working condition of 
the whole system. It initiates actions in order to 
achieve a given goal, monitors and manages all 
process fusion units, and adjusts objectives according 
to the changes in whole system and the environment. 
The decision fusion at the control layer combines 
decisions and views from associated process fusion 
units. The fused results will be used to facilitate the 
resource management, the prediction of the 
maintenance time, and the adjustment of the control 
strategy.   
2.1.4 Plan and Decision Layer 
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The plan and decision layer interact with human operator 
and makes decisions on the overall goal of the system, such 
as the maximum yield. The focus of the design is on the 
human computer interaction (HCI) at this layer. The basic 
rule is to provide accurate and sufficient information, while 
hide any unnecessary details, so that operators can make 
good decisions. The HCI should also allow the operators 
access any detail information he/she thinks necessary. The 
hierarchical maps in the RTSFF, i.e., the HAT-level map, 
the process-level map, and the system-level map, gives the 
operator the flexibility to access any information he/she 
needs.  
2.1.5 Fieldbus as Communication Protocol 
Fieldbus technology drastically changed the industrial 
systems and is gradually replacing the 4-20 mA analog 
transmission that most field devices currently employ. 
After comparing several local area network protocol 
dedicated to industrial automation, which usually are 
proprietary protocol, we select FOUNDATION Fieldbus 
[8] as the communication protocol between each units in 
RTSFF. FOUNDATION Fieldbus is an open, interoperable 
Fieldbus that supports multi-drop, bi-directional, digital 
communication. It allows truly distributed control of the 
field devices.  In summary, the FOUNDATION Fieldbus 
protocol can be used to connect all kinds of instrumentation 
systems, electrical devices, and analyzers from different 
manufacturers and integrate them into one system. 

2.2 File Based Knowledge System  
All information generated or shared among nodes in the 
RTSFF is stored in the File Based Knowledge System 
(FBKS). It can be implemented as centralized knowledge 
system, or hybrid system where each node has partial 
information embedded. The unified addressing scheme 
allows access to any information in any node from any 
node. For the real-time control system, it is important to 
separate the communication services between different 
layers so that the different information, such as sensor 
readings, configurations, internal state reports, and self-
describing data, can be communicated in the correct format 
at the correct time interval. 
2.2.1 Interfaces and Communication Service Separation 
Three interfaces are designed to deal with communication 
between four layers. They are HAT-process interface, 
process-control interface, and man-machine interface. 
These interfaces decouple the communication activities 
from the local functions. The HAT-process interface 
provides three communication services to support sensor 
fusion algorithms for different purpose, such as real-time 
maintenance, online diagnosis, or dynamic configuration 
and plug-and-play setup.  The process-control interface 
negotiates between the process fusion layer and the control 
application layer.  It provides bi-directional accessibility to 
FBKS at each process fusion unit and combines maps from 
all process fusion units into one overall system map. 
Through the interface, the control layer sends commands 
and parameters to FBKS at each process fusion unit, and 

access overall system map generated by the interface. The 
man-machine interface between control application layer 
and plan and decision layer provides customized view of 
the system for different user groups. It also enables 
operators to define the objective of the control system, 
manually adjust parameters for each unit. It has to be 
carefully designed to reach the balance between not enough 
information to support decision making and too much 
detailed information that makes it impossible to reach any 
decisions.  
 Figure 3 shows the communication service separation in 
the HAT-process interface. Information in FBKS can be 
accessed via three communication services: real-time 
monitoring service (RMS), interpretation and diagnosis 
service (IDS), and configuration and resources 
management service (CRS).  The RMS provides periodic 
communication at predictable time to transmit information 
for normal control loop at a pre-defined frequency.  The 
fused results and maintenance information also fed back 
from the process fusion layer through RMS at pre-defined 
time interval. The IDS, on the other hand, provides 
communication at a much lower pre-defined frequency to 
transmit updates of the health status and other diagnostic 
information, or at sporadic time when diagnosis function is 
triggered, provided that it does not interfere with the timing 
of communication through RMS. The CRS provides bi-
directional communication between the control algorithm 
and a particular HAT node that allows reading and 
modifying data at the node. Parameters and other initial 
information are transmitted to newly connect or reallocated 

HAT unit through 
CRS at sporadic 
time. In summary, 
the RMS has the 
highest priority and 
must not be 
interfered by IDS 
and CRS. The CRS 
has the lowest 
priority and will be 
scheduled when 
communication 
traffic is low. The 
separation of these 
three services 
allows online 
maintenance, thus 

improves the productivity of the system. 
2.2.2 File Based Knowledge System 
The file based knowledge system (FBKS) supports 
information sharing among different components of the 
system. The FBKS encapsulated in each node stores all 
data/information it generates and that requested and 
received from other nodes.  The uniform naming and 
addressing scheme of FBKS enables it to function as both 
the sink and the source for all information transmission. 
Thus supports decoupling of the communication activities 
from local functions at each node. This ensures that each 
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component of the system can function independently, thus 
supports truly distributed control system.  
 Figure 4 shows the structure of the uniform naming and 
addressing scheme of the FBKS. The current configuration 
allows maximum 256 processes in one system, and 256 
HATs in one process unit. Each HAT unit can store up to 
32 files of records, in which 28 of them stores data and 
descriptors at different abstract levels and the remaining 
four files are reserved for intermediate storage purpose.  
Each files stores up to 1024 records.  The observation can 
occupy 32 or 64 bits according to different communication 
protocol. For complex system, the FBKS can be easily 
extended to accommodate more HATs and process units. 

2.2.3 Clock Synchronizing 
In order to align all observation and measurements and 
provide a base for all sensor fusion algorithms and other 
data processing function, the RTSFF uses a global notion 
of time for each node in the distributed system.  Thus, it is 
crucial to synchronize all clocks in the nodes to a global 
time base. The global time base is provided by the clock of 
a master node, which has an oscillator with very little drift 
rate. The clocks in other nodes use less costly on-chip 
oscillators. They are synchronized periodically to the 
master node’s clock by checking the synchronize pattern at 
the end of every message from the master node. The typical 
clock drift rate is 10-3s. 

2.3 Qualitative Descriptor Extraction for Highly 
Autonomous Transducers 
Model learning and behavior interpretation function in each 
HAT node provides a basis for local fusion functions, fault 
detection and diagnosis, and configuration updating. In this 
section, the qualitative descriptors used to describe and 
infer the behavior of the system are described. 
 In the HAT model, learning is defined as identifying new 

concepts and behaviors and save them in the FBKS.  Since 
concept and behaviors are qualitative descriptors 
describing the system conditions at different abstract level, 
the online learning function is denominated as Qualitative 
Engine (QE).  
 Figure 5 shows the general scheme for concepts and 
behaviors extraction. Qualitative descriptor, “Behavior” is 
defined by a succession of “Concepts” which are, in turn, 
defined by “Properties” that maintain constant values for a 
number of samples of the signal being read by the sensor.  
Table I shows how one may determine the concepts that are 
needed to specify a behavior.  For example, given the 
behavior step change, the related concepts defined by the 

experts are constant, noise, sudden jump. Each of 
these concepts has to be defined in terms of a set 
of properties, their values at every sample time, 
and the duration of the properties remain the same. 
 The online learning capability allows HAS to 
pick up unpredictable and previously unnoticed 

concepts and behaviors on the fly. Thus, it won’t miss any 
new scenarios exhibited by the system, for instance, when it 
experience a change of workload.  
 During the HAS maintenance period, more sophisticated 
offline modeling and learning algorithms can be used to 
fine tune and update the underlying local system model.  
 Based on the knowledge learned form the online and 
offline learning process, self-validation and diagnostic 
function are embedded into HAT. 
 A set of functions in the QE, ))(),...,(),({ 21 xfxfxfF s= ,  
maps the sensor readings in the input space (ℜ) to feature 
space ( Q },...,,{ 21 sqqq ). Then QE learns the concept c 
defined by a set of qualitative features },...,,{ 21 sqqq .  A 
behavior descriptor, b , learned by QE, is defined by a set 
of consequent concepts, },...,,{ 21 qccc . When learning 
concepts, if we define s qualitative properties (q), each has 
l possible states, and then the number of all possible 
combinations of the elements of qs that defines concept C is 
(s*l)s.  For a property set of five, each with three possible 
states, the number of all possible combinations is 759375. 
This number will increase exponentially as the number of 
properties increases. However, not all these combinations 

are physically feasible.  
Thus, it is unwise if not 
impossible to create a 
knowledge base with 
all possible patterns 
beforehand.  The same 
consideration is true 
for the behavior even if 
we only deal with fixed 
number of concepts per 
behavior.  The online 
learning ability of QE 
enables it to learn new 
concepts and behaviors 
whenever they occur.  
Thus, only the concepts 
and behaviors that are 
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physically feasible are stored in the knowledge base 
(FBKS).  The result is a significant decrease in space 
complexity of the knowledge base and consequently, 
reduced time complexity for searching and matching 
algorithms.  

3. Simulated Results: Fault Detection of 
Cupola Furnace  

The Cupola iron furnace is an essential part of most cast 
iron foundries [9].  The diameter of a Cupola furnace 
ranges from two to 15 feet, and is usually charged with 
coke, metal and other materials such as enzymes. Figure 
6(a) shows a model for Cupola furnace with three pairs of 
temperature and pressure sensors located at the bottom, the 
middle, and the top of the furnace.  From top to bottom, 
Figure 6(b) shows the iron temperature measured by T1, T2, 
and T3 respectively. It also shows the manually labeled 
behaviors of the signal. Besides the normal change of load, 
which results in the step changes in the iron temperature, 
noises such as spikes and disturbances are also treated as 

behaviors here.  
The three pairs of complementary and cooperative 

sensors monitor the same parameter at different location, 
thus provide more comprehensive information about the 
conditions within the furnace.  Because of the location of 
these temperature sensors, there are noticeable delay in 
their readings, and different level of noises.  The delay is 
approximated by comparing the response time when 
working condition changes, i.e., starting point of step 
changes.  The time lag between T1 and T2 is 25 points, and 
the time lag between T2 and T3  is the same. 

Using the highly autonomous sensor model described 
before, all behaviors of each signal can be detected, 
including the normal behavior “step up” and the sensor 
errors, such as “disturbance” and “spike”. When these 
errors are detected, the fused values, based on the fusion of 
three complementary temperature sensors, will be used for 
decision making of control strategy and the confidence of 
the sensors will be reduced accordingly.  The detailed 
algorithm to adjust the confidence and numerical fusion is 
described in [10]. The detected concepts and behaviors are 
shown in table II.  Notice that the format of each record 

follows the uniform naming and addressing 
scheme of FBKS. Figure 7 explains the 
elements of the “step up” behavior record. 

4.Conclusion 
In this paper, we introduced a unique, open 
structure real-time sensor fusion 
framework (RTSFF) and the underlying 
highly autonomous sensor (HAS).  The 
advantages of the RTSFF include: open 
structure that can accommodate different 
sensor validation and fusion algorithms; 
communication separation enable most of 
the diagnosis, maintenance, and 
configuration functions to be performed 

SITUATION          DESCRIPTION ASSOCIATED CONCEPTS 
Constant input Except for noise, the output remains at a constant level 

during the monitoring time. 
Noise, monitoring time, constant level. 

Monotonic 
change 

Except for noise, the output increases or decreases linearly 
with time during the monitoring time 

Noise, linear increase or decrease, monitoring 
time 

Step input Except for noise, the output remains constant during the 
monitoring time, then it suddenly jumps to a higher or 
lower level, where it remains during the monitoring time. 

Sudden jump, noise, constant, monitoring 
time. 

Harmonic Except for noise, during the monitoring time, the output 
changes at a certain principal frequency.  Other secondary 
frequencies may also be present. 

Frequency, principal frequency, secondary 
frequencies, noise. 

Spike Random occurrence of a large amplitude pulse with low 
energy. 

Random occurrence, short duration, large 
amplitude, low energy 

Excessive 
Noise 

Increase in the noise level at random time with low or high 
energy, lasting some time. 

Random occurrence, noise level, longer 
duration, low or high energy level. 

Zero Value The output value is stuck at zero. Zero value, no noise, no energy. 
Stuck value The output value is stuck at some number. Constant value, no noise, low or high energy. 
Drift  A small monotonic change of the signal from the actual 

value over a long period of time. 
Small monotonic change, long duration time. 

Table I Measurand and Sensor Behaviors and related concepts 

T2,P2 

T1,P1 

T3,P3 

Figure 6 (a) Cupola furnace and (b) The simulated iron temperature 
under different working condition 

disturbance 

spike 

step-down 

step-up 

constant 

disturbance 

constant step-up 



<B1     T1    01    01    b1  c0 c1 c2  230 1 0.8> 

Process ID Sensor ID 
File ID 

Record ID 

Figure 7 Record for behavior Step Change Up  

Address a Behavior ID 

Concept 
vectors cv Confidence c 

Duration  Start Instant t online without interfering with the real-time data 
transmission under normal working condition; the uniform 
naming and addressing scheme of the file based knowledge 
system (FBKS) decouples the communication activities 
from the local functions; the master-slave clock 
synchronization mechanism fully utilize the capability of 
the Fieldbus communication protocol and reduces the cost  
for implementation of real-time sensor fusion systems.  The 
learning ability of the HAS not only provides a uniform 
qualitative representation for higher level decision fusion, 
but also facilitates the health monitoring of the sensor 
itself, thus guarantee the input to the fusion algorithms will 
not be garbage.  The Copula furnace example demonstrate 
how the numerical fusion of three complementary 
temperature sensors help the detection of disturbances and 
errors of the sensor, and how qualitative descriptors are 
extracted by the HAS units and stored in the FBKS. The 
HAS and RTSFF can be used for monitoring the real-time 
systems with time series signals, as well as the real-time 
systems where images are the output product.  The unified 
qualitative representation of concepts and behaviors can be 
treated as patterns or objects in the images.  This is very 
useful in Ladar and Lidar applicaitons, when information at 
both one and two dimension need to be fused together at 
decision level.   
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Table II Concepts and Behaviors Extracted from Sensor Readings of T1 

 T1 Description 

Behavior 
Descriptors 

<B1 T1 01 01 b1 c0 c1 c0 277 1 1.0>  
<B1 T1 01 02 b2 c0 c1 c2 c1 76 278 1.0>  
<B1 T1 01 03 b3 c1 c2 c1 207 279 1.0>  
<B1 T1 01 04 b4 c1 c0 c1 152 562  0.9>  
<B1 T1 01 05 b5 c3 c2 c1 c0 71 715 0.9>  
<B1 T1 01 06 b6 c1 c0  96 787 0.8>  
<B1 T1 01 07 b7 c4 c5 c0 c1 18 881 0.8>  
<B1 T1 01 08 b8 c2 c1 140 746 0.7>  

b(1): Step Change Up from 1-278, conf(1.0). 
b(2): Pulse Disturb from 279-354, conf(1.0). 
b(3): Step Change Down from 355-561, conf(0.9). 
b(4): Step Change Up from 562-714, conf(0.9). 
b(5): Pulse Disturb from 715-786, conf(0.9). 
b(6): Constant to Up fro 787-880, conf(0.8). 
b(7): Spike from 881-899, conf(0.8). 
b(8): Down to Constant from 900-1000, conf(0.7). 

Concept 
Descriptors 

<B1 T1 01 32 c0 nnnngsvv1+23 1 1.0>  
<B1 T1 01 33 c1 nnnngsvv1+1;_ 110 1.0>  
<B1 T1 01 34 c2 nnnngsvv1-2>} 280 1.0> 
<B1 T1 01 35 c3 nlnngsvv1-2=} 500 1.0> 
<B1 T1 01 36 c4 nohmbpii1+2<| 881 1.0>  
<B1 T1 01 37 c5 nohmbpvv1+2;| 883 1.0>  
<B1 T1 01 38 c6 nlnngsvv1+1<_ 911 1.0>  

c(0): Upward trend with noise 
c(1): Constant with noise 
c(2): Downward trend with noise 
c(3): Downward trend with low amplitude 
c(4): Steep Upward trend, sensor domain 
c(5): Steep Upward trend, back to measurand domain 
c(6): Low constant with noise 


