
A Tool for Satisfiability-Based
Commonsense Reasoning in the

Event Calculus

Erik T. Mueller
IBM Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598 USA

Abstract

We present a tool for commonsense reasoning in the
classical logic event calculus using satisfiability. We
describe the tool, which takes event calculus reason-
ing problems as input, encodes the problems as proposi-
tional satisfiability problems, runs a satisfiability solver
on the encoded problems, and produces solutions to the
reasoning problems as output. We describe the encod-
ing method and how various commonsense phenomena
are expressed using the tool. We evaluate the tool on 14
benchmark commonsense reasoning problems for the
event calculus, compare its performance with the causal
calculator on eight zoo world test problems, and dis-
cuss two natural understanding applications built using
the tool.

Introduction
Commonsense reasoning is an important capability for in-
telligent systems. Many mechanisms have been used to per-
form commonsense reasoning including analogical reason-
ing, Bayesian networks, case-based reasoning, logic, marker
passing, multiagent systems, and neural networks. Within
logic-based artificial intelligence, after Kautz and Selman
(1996) showed that high performance planning could be
achieved by encoding planning problems as satisfiability
problems, several commonsense reasoning systems have ap-
peared that make use of satisfiability and constraint solving
techniques. The causal calculator (Giunchigliaet al. 2004)
uses satisfiability to solve reasoning problems expressed in
the language of causal theories (McCain & Turner 1997).
The VITAL system (Kvarnstr̈om 2001) uses constraint prop-
agation to solve reasoning problems expressed in temporal
action logics (Dohertyet al. 1998). The system of Shanahan
and Witkowski (2002) uses satisfiability to solve planning
problems for a restricted subset of the classical logic event
calculus (Shanahan 1997; Miller & Shanahan 2002).

In this paper, we present a satisfiability-based common-
sense reasoning tool that supports a larger subset of the clas-
sical logic event calculus. The tool takes a reasoning prob-
lem as input and produces solutions to the problem as out-
put. It supports such reasoning types as deduction, tempo-

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

ral projection, abduction, planning, model checking, model
finding, and counterexample finding.

Like Shanahan and Witkowski’s system, our tool sup-
ports:

• Thecommonsense law of inertia, which states that things
do not change unless directly affected by events. For ex-
ample, moving a glass in one room does not mysteriously
cause the location of a glass in another room to change.

• Conditional effects of events. For example, the results of
turning on a television set depend on whether it is plugged
in.

In addition, our tool supports the following features of the
event calculus not supported by Shanahan and Witkowski’s
system:

• Release from the commonsense law of inertia. For exam-
ple, if a person is holding a glass, then the location of the
glass is released from the commonsense law of inertia so
that the location of the glass is permitted to vary.

• Event ramificationsor indirect effects of events. The tool
supportsstate constraints. For example, a glass moves
along with the person holding it. The tool supportscausal
constraints, which deal with the instantaneous propaga-
tion of interacting indirect effects, as in idealized electri-
cal circuits.

• Events with nondeterministic effects. For example, flip-
ping a coin results in the coin landing either heads or tails.

• Gradual changesuch as the changing height of a falling
object or volume of a balloon in the process of inflation.

• Triggered eventsor events that are triggered under certain
conditions. For example, if water is flowing from a faucet
into a sink, then once the water reaches a certain level the
water will overflow.

• Concurrent events with cumulative or canceling effects.
For example, if a shopping cart is simultaneously pulled
and pushed, then it will spin around.

The performance of our tool is comparable to that of the
causal calculator. An advantage of our tool is the ease of use
of the event calculus, which is a straightforward extension
of first-order logic.

! logical negation (NOT,¬)
& conjunction (AND,∧)
| disjunction (OR,∨)
-> implication (→)
<-> bi-implication (↔)
[] universal quantification (∀)
{ } existential quantification (∃)

Table 1: Symbols used in formulas

A Simple Example

Suppose we wish to represent the knowledge that waking up
causes a person to be awake, and then use this to deduce that
if James is asleep and wakes up, then James will be awake.
We create the following problem description:

sort actor

fluent Awake(actor)

event WakeUp(actor)

[actor,time] Initiates(WakeUp(actor),Awake(actor),time).

actor James

!HoldsAt(Awake(James),0).

Happens(WakeUp(James),0).

range time 0 1

We represent the knowledge about waking up: We define a
sortactor to represent a person or animal. We define a fluent
Awakeand an eventWakeUp. We add anInitiatesaxiom that
states that if an actor wakes up, then the actor will be awake.
The tool uses a formula syntax similar to that of the Bliksem
resolution theorem prover (de Nivelle 1999). Table 1 shows
the symbols used in formulas. Then we represent a narrative
about James: We define a constantJameswhose sort isac-
tor. We state that James is not awake at time step 0 and that
he wakes up at time step 0. We state that reasoning should
be limited to time points 0 through 1.

When we run the tool on this problem description, it pro-
duces:

5 variables and 9 clauses

1 model

model 1:

0

Happens(WakeUp(James), 0).

1

+Awake(James).

encoding 0.0s, solution 0.0s

The tool finds one solution or model in which James is
awake at time step 1. For each model the tool shows the
fluents that are true at time point 0 (none in this case). There-
after, the tool indicates fluents that become true with a plus
sign and fluents that become false with a minus sign. The
tool shows event occurrences at the end of each time point.
The tool shows the number of variables and clauses of the
satisfiability encoding of the problem, and the time taken to
encode and solve the problem. When the tool does not find
any models, it provides a near miss solution along with un-
satisfied clauses to help with debugging.

The Classical Logic Event Calculus
The classical logic event calculus (Shanahan 1999a) is a re-
formulation in many-sorted first-order logic of the original
event calculus (Kowalski & Sergot 1986). Following Shana-
han and Witkowski (2002), we restrict the event calculus to
finite sets of variables, constants, function symbols, predi-
cate symbols, and sorts. A finite set of time points is associ-
ated with thetimesort.

The predicate symbols of the event calculus are as fol-
lows:

1. Happens(event, time): eventoccurs attime.

2. HoldsAt(fluent, time): fluentis true attime.

3. ReleasedAt(fluent, time): fluentis released from the com-
monsense law of inertia attime.

4. Initiates(event, fluent, time): if eventoccurs attime, then
fluentbecomes true attime+1 and is no longer released
from the commonsense law of inertia attime+1.

5. Terminates(event, fluent, time): if eventoccurs attime,
thenfluentbecomes false attime+1 and is no longer re-
leased from the commonsense law of inertia attime+1.

6. Releases(event, fluent, time): if eventoccurs attime, then
fluentbecomes released from the commonsense law of in-
ertia attime+1.

7. Trajectory(fluent1, time, fluent2, offset): if fluent1is initi-
ated by an event that occurs attime, andoffsetis greater
than zero, thenfluent2is true attime+offset.

A paper by Miller and Shanahan (2002) presents an ax-
iomatization of the event calculus as well as a number of
alternative axiomatizations that subtract or add various fea-
tures. Our tool supports a formulation that combines axioms
from the paper’s Section 3.2 (for a version of the event cal-
culus in which initiating and terminating a fluent at the same
time produces inconsistency), Section 3.5 (gradual change),
and Section 3.7 (release from the commonsense law of iner-
tia).

Satisfiability Encoding Method
We now explain the method used by our tool to encode rea-
soning problems as satisfiability problems. We will be form-
ing a conjunction of problem formulas.

First, we apply syntactic transformations to any in-
put formulas containing the predicate symbolsInitiates,
Terminates, Releases, or Trajectory. These transfor-
mations serve to eliminate atoms involving these predi-
cates which if retained would result in extremely large
satisfiability problems. For example, the atomIniti-
ates(event,fluent,time)would give rise tonumber-of-event-
ground-terms× number-of-fluent-ground-terms× number-
of-time-pointsground atoms. We add the transformed for-
mulas to the conjunction of problem formulas. In the above
simple example, we transform:
[actor,time] Initiates(WakeUp(actor),Awake(actor),time).

into:
[actor,time]

Happens(WakeUp(actor),time) ->

HoldsAt(Awake(actor),time+1) &

!ReleasedAt(Awake(actor),time+1).

Second, we add to the conjunction of problem formulas
any input formulas not transformed above. In our simple
example, we add:

!HoldsAt(Awake(James),0).

Happens(WakeUp(James),0).

Third, we complete theHappenspredicate in the conjunc-
tion of problem formulas, using standard techniques (Clark
1978, pp. 303–305). This rules out extraneous events (Davis
1990, p. 208) or event occurrences neither explicitly as-
serted nor triggered by conditions.

Fourth, in order to enforce the commonsense law of in-
ertia, we generate explanation closure frame axioms (Haas
1987) fromInitiates, Terminates, andReleasesaxioms and
add them to the conjunction of problem formulas. Expla-
nation closure frame axioms specify for each fluent all the
events that can cause the fluent’s truth value to change.
Frame axioms are not generated for fluents declared asnon-
inertial or always released from the commonsense law of
inertia. We generate frame axioms using a technique similar
to that described by Reiter (2001, pp. 28–32). He described
the technique for the situation calculus; we have adapted it
to the event calculus. We have also added a disjunct that en-
ables fluents to be released from the commonsense law of
inertia. In our simple example, we add the following frame
axioms:

[actor,time]

HoldsAt(Awake(actor),time+1) ->

HoldsAt(Awake(actor),time)|

ReleasedAt(Awake(actor),time+1)|

Happens(WakeUp(actor),time).

[actor,time]

!HoldsAt(Awake(actor),time+1) ->

!HoldsAt(Awake(actor),time)|

ReleasedAt(Awake(actor),time+1).

The first axiom states that if an actor is awake attime+1,
then either (1) the actor was awake attime, (2) the fluent
Awakeis released from the commonsense law of inertia at
time+1, or (3) the actor woke up attime. The second axiom
states that if an actor is not awake attime+1, then either the
actor was not awake attime or Awakeis released from the
commonsense law of inertia attime+1. The second axiom
does not contain aHappensatom because noTerminatesax-
ioms were specified for theAwakefluent in the problem de-
scription. In addition, we add frame axioms forReleasedAt:

[actor,time]

ReleasedAt(Awake(actor),time+1) ->

ReleasedAt(Awake(actor),time).

[actor,time]

!ReleasedAt(Awake(actor),time+1) ->

!ReleasedAt(Awake(actor),time)|

Happens(WakeUp(actor),time).

We also add the initial conditions forReleasedAt:

[actor] !ReleasedAt(Awake(actor),0).

Fifth, we transform the conjunction of problem formulas
into a propositional calculus formula by instantiating quan-
tifiers, simplifying, and converting to short conjunctive nor-
mal form by renaming subformulas (Plaisted & Greenbaum
1986). In our simple example, we end up with the following
nine clauses:

HoldsAt(Awake(James),1)|!Happens(WakeUp(James),0).

!Happens(WakeUp(James),0)|!ReleasedAt(Awake(James),1).

!HoldsAt(Awake(James),0).

Happens(WakeUp(James),0).

Happens(WakeUp(James),0)|ReleasedAt(Awake(James),1)|

HoldsAt(Awake(James),0)|!HoldsAt(Awake(James),1).

HoldsAt(Awake(James),1)|ReleasedAt(Awake(James),1)|

!HoldsAt(Awake(James),0).

ReleasedAt(Awake(James),0)|!ReleasedAt(Awake(James),1).

Happens(WakeUp(James),0)|ReleasedAt(Awake(James),1)|

!ReleasedAt(Awake(James),0).

!ReleasedAt(Awake(James),0).

The above clauses are, in order, the transformedInitiatesax-
iom, the input formulas that were not transformed, the frame
axioms, and theReleasedAtinitial condition.

Finally, we map ground atoms to new variables of the sat-
isfiability problem:
Happens(WakeUp(James),0) → 1

HoldsAt(Awake(James),1) → 2

ReleasedAt(Awake(James),1) → 3

HoldsAt(Awake(James),0) → 4

ReleasedAt(Awake(James),0) → 5

The encoding method is implemented in C and consists of
4,144 lines of code. The method is described in more detail
elsewhere (Mueller 2004b).

The encoding method is used by the tool as follows: We
format the encoded problem in the standard DIMACS for-
mat for satisfiability problems:
p cnf 5 9

2 -1 0

-1 -3 0

-4 0

1 0

1 3 4 -2 0

2 3 -4 0

5 -3 0

1 3 -5 0

-5 0

We pass the problem to an off-the-shelf satisfiability solver.
Our tool uses the Relsat (Bayardo Jr. & Schrag 1997) com-
plete satisfiability solver. In order to find near miss solutions
when there are no models, it uses Walksat (Selman, Kautz,
& Cohen 1993). For each solution produced by the solver:
Solution 1: 1 2

we convert the solution back into a list of ground atoms by
mapping true variables back to true ground atoms and false
variables back to false ground atoms. We map the above so-
lution back to:
Happens(WakeUp(James),0)

HoldsAt(Awake(James),1)

!ReleasedAt(Awake(James),1)

!HoldsAt(Awake(James),0)

!ReleasedAt(Awake(James),0)

Expressing Commonsense Phenomena
We now explain how various commonsense phenomena are
expressed in the event calculus using the tool. We express
conditional effects of events using axioms of the form:

condition→ Initiates(event, fluent, time)
condition→ Terminates(event, fluent, time)

where a condition is a conjunction of inequalities and atoms
of the formHoldsAt(β, time) or ¬HoldsAt(β, time). For ex-
ample, we may specify that if a television set is turned on,
then it will go on only if it is plugged in:
[actor,switch,tv,time]

TVOf(switch)=tv & HoldsAt(PluggedIn(tv),time) ->

Initiates(TurnOn(actor,switch),TVOn(tv),time).

One way of expressing event ramifications is withstate
constraints, which are of the form:

condition1↔ condition2
condition1→ condition2
For example, we may specify that a switch isOff whenever
it is notOn:
noninertial Off

[switch,time] HoldsAt(Off(switch),time) <->

!HoldsAt(On(switch),time).

In this case,Off is always released from the commonsense
law of inertia and always depends onOn.

We may specify that fluents are only sometimes released
from the commonsense law of inertia using axioms of the
form:

condition→ Releases(event, fluent, time)
For example, we may specify that picking up an object re-
leases its location:
[actor,physobj,location,time]

Releases(PickUp(actor,physobj),At(physobj,location),time).

Then we may use a state constraint to express that when an
actor is holding an object, the location of the object depends
on the location of the actor:
[actor,location,physobj,time]

HoldsAt(Holding(actor,physobj),time) &

HoldsAt(At(actor,location),time) ->

HoldsAt(At(physobj,location),time).

Finally, when an actor sets down an object, the location of
the object will no longer be released from the commonsense
law of inertia:
[actor,physobj,location,time]

HoldsAt(At(actor,location),time) ->

Initiates(SetDown(actor,physobj),At(physobj,location),time).

We may also express event ramifications withcausal con-
straintsby adding four new predicates and four new axioms
to the formulation of the event calculus, as described by
Shanahan (1999b).

One method for expressing events with nondeterministic
effects uses adetermining fluent, whose value determines
the result of an event. We may specify that when a wheel is
spun, it takes on one of several values at random:
noninertial WheelValueDeterminingFluent

[wheel,value,time]

HoldsAt(WheelValueDeterminingFluent(wheel,value),time) ->

Initiates(Spin(wheel),WheelValue(wheel,value),time).

range value 7 10

Another method for expressing events with nondetermin-
istic effects usesdisjunctive event axioms, which are of the
form:

Happens(event, time)→
Happens(event1, time) ∨ . . . ∨ Happens(eventn, time)

For example, we might know that moving involves either
driving or running. If an actor runs, the actor gets tired. But
if we are told simply that an actor moved, whether the actor
will be tired is nondeterministic. We express this as follows:

[actor,time]

Happens(Move(actor),time) ->

Happens(Run(actor),time)|Happens(Drive(actor),time).

xor Run, Drive

[actor,time] Initiates(Run(actor),Tired(actor),time).

We express gradual change with axioms of the form:

condition→ Trajectory(fluent1, time, fluent2,offset)
For example, we might specify thatn time points after an
object starts falling, its height isn2 less than it was when it
started falling:

[object,time]

Initiates(StartFalling(object),Falling(object),time).

[object,height,time]

Releases(StartFalling(object),Height(object,height),

time).

[object,height1,height2,offset,time]

HoldsAt(Height(object,height1),time) &

height2=height1-offset*offset ->

Trajectory(Falling(object),time,

Height(object,height2),offset).

[object,height1,height2,time]

HoldsAt(Height(object,height1),time) &

HoldsAt(Height(object,height2),time) ->

height1=height2.

We express events that are triggered under certain condi-
tions using axioms of the form:

condition→ Happens(event, time)
For example, we may extend the above example with a col-
lision event that is triggered when the falling object hits the
ground. The collision event stops the object from falling and
the height of the object will no longer be released from the
commonsense law of inertia:

[object,time]

HoldsAt(Falling(object),time) &

HoldsAt(Height(object,0),time) ->

Happens(HitsGround(object),time).

[object,time]

Terminates(HitsGround(object),Falling(object),time).

[object,height,time]

HoldsAt(Height(object,height),time) ->

Initiates(HitsGround(object),Height(object,height),time).

Given the above example and the narrative:

!HoldsAt(Falling(Leaf),0).

HoldsAt(Height(Leaf,4),0).

Happens(StartFalling(Leaf),0).

the tool produces:

0

Height(Leaf, 4).

Happens(StartFalling(Leaf), 0).

1

Problem Vars Clauses
BUSRIDE 30 74
CHESSBOARD 27 52
COINTOSS 24 65
COMMUTER — —
DEADORALIVE 36 76
HAPPY 24 46
K ITCHENSINK 102 593
RUSSIANTURKEY 35 87
STOLENCAR 10 20
STUFFYROOM 27 57
SUPERMARKET 104 752
THIELSCHERCIRCUIT 68 142
WALKING TURKEY — —
YALE 28 64

Table 2: Results on event calculus benchmark problems

-Height(Leaf, 4).

+Falling(Leaf).

+Height(Leaf, 3).

2

-Height(Leaf, 3).

+Height(Leaf, 0).

Happens(HitsGround(Leaf), 2).

3

-Falling(Leaf).

We express concurrent events with cumulative or cancel-
ing effects using axioms of the form:

incident→ Initiates(event, fluent, time)
incident→ Terminates(event, fluent, time)
where an incident is a conjunction of atoms of the form
Happens(α, time) or ¬Happens(α, time). For example, we
may specify that the result of approval by itself is happiness,
while the result of simultaneous approval and disapproval is
confusion and not happiness:
[actor1,actor2,time]

!Happens(DisapproveOf(actor1,actor2),time) ->

Initiates(ApproveOf(actor1,actor2),Happy(actor2),time).

[actor1,actor2,time]

Happens(DisapproveOf(actor1,actor2),time) ->

Initiates(ApproveOf(actor1,actor2),Confused(actor2),time).

Evaluation on Event Calculus Problems
As shown in Table 2, our tool solves 12 of the 14 benchmark
commonsense reasoning problems that have been described
for the event calculus by Shanahan (1997; 1999a). All of the
problems are solved in less than one second. COMMUTER
involves compound events and WALKING TURKEY involves
effect constraints; these features are not supported by our
tool.

Causal Calculator Performance Comparison
We now compare the performance of our tool and the causal
calculator (CCALC) in an important benchmark domain, the
zoo world proposed by Erik Sandewall and formalized in
the language of CCALC (Akmanet al. 2004). We trans-
lated the CCALC formalization of the zoo world into the

Problem Vars Clauses Encode Solve
ZOOTEST1 3,239 23,819 23.35 1.18

c 2,693 31,881 14.83 12.24
ZOOTEST2 982 5,671 1.86 0.14

c 1,116 8,870 3.67 0.17
ZOOTEST3 1,805 12,604 8.74 0.53

c 1,726 17,895 15.08 0.61
ZOOTEST4.1 3,239 23,816 23.22 1.19

c 2,770 32,193 14.98 4.14
ZOOTEST4.2 3,980 29,572 34.24 1.39

c 3,292 39,354 14.90 11.54
ZOOTEST5.1 1,670 12,906 21.92 1.50

c 1,483 18,120 44.69 5.04
ZOOTEST5.2 1,670 12,908 22.11 0.66

c 1,483 18,122 44.69 5.06
ZOOTEST6 1,088 6,996 4.02 0.30

c 1,127 10,428 14.85 1.10

Table 3: Comparison with CCALC (c) on zoo problems
(wall times in seconds)

event calculus, and used our tool to solve the same set of
zoo world test problems solved by CCALC. The CCALC
formalization consists of 62 causal laws and our event cal-
culus translation consists of 78 axioms. As shown in Table 3,
the performance of our tool on the test problems is compa-
rable to that of CCALC. The CCALC runs were performed
with CCALC 2.0 beta 8.3, SWI-Prolog 5.0.10, and Relsat
2.0. The CCALC encoding time is the sum of the ground-
ing and completion times. Encoding and solution times re-
ported in this paper are elapsed wall-clock time in seconds
on a machine with a 1.8 GHz Intel Pentium 4 processor and
512 megabytes of RAM.

Natural Language Applications
In addition to solving benchmark problems, our tool is use-
ful for real-world applications. It provides an effective
mechanism for carrying out inferences and filling in missing
information in natural language understanding applications
(Mueller 2003). The tool has been used to build two appli-
cations that expand a semantic parse of a narrative text into
a more detailed model of the narrative. Questions about the
narrative are then answered by consulting the model.

A commonsense knowledge base has been developed for
use with our tool, which is used by the two applications. The
knowledge base consists of 445 axioms.

The first application (Mueller 2004a) used the tool to
build models of terrorist incidents given arbitrary templates
of the sort produced by MUC3 and MUC4 information ex-
traction systems. The application produced models for 652
terrorism templates. It generated questions and answers
such as the following:

Q: Were the villagers angry at the unidentified persons
after the unidentified persons threatened the villagers?
A: Yes.
Q: Was the grocery store intact after the fire damaged
the grocery store?
A: No.

Problem Vars Clauses Encode Solve
ARSON 1,010 4,765 1.03 0.09
K IDNAPPING 5,553 27,070 19.86 0.91
SHOOTINGATTACK 1,933 10,138 3.28 0.28
BOMBING 8,258 40,277 44.79 1.90

Table 4: Terrorist incident understanding statistics (wall
times in seconds)

Q: Were the unidentified persons present when the fire
damaged the grocery store?
A: Yes.

Table 4 provides statistics on processing typical reasoning
problems for each type of terrorist incident.

The second application (Mueller 2004c) used information
extraction techniques to extract episodes involving dining in
a restaurant from narrative texts, used the tool to build mod-
els of the dining episodes, and generated questions and an-
swers about the episodes. The application produced models
for 61 web texts and 52 American literature excerpts. A
typical reasoning problem had 5,160 variables and 43,205
clauses, was encoded in 25.40 seconds, and was solved in
1.32 seconds.

Conclusions
We have presented a tool for automated commonsense rea-
soning in the classical logic event calculus. The tool works
by converting a first-order logic problem into propositional
logic, invoking an off-the-shelf satisfiability solver on the
propositional logic problem, and then decoding the solutions
produced by the solver. The tool successfully solves 12 of
14 benchmark commonsense reasoning problems described
for the event calculus, has performance comparable to the
causal calculator in the zoo world domain, and has been used
to perform inferencing in two natural language understand-
ing applications.

References
Akman, V.; Erdogan, S. T.; Lee, J.; Lifschitz, V.; and
Turner, H. 2004. Representing the zoo world and the traf-
fic world in the language of the causal calculator.Artificial
Intelligence153:105–140.
Bayardo Jr., R. J., and Schrag, R. C. 1997. Using CSP
look-back techniques to solve real world SAT instances. In
Proceedings of AAAI-1997, 203–208. Menlo Park, CA:
AAAI Press.
Clark, K. L. 1978. Negation as failure. In Gallaire, H.,
and Minker, J., eds.,Logic and Data Bases. New York:
Plenum. 293–322.
Davis, E. 1990.Representations of Commonsense Knowl-
edge. San Mateo, CA: Morgan Kaufmann.
de Nivelle, H. 1999. Bliksem 1.10 user manual.
Doherty, P.; Gustafsson, J.; Karlsson, L.; and Kvarnström,
J. 1998. TAL: Temporal Action Logics language specifi-
cation and tutorial.Linköping Electronic Articles in Com-
puter and Information Science3(015).

Giunchiglia, E.; Lee, J.; Lifschitz, V.; McCain, N.; and
Turner, H. 2004. Nonmonotonic causal theories.Artificial
Intelligence153:49–104.
Haas, A. R. 1987. The case for domain-specific frame ax-
ioms. In Brown, F. M., ed.,The Frame Problem in Artificial
Intelligence, 343–348. Los Altos, CA: Morgan Kaufmann.
Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In
Proceedings of AAAI-1996, 1194–1201. Menlo Park, CA:
AAAI Press.
Kowalski, R. A., and Sergot, M. J. 1986. A logic-based
calculus of events.New Generation Computing4(1):67–
95.
Kvarnstr̈om, J. 2001. VITAL: Visualization and imple-
mentation of temporal action logic.
McCain, N., and Turner, H. 1997. Causal theories of ac-
tion and change. InProceedings of AAAI-1997, 460–465.
Menlo Park, CA: AAAI Press.
Miller, R., and Shanahan, M. 2002. Some alternative for-
mulations of the event calculus. InLecture Notes in Com-
puter Science, volume 2408. Heidelberg: Springer-Verlag.
452–490.
Mueller, E. T. 2003. Story understanding through multi-
representation model construction. In Hirst, G., and Niren-
burg, S., eds.,Text Meaning: Proceedings of the HLT-
NAACL 2003 Workshop, 46–53. East Stroudsburg, PA: As-
sociation for Computational Linguistics.
Mueller, E. T. 2004a. Combining information extrac-
tion and commonsense reasoning for text understanding.
Manuscript submitted for publication.
Mueller, E. T. 2004b. Event calculus reasoning through
satisfiability. Manuscript submitted for publication.
Mueller, E. T. 2004c. Modelling space and time in narra-
tives about restaurants. Manuscript submitted for publica-
tion.
Plaisted, D. A., and Greenbaum, S. 1986. A structure-
preserving clause form translation.Journal of Symbolic
Computation2:293–304.
Reiter, R. 2001.Knowledge in Action. Cambridge, MA:
MIT Press.
Selman, B.; Kautz, H.; and Cohen, B. 1993. Local search
strategies for satisfiability testing. InDIMACS Series in
Discrete Mathematics and Theoretical Computer Science,
volume 26. Boston, MA: American Mathematical Society.
Shanahan, M., and Witkowski, M. 2002. Event calculus
planning through satisfiability. Manuscript submitted for
publication.
Shanahan, M. 1997.Solving the Frame Problem. Cam-
bridge, MA: MIT Press.
Shanahan, M. 1999a. The event calculus explained. InLec-
ture Notes in Computer Science, volume 1600. Heidelberg:
Springer-Verlag. 409–430.
Shanahan, M. 1999b. The ramification problem in the
event calculus. InProceedings of IJCAI-1999, 140–146.
San Mateo, CA: Morgan Kaufmann.

