
Adapting LSI for Fine-Grained and Multi-Level Document Comparison

Nicholas Adelman Marin Simina
Department of Electrical Engineering and Computer Science

Tulane University
New Orleans, LA 70115

e-mail: adelman, simina@eecs.tulane.edu

Abstract

In recent years, Latent Semantic Indexing (LSI) has been
recognized as an effective tool for Information Retrieval in
text documents. The level of “granularity” in LSI (i.e.
whether LSI is performed on documents, paragraphs,
sentences, phrases, etc.) is somewhat of a limiting factor, in
that LSI comparisons can only be made at the level of
granularity chosen. Here we argue that, as long as a record
of the document structure is maintained, the level of
granularity may be arbitrarily fine while still allowing for
comparison at any coarser granularity. It is shown that the
reduced-dimension vector for any particular section of a
document is a function of the vectors of its constituent sub-
sections. Using this information, we illustrate how LSI can
be used to compare documents at multiple structural levels.
One possible application (automated plagiarism detection)
is discussed as an example of how this method of multi-
level comparison may be used to improve query time in
fine-granularity LSI applications.

Introduction

Latent Semantic Indexing (LSI) is a statistical corpus-
based indexing technique that extends the vector-space
model employed by many standard Information Retrieval
(IR) techniques by incorporating a dimensional reduction
step (Landauer, Foltz, and Laham 1998). As applied to
textual corpuses, LSI is performed at specific granularity.
“Granularity” refers to the size of the sections of text
included in the corpus (i.e. documents, paragraphs,
sentences, and so on). Consequently, document
comparisons are limited to the granularity chosen. We are
proposing a method that allows document comparisons in
LSI to be performed at multiple structural levels, while
only having to actually perform LSI at a single granularity.
For LSI applications where fine-grain comparisons
(queries) are required, this method can be used to improve
the query time. One such application – an LSI-based
plagiarism detection system – will be outlined to illustrate
how this method can be effectively applied.

Granularity effectively determines the depth of
comparison that can be performed with LSI, and thus may
be viewed as a limiting factor in the utility of the
application. If document granularity is used, then only
coarse grain comparisons of documents can be made. If a
finer granularity is used, such as sentence or
phrase granularity, then only fine grain comparisons can be

copyright © 2004, American Association for Artificial Intelligence
(www.aaai.org) All rights reserved.

made. In some cases, however, it might be useful to be
able to make both coarse and fine grained comparisons.

While performing LSI with coarse granularity may limit
the utility of LSI, we have found that under certain
conditions the granularity may be arbitrarily fine while still
allowing coarse grain features of the documents to be
utilized. This conclusion is reached via a slightly modified
view of centroid vector clustering, which we refer to as the
sum-of-mass method: If document trees are maintained
for the contents of some corpus, then the vector for any
non-leaf node in the tree can be determined exactly from
the sum of its children’s vectors. For instance, if LSI is
performed with sentence granularity (i.e. the low-
dimensional vectors for sentences are computed), the exact
vectors for paragraphs can be quickly computed as a sum
of their constituent sentence vectors. Essentially, this is
just an exercise in controlled clustering: the document tree
structure contains a specific map of known clusters within
the document (paragraphs are clusters of sentences,
sections are clusters of paragraphs, and so on). The
implication is that documents could be compared at
multiple structural levels even though LSI is only
performed at one level of granularity.

The remainder of this paper is organized as follows: In
the next section, a short description of the LSI method is
offered. In section 3, we present a short proof of the sum-
of-mass method. In section 4, an example application that
utilizes the sum-of-mass method is presented and
analyzed. In section 5 preliminary results are discussed,
and section 6 presents some conclusions and ideas for
future research.

Latent Semantic Indexing
In LSI, the projection of the corpus contents into a lower
dimensional space reveals semantic concepts within the
corpus (Landauer, Foltz, and Laham 1998). In other
words, terms are abstracted to their conceptual meaning,
while documents are abstracted to a weighted sum of their
constituent terms’ conceptual meaning. Revealing the
semantic concepts within the corpus enables LSI to
address the issues of synonymy, and to a lesser degree,
polysemy (Papadimitriou et al. 1998). In accordance with
standard IR techniques, term and document vectors in this
low-dimensional space may be compared via one of a
number of vector comparison techniques. Common
comparison metrics include Euclidian distance and cosine
similarity (Park and Elden 2003).

As applied to text documents, LSI begins with an mXn
term-by-object matrix, where m is the number of terms and
n is the number of objects (documents, paragraphs,
sentences, etc.) in the corpus. Within this matrix, rows
represent terms and columns represent objects. The values
in any given column represent the term frequencies within
a single object. Conversely, the values in any given row
represent the term co-occurrence over all objects. The
term frequencies may be weighted locally and globally to
adjust the relative importance of the terms (Berry, Dumais,
and O’Brien 1995). Preparing the term-by-object matrix
from text documents generally requires a substantial
amount of pre-processing (Landauer, Foltz, and Laham
1998).

Latent Semantic Indexing is most commonly performed
using the Singular Value Decomposition (SVD).
Performing the SVD on a matrix A decomposes it into the
product of three matrices:
 TVUA Σ= (1)

The columns of U, referred to as the left singular
vectors, define the orthonormal eigenvectors of AAT.
Similarly, the columns of V, referred to as the right
singular vectors, define the orthonormal eigenvectors of
ATA. U contains the singular vectors for the terms, while V
contains the singular vectors for the objects. The singular
values of A, which are the non-negative square roots of the
eigenvalues of AAT, are contained in decreasing order
along the diagonal of Σ.

Once the SVD has been performed on A, dimensional
reduction is achieved simply by setting all but the k largest
singular values to zero (Landauer, Foltz, and Laham 1998).
The reduced dimension representations of U, V, and Σ are
Uk, Vk, and Σ k, respectively.

From the matrices Uk, Vk, and Σ k, the following matrix
is defined:
 T

kVkkUkA Σ= (2)

where Ak is the best rank-k estimation of A (Landauer,
Foltz, and Laham 1998).

Uk, Vk, and Σ k define a k dimensional space, which will
be referred to as the LSI space or Semantic space. Each
term and document can be represented as a vector within
this space. The vectors for the terms are obtained by
scaling columns of Uk by the singular values. Similarly,
the vectors for the documents are obtained by scaling the
columns of Vk by the singular values (Berry, Dumais, and
O’Brien 1995).

Comparisons between entities in the LSI space (both
terms and objects) are most often made by calculating the
cosine similarity between vectors in the space (Landauer,
Foltz, and Laham 1998). A more prevalent application is
to “cast” a query document into the LSI space, and use the
cosine similarity measure to identify objects or terms in the
space that are semantically similar to the query (Park and
Elden 2003). A query object is pre-processed in the same
fashion that the corpus objects were, resulting in a vector,

q, containing the weighted term frequencies within the
query. To cast the query into LSI space, the following
formula is used:
 1' −Σ= kkUTqq (3)

For a complete discussion of the Singular Value
Decomposition, readers are referred to (Golub and Van
Loan 1996). For a more detailed discussion of Latent
Semantic Indexing, readers are referred to (Landauer,
Foltz, and Laham 1998) and (Berry, Dumais, and O’Brien
1995).

Proof of Sum-of-Mass Method
This proof begins with a term-by-object matrix A
populated with n objects and m terms. For ease of reading,
colon notation is used, rather than matrix subscript
notation. For instance, the ith row of matrix A is written
A(i,:), and the ith column of A is written A(:,i).

Assume that the nth object in A consists of the sum of
the other n-1 objects. In other words,

 ∑
−

=
=

1

1
)(:,)(:,

n

i
iAnA (4)

After the SVD has been performed, A is expressed as the

product of three matrices, as shown in (1). Equivalently,
(1) can be expressed using the SVD expansion (Golub and
Van Loan 1996):

 ∑
=

=
r

i
iTViUiA

1
:),(:),(σ (5)

where r is the rank of the A. For any given object in A, the
contents of the column can be expressed in terms of U, V,
and Σ with:

 ∑
=

=
r

i
jiTViUijA

1
),(:),()(:, σ (6)

Using the assumption from (4), the following relations are
derived:

 ∑
=

=
r

i
niTViUinA

1
),(:),()(:, σ (7)

 ∑
−

=
∑
=

∑
−

=
=

1

1 1

1

1
),(:),()(:,

n

h

r

i

n

j
jiTViUihA σ (8)

From (4), (7) and (8) it is found that, in this situation,

∑
−

=
=

1

1
),(),(

n

j
jiTVniTV (9)

where r is the rank of the matrix A, and 1 ≤ i ≤ r.

Equations (7), (8) and (9) generally illustrate that
additive relationships that hold between objects in A will
also hold between the corresponding right singular vectors
within V. This implies that if object i in A is the union of a
number of other objects in A, then the right singular vector

for object i will be the sum of the right singular vectors for
the constituent objects. For the remainder of this
discussion, these constituent objects will be referred to as
sub-objects, and their union will be referred to as the
super-object.

Up to this point, it has been assumed that the super-
object was included in A, and therefore played a direct role
in the SVD. However, it can be seen from equation (9)
that the right singular vector for the super-object can be
derived from the right singular vectors of the sub-objects.

In order to see how the preceding relationship may be
helpful, first consider how the vector for an object in the
semantic space is calculated. The vector for a single
object, di, in the r dimensional LSI space is calculated as:

 Σ= :),(iVid (10)

Going back to the super-object/sub-object situation
stated in (4), the vector for the super-object, dn, can now be
represented as follows:

 Σ∑
−

=
=)

1

1
:),((

n

i
iVnd (11)

Equation (11) illustrates that the exact vector of the

super-object in the multi-dimensional space can be
calculated from the sum of the vectors of its constituent
sub-objects.

For application to LSI, it must be shown that the stated
sub-object/super-object relationships hold after
dimensional reduction has been performed. Equations (7)
and (8) show that an original object vector in A can be
reconstituted by summing the values of FiU(i,:)VT(i,:) over
all values of i (i.e. over all dimensions). Dimensional
reduction yields the expression in equation (2). The
corresponding adjustment for equation (6) is:

 ∑
=

=
k

i
jiT

kVikUijkA
1

),(:),()(:, σ (12)

Equations (6) and (12) illustrate that the values for each
object vector in A and Ak are comprised of the sum of
number of “dimensional components”. Let us refer to the
dth dimensional component in A(:,i) as A(:,id). Similarly,
Ak(:,id) is the dth dimensional component in Ak(:,i). From
equations (6) and (12), the following can be deduced:

),(:),()(:, idTVdUdidA σ= (13)

),(:),()(:, idTVdUdidkA σ= (14)

Since equations (13) and (14) are the same, it can be
concluded that dimensional reduction does not perturb the
super-object/sub-object relationships. The only difference
is that, after dimensional reduction, there are fewer
dimensional components to sum up.

The major conclusion that can be drawn from the
preceding proof is that the super-object does not need to be
included in the original matrix A as long as all of its

constituent sub-objects are.
An important issue should be addressed at this point.

The components of the SVD (left singular vectors, right
singular vectors, and singular values) will differ between
the situation where the super-object is included in A and
the situation where it is not. However, the relationships
expressed in equations (13) and (14) will still hold, and
therefore so will the sub-object/super-object relationship.

An Application

There are two categories of LSI-based applications where
the sum-of-mass method may be useful. The first category
includes applications where documents need to be
compared at multiple levels (compare sentences to
paragraphs, paragraphs to documents, and so on). The
second category includes any application that requires
fine-granularity LSI comparisons. This includes
applications where LSI is applied at the phrase, sentence,
or possibly paragraph level. This second category will be
emphasized here.

Plagiarism Detection via LSI – An Overview
Past applications of LSI have most often been performed
using document granularity. This has been effective for
performing such tasks as document retrieval (Berry,
Dumais, and O’Brien 1995) where a query phrase is
presented, and semantically similar documents in the LSI
space are returned. Another possible application of LSI is
to compare inter-corpus documents in an attempt to
determine the similarity between them. An example of
such an application has been developed by (Maletic and
Marcus 2000).

We now present a potential application where LSI is
used to perform “fine granularity” comparison between
documents. This application – a plagiarism detection
system – utilizes the sum-of-mass method to speed up
query time.

Plagiarism detection requires comparison of documents
at a high level of detail. A number of plagiarism detection
systems have been developed, many of which are
discussed in (Clough 2000). One of the major obstacles in
plagiarism detection is to overcome the issue of
paraphrasing, and consequently the issues of synonymy
and polysemy (Clough 2000). For this reason, LSI is an
attractive method for detecting plagiarism.

Plagiarism may occur at many levels within a document,
ranging from plagiarism of a phrase to an entire document.
The most logical granularity to employ for an LSI-based
plagiarism detection system would be sentence granularity.
Comparing larger document structures (paragraphs,
sections, or entire documents) in LSI space may not be
adequate to detect plagiarism – the fact that two
documents are closely related in the semantic space does
not entail that one is plagiarized from the other. On the
other hand, if a number of sentences (especially sentences
that are temporally close) within two documents are
closely related semantically, it may be more indicative of

plagiarism. Furthermore, utilizing the sum-of-mass
method, comparison at any coarser granularity is still
possible.

A plagiarism detection system first requires a corpus of
“original” documents. LSI would be performed on this
corpus, thus defining the semantic space. “Suspect”
documents are then presented as queries and compared to
the existing corpus. If a suspect document, or some
portion of it, is found to have a very close semantic
relationship to portions of one or more of the original
documents, then plagiarism may have occurred. Since
plagiarism is a legal issue, this system will not present a
definitive judgment regarding whether plagiarism actually
occurred. The purpose of the system is to identify “highly
suspect” document sections, and present them for further
investigation.

Plagiarism Detection System Setup
During pre-processing, a tree map of each document’s
structure is built. For simplicity, we only consider three
structural levels here – document, paragraph, and sentence.
LSI is performed at sentence granularity, and the sum-of-
mass method is used to derive the LSI vectors for coarser
granularity document structures from the right singular
vectors for the sentences. An outline of this scheme is
illustrated in Figure 1.

Queries are processed in the same manner. This is
illustrated in Figure 2.

Querying the System
Using the document trees and sum-of-mass method, we are
able to perform a simple greedy search on the corpus in
order to identify possible plagiarisms. The search begins
by querying at document-level granularity. The derived
vector for the query document is compared to each
document vector in the corpus, using the cosine-similarity
metric. If the similarity between the query and any
document in the corpus falls within a specified threshold,
then the corpus document is selected for further
examination.

Next, the selected corpus documents and the query
document are compared at paragraph-level granularity.
Each query paragraph is compared to each paragraph
within the selected corpus documents. Once again, if the
similarity between a query paragraph and any paragraph
within the corpus falls within a given threshold, then the
corpus paragraph is selected for further investigation.

The final step is to compare at sentence-level
granularity. For each query paragraph, qpi, its constituent
sentences are only compared to the sentences within
corpus paragraphs that qpi was highly similar to. A link
between highly similar sentences is created to facilitate
further investigation.

An outline of the entire query procedure is illustrated in
Figure 3. The simple greedy search approach that is
employed can be viewed as a series of filters that allow
unnecessary vector comparisons to be avoided. For
instance, the document level comparison filters out
semantically dissimilar documents, so further comparison
are only performed on “documents of interest”.
Considering that the cosine similarity is an O(k)
operation, avoiding unnecessary comparison will greatly
improve the query time.

Examining an Alternative
An alternative to using the sum-of-mass method is to rely
on folding-in documents into the Latent Semantic space
(Berry, Dumais, and O’Brien 1995). This method will be
referred to as the folding method. Folding-in a document
is the same as casting a query vector into a pre-defined LSI
space. The idea is to perform LSI at document granularity
on the corpus, and then fold-in each document’s
constituent paragraphs and sentences to derive their
respective vectors in the LSI space.

Query documents would be treated similarly. The query
document, each constituent query paragraph, and each
constituent query sentence would be cast into the LSI
space before the query could proceed. Once the query pre-
processing is complete, the query algorithm would be
exactly the same as the algorithm in Figure 3.

Sum of
mass

Sum of
mass

k

Vk

Figure 1. Corpus Setup for Plagiarism Detection

Docs

¶

Sentence Vectors

Sum of
mass

Sum of
mass

Query
paragraphs

k

Figure 2. Query Setup for Plagiarism Detection
Query sentence vectors

Query document

The main advantage of the folding method lies in the
fact that the SVD would be calculated for a much smaller
corpus matrix (obviously a term-by-document matrix will
be smaller than a term-by-sentence matrix). The SVD is a
very computationally intensive calculation, so in this
respect, the folding method should enjoy a great advantage

Although the setup time for the corpus should be
improved, this is the only clear advantage that the folding
method holds over the sum-of-mass method. It should be
noted that the corpus setup only needs to be performed
once, but the LSI space may be queried innumerable times.
Therefore, a computational advantage in query time should
be more valuable than an advantage in corpus setup time.

Both the sum-of-mass method and the folding method
use the algorithm in Figure 3 to perform queries, so they
are computationally equivalent in this respect Therefore,
the only area where an advantage may be found is in the
query setup time. Here we find that the sum-of-mass
method holds a distinct computational advantage over the
folding method.

First note that folding-in is an O(mk2) operation, while
performing the sum-of-mass is O(k). In both methods the
query setup requires that the query sentences be cast into
the LSI space. However, for the folding method, the query
paragraphs and query document must also be folded in.
Conversely, for the sum-of-mass method, the LSI vectors
for the query paragraphs and query document are
computed via the sum-of-mass. Consequently, the sum-of-
mass method enjoys a computational advantage of an order
of magnitude in m and k. Over many queries this will be a
great computational advantage.

In addition to the computational advantage of the sum-
of-mass method, there is also a theoretical advantage. It
has been noted in (Landauer, Foltz, and Laham 1998) and
(Berry, Dumais, and O’Brien 1995) that folding-in
documents perturbs the orthogonality of the right singular
vectors, slightly distorting the semantic space. Thus, the
position of the LSI vector for the folded document, relative
to the positions of the vectors for the original corpus
documents, will deviate slightly from where it should be.

In other words, folding-in a document yields an estimate
of the document’s position in the semantic space. On the
other hand, the proof of the sum-of-mass method indicated
that this method could be used to determine the exact
position of a super-document in the semantic space.
Therefore, the sum-of-mass method could be viewed as
more accurate than the folding method.

Preliminary Experimental Results
We have performed one preliminary experiment designed
to test the sum-of-mass method and compare it to the
folding method. The corpus used in these preliminary tests
consists of 15 essays related to World War Two. These
essays were taken from a “paper mill” website that offers
essays for download (http://www.planetpapers.com).
During pre-processing, global weighting, local weighting,
and normalization were not performed.

 LSI was performed on the corpus using both methods,
and the resulting semantic spaces were queried using the
same query documents. Queries proceeded via the
algorithm outlined in figure 3, with one modification.
Rather than using a single threshold, d, at each level of
comparison, three different thresholds were used. These
thresholds ranged from relatively low (0.75) for document
level comparisons to high (0.95) for sentence-level
comparisons.

 Sum-of-mass Folding

Query Level Recall Precis Recall Precis
0 Doc 1.0 1.0 1.0 1.0
 Para 1.0 0.65 1.0 0.14
 Sent 0.98 0.84 1.0 0.26

1 Doc 1.0 1.0 1.0 1.0
 Para 1.0 0.71 1.0 0.44
 Sent 1.0 1.0 1.0 0.74

2 Doc 1.0 1.0 0.5 1.0
 Para 1.0 0.68 0.5 0.07
 Sent 0.99 0.91 0.57 0.15

Table 1. Experimental results for the two methods

Figure 3. Simple Greedy Search Algorithm For Multi-Level Comparison

Greedy_Multi_Level_Compare(dq)
 for each document, di, in the corpus
 if cosine-similarity(dq , di) > δ
 for each paragraph, pqj 0 dq
 for each paragraph pi 0 di
 if cosine-similarity(pqi , pi) > δ
 for each sentence sqi 0 pqi
 for each sentence si 0 pi
 if cosine-similarity(sqi , si) > δ
 create-link(sqi, si)
di = ith document in corpus dq = query document
pi = ith paragraph in a corpus document pqi = ith paragraph in dq
si = ith sentence is a corpus paragraph sqi = ith sentences in a query paragraph
δ = threshold

The first two queries presented were exact copies of two
of the papers in the original corpus. The third query was a
union of the first two queries. The recall and precision for
each query at each structural level is presented in Table 1.

Evaluation and Discussion
The results of the preliminary experiment reveal two
things. First, the difference in recall between the methods
is almost negligible (the low recall for the folding method
in query 2 is due to the fact that one of the two relevant
documents was not identified during the greedy search).
Second, there are obvious differences in the precision of
the two methods. This phenomenon may be attributable to
a number of factors.

One possible factor is the “correctness” of the sum-of-
mass method versus the folding method, mentioned on the
previous page.

A second possible factor is the granularity at which LSI
was performed. It seems that performing LSI at sentence
granularity may expose specific term relationships, while
performing LSI at document granularity may expose more
general term relationships. If this is the case, it would
explain the differences in precision between the methods.

A final factor is the size of the corpus. With such a
small corpus size, it is difficult to determine how reliable
these results are. More experimentation with a larger
corpus is needed.

Aside from experimentation with a larger corpus, a
number of other experiments need to be performed in order
to further evaluate our proposed methods. First of all, the
subjects of all of the documents in our preliminary
experiment were very similar. Testing with a more diverse
corpus should also be performed. Secondly, our
preliminary tests evaluated whether the system would
accurately identify blatant plagiarisms (exact copies).
Further tests should be engineered to see if the system can
detect paraphrasing and other subtle forms of plagiarism.

Conclusions

We have shown that using the sum-of-mass method to
augment the standard LSI method with structural
information may allow the capabilities of Latent Semantic
Indexing to be extended. However, a number of issues
still need to be addressed and/or resolved.

One issue that we have not thoroughly investigated is
how local weighting, global weighting, and normalization
on the term-by-document matrix will affect the sum-of-
mass method. Methods for local and global weighting are
discussed in (Landauer, Foltz, and Laham 1998) and
(Berry, Dumais, and O’Brien 1995). The main issue here
is whether weighting and normalization will perturb the
super-object/sub-object relationship. Intuitively speaking,
global weighting should not affect this relationship, as
weights are applied uniformly across the objects and terms.
Normalization, on the other hand, would almost certainly
alter the super-object/sub-object relationship: after
normalization, the union of the sub-objects would no

longer be equal to the super-object. This is an area where
further investigation is needed. Local weighting at the
sentence level would also perturb the super-object/sub-
object relationship. However, local weighting could be
performed at the document level, and the weights could be
propagated down to the sentence level.

Another issue to investigate is how large a term-by-
sentence matrix may be before performing the SVD
becomes computationally infeasible. The number of terms
used in LSI may be as great as 100,000, and the number of
documents may be just as large. If a corpus contains
100,000 documents, each containing an average of 50
sentences, then we would be looking at performing the
SVD on a 100,000x5,000,000 matrix, which may be
computationally infeasible.

Perhaps one of the most promising applications of the
sum-of-mass method relates to the fact that it allows
structural information to be easily combined with semantic
information. It has been noted by many authors that a
drawback to LSI is that it is inherently non-order-
preserving (Landauer, Foltz, and Laham 1998). The sum-
of-mass method preserves structural information that could
be used in conjunction with LSI to simultaneously perform
semantic and structural comparisons between objects.
Possible applications might include DNA or Software
analysis using LSI.

References
Landauer, T. K., Foltz, P. W., and Laham, P. 1998.

Introduction to Latent Semantic Analysis. Discourse
Processes 25:259-284.

Papadimitriou, C., Raghavan, P., Tamaki, H., and
Vempala, S. 1998. Latent Semantic Indexing: A
Probabilistic Analysis. In Proceedings of the 17th ACM
Symposium on Principles of Database Systems, 159-168.
Seattle, Washington:ACM Press.

Park, H., and Eldén, L. 2003. Matrix Rank Reduction for
Data Analysis and Feature Extraction. Technical Report,
03-015, Dept. of Computer Science, University of
Minnesota-Twin Cities.

Berry, M. W., Dumais, S. T., and O’Brien, G. W. 1995.
Using Linear Algebra for Intelligent Information
Retrieval. SIAM: Review 37(4):573-595.

Golub, G. H., and Van Loan, C. F. 1996. Matrix
Computations, Third Edition. Baltimore, Maryland: The
Johns Hopkins University Press.

Maletic, J. I., and Marcus, A. 2000. Using Latent
Semantic Analysis To Identify Similarities in Source
Code to Support Program Understanding. In
Proceedings of the 12th IEEE International Conference
on Tools with Artificial Intelligence, 46-53. Vancouver,
Canada: IEEE Press.

Clough, P. 2000. Plagiarism in Natural and Programming
Languages: An Overview of Current Tools and
Technologies. Internal Report CS-00-05, Dept. of
Computer Science, University of Sheffield.

