
Case-Based Approaches for Diagnosing Multiple Disorders

Martin Atzmueller
Joachim Baumeister

Frank Puppe
Department of Computer Science,
University of Wuerzburg, Germany

{atzmueller, baumeister, puppe}@informatik.uni-wuerzburg.de

Wenqi Shi
John A. Barnden

School of Computer Science,
University of Birmingham,

United Kingdom
{w.shi, j.a.barnden}@cs.bham.ac.uk

Abstract

Multiple disorders are a daily problem in medical di-
agnosis and treatment. However, case-based diagnosis
handling multiple disorders is still a challenging task.
Although case-based reasoning has been applied suc-
cessfully in medical domains, the handling of multiple
disorders is often not sufficient. In this paper, we in-
vestigate three improved approaches for handling mul-
tiple disorders in case-based diagnosis. The methods
are evaluated with a medical case base taken from a real
world application. The context of our work is to supple-
ment a medical documentation and consultation system
by CBR techniques for experience management.

Introduction
The medical domain, and especially medical decision mak-
ing, has attracted a lot of attention in AI research. Mul-
tiple disorders are a frequently occurring problem in daily
medical diagnosis and treatment. Methods, which use com-
plex models, e.g., causal or Bayesian networks, for diag-
nosing multiple disorders, e.g., the Heart Disease Program
(Long, Naimi, & Criscitiello 1994), or the HEPAR

∏
system

(Onisko, Druzdzel, & Wasyluk 2000) mainly rely on manual
knowledge acquisition by experts. In contrast to these, the
case-based reasoning methodology uses previous experience
for current problem solving. So, CBR reduces the costs of
knowledge acquisition and maintenance, and therefore has
become quite popular in experience rich domains, e.g., in
the medical domain.

However, handling multiple disorders is a major problem:
In our domain of sonography the examination considers sev-
eral partially disjunctive subdomains, e.g., liver or kidney,
which results in multiple disorders, i.e., most cases contain
multiple diagnoses. Our context is a medical documentation
and consultation system which we extend with a component
for experience management. Thus, we want to retrieve ex-
periences such as explanations for a query case based on
the presented similarity to former cases and additional infor-
mation contained in these. For example, there is additional
information about therapy, complications, prognosis or the
treating physician as contact person for special questions.
We use case-based reasoning to obtain this information.
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Due to the combinatorial rules the chance of reusing a
case with even 3 independent diagnoses from say 100 al-
ternatives is roughly just one to one million. However, that
many cases are rarely available. Thus, considering the fact,
that our medical case base contained about 7 disorders per
case on average, the naive case-based reasoning approach
performed very poor. So, using this medical case base taken
from a real world application and applying the naive case-
based method we were only able to solve about 3% of the
cases.

In this paper, we present three approaches, that signifi-
cantly improve the handling of multiple disorders in a case-
based diagnosis task. In the following sections we separately
describe these approaches, that are evaluated on a medical
case base in the subsequent section. We conclude the pa-
per with a discussion of the presented work and pointers to
promising work in the future.

Case-Based Diagnosis with Multiple Disorders
Firstly, we define necessary notions concerning our knowl-
edge representation schema as follows:

Let ΩD be the set of all diagnoses andΩA the set of all
attributes. To each attributea ∈ ΩA a rangedom(a) of val-
ues is assigned. Further we assumeΩF to be the (universal)
set of findings(a = v), wherea ∈ ΩA is an attribute and
v ∈ dom(a) is an assignable value. LetCB be the case base
containing all available cases that have been solved previ-
ously. A casec ∈ CB is defined as a tuple

c = (Fc,Dc, Ic) , (1)

whereFc ⊆ ΩF is the set of findings observed in the casec.
In CBR-problems these findings are commonly calledprob-
lem description. The setDc ⊆ ΩD is the set of diagnoses
describing thesolutionfor this case.Ic contains additional
information like therapy advices or prognostic hints.

To assess the similarity between a query casec and an-
other casec′, we apply a similarity measure, which is an
adaptation of theHamming distance, with attribute weights
and partial similarities between attribute values, if available.
The naive case-based method, also referred to in the follow-
ing asstandard CBR, uses this plain similarity measure to
retrieve a most similar case to the query case.

In the following, we present three approaches for case-
based diagnosis handling multiple disorders.



The Set-Covering Approach
In this section we will briefly describe the use of set-
covering models for the case-based diagnosis task.

Set-covering models (Reggia, Nau, & Wang 1983) are
a prominent approach for handling multiple disorders in
diagnostic reasoning. Aset-covering modelcontains set-
covering relations, that describe relations like:A diagnosis
D predicts that the findingF is observed infreqF,D percent
of all cases.”We denote a set-covering relationr by

r = D → F [freqD,F ] ,

whereD ∈ ΩD andF ∈ ΩF . As described in (Baumeis-
ter, Seipel, & Puppe 2003) set-covering models can be aug-
mented for handling case-based knowledge like similarities
and weights. In (Baumeister, Atzmueller, & Puppe 2002)
inductive methods are presented for learning set-covering
models, similarities, and weights. The set-covering mod-
els are constructed from diagnostic profiles which contain
typical findings for a diagnosis. We additionally apply de-
pendency analysis utilizing theχ2-test for independenceto
isolate the findings which are dependent on the diagnosis,
as described in (Atzmueller, Baumeister, & Puppe 2003).
This results in more compact set-covering models with an
improved quality, since the set of findings of a set-covering
model is reduced to the set of typical findings, which are
dependent on the diagnosis.

Given a query case with a new problem description, set-
covering models are used to generate a hypothesisH ⊆ ΩD,
i.e., a set of diagnoses representing a (reasonable) explana-
tion for the observed problem description. For case-based
retrieval, we compute thek best hypotheses for a given prob-
lem description. Systematic approaches for the generation
of set-covering hypotheses were introduced, e.g., in (Peng
& Reggia 1990). Based on these hypotheses we generate a
set of candidate cases: For each hypothesisH we combine
casesc ∈ CB , so that their joined solution parts receive a
high coverage with the computed hypothesisH.

In the following, we discuss the concept of candidate
cases in more detail.

Definition 1 (Candidate Case).A candidate case

ca = (Fca,Dca, Cca)

consists of a set of subcasesCca ⊆ CB of a given case
baseCB and a set of diagnosesDca ⊆ ΩD. The set
of findingsFca ⊆ ΩF of the candidate case is created
by joining the findings of the subcases as described below.
Dca is defined as the union of the subcases’ diagnoses, i.e.,
Dca =

⋃
c∈Cca

Dc.

To create candidate cases we have to combine the problem
descriptions included in the subcases of the candidate case.
However, conflicts can arise if two cases contain different
values for the same attribute. For the creation of candidate
cases we apply the following procedure:

1. Joining sets of the solutions contained in the subcases.

2. Likewise, joining their problem descriptions:
Fca =

⋃
c∈Cca

Fc

3. Conflict resolution: IfFca contains more than one value
for an attribute:

(a) We use background knowledge if available (see below).
(b) Otherwise we try to select an attribute value based on

the finding in the query case:
i. We choose the value contained in the query case if

included in one subcase.
ii. Alternatively, we select the value which is most simi-

lar to the value included in the query case.
iii. Otherwise, if the value is not included in the problem

description of the query case, then we randomly pick
a value from the set of the attribute’s values of the
subcases.

It is obvious, that we want to obtain a candidate case ex-
plaining the findings in the query case. Thus, if no additional
knowledge is available in the conflict resolution step, we
base the decision of choosing an attribute value on the value
which is contained in the query case. If the query case does
not contain the conflicting attribute, then we do not know
which value is relevant for the candidate case. Therefore we
pick one randomly.

In addition, the conflict resolution step above can be im-
proved using additional knowledge, i.e.,abnormalities. Ab-
normality knowledge specifies which findings represent a
normal or an abnormal state of their corresponding attribute
(e.g., pain=none is normal, whereaspain=high is abnor-
mal). If abnormalities are defined, then we take the value
with the highest abnormality. This heuristic is motivated by
the following example: If a patient has two (independent)
diagnoses, then it is reasonable that the more severe finding
will be observed.

The generation of candidate cases can be restricted by the
number of included cases.

Definition 2 (Restricted Candidate Case).We define are-
stricted candidate caseca|n| of sizen as follows

ca|n| = (Fca,Dca, Cca) ,

whereFca ⊂ ΩF , Dca ⊆ ΩD, andCca ⊆ CB . A restricted
candidate caseca|n| of sizen contains not more thann sub-
cases, i.e.,|Cca| = n.

By generating restricted candidate cases with a fixedn,
we can limit the number of joined cases, i.e., the number
of subcases included in a candidate case. The quality of a
generated candidate caseca is determined by computing the
intersection coverage between the joined diagnosesDca of
the candidate case and the diagnoses of the hypothesisH.

Definition 3 (Intersection Coverage).For a candidate case
the intersection coveragereflects the degree of coverage be-
tween its set of diagnosesDca ⊆ ΩD and a given hypothesis
H ⊆ ΩD. The intersection coverageic is defined by

ic(Dca,H) =
1
2
·
(
|Dca ∩H|

|H|
+
|Dca ∩H|
|Dca|

)
,

whereDca is the set of diagnoses contained in the candidate
case, andH is the set of diagnoses representing a hypothe-
sis.



A candidate caseca = (Fca,Dca, Cca) is optimal with
respect to a given hypothesisH, iff ic(Dca,H) = 1. It is
easy to see, that if we rank all candidate cases according to
the intersection coverage, then the firstm candidate cases
represent the best coverage of the given hypothesis. There-
fore, we compare the new case with the firstm candidate
cases for retrieving a suitable solution in the case-based di-
agnosis task. We summarize the presented approach by the
following outline:

1. We use the set-covering models to compute thek best hy-
potheses. If required, set-covering models can be induc-
tively learned.

2. Given thek hypotheses, we generate a set ofcandidate
cases. The generation process is restricted by a threshold
valuen limiting the maximum number of joined cases.

3. We rank the generated candidate cases given their corre-
sponding hypotheses using the intersection coverage (ic)
metric.

4. Them best candidate cases are returned, i.e., the cases
with a maximum intersection coverage for a given hy-
pothesis.

5. The best matching candidate cases are used for case com-
parison.

Related Work In the past, several approaches for the
combination of case-based reasoning and abductive or set-
covering models have been presented. The systems CASEY
(Koton 1988) and ADAPtER (Portinale & Torasso 1995) are
prominent examples. These systems apply abductive knowl-
edge for the adaptation of old cases, and give a verbose ex-
planation for the adaptation. In our work, we use the reverse
approach, when using abductive reasoning for guiding the
search of how to combine cases.

The Compositional Case Adaptation Approach
Compositional case adaptation was originally developed for
configuration tasks. First it decomposes problems into sub-
problems. Then, it retrieves those sub-problems in the case
base and combines different parts of the solution of similar
cases. This results in the solution of a new problem (Wilke
& Bergmann 1998). The main idea of compositional case
adaptation is to retrieve a group of the most similar cases
instead of only reusing the most similar case. Then, a com-
positional strategy is applied to adapt the solutions of the
group of most similar cases to get the final solution.

The application of the compositional case adaptation
method is motivated by the multiple disorder situation. In a
multiple disorder case base a high variance of disorder com-
binations is possible, which cause a high variance of prob-
lem descriptions. Then, the retrieved case which is most
similar to the query case might only cover parts of the so-
lutions of the query case. Therefore, the combination of
multiple case solutions should generate more desirable re-
sults. However, we do not perform decomposition before
composition like (Wilke & Bergmann 1998). In our situa-
tion, there are hundreds of observed findings available and

without help from an expert, they cannot explicitly be di-
vided automatically into different groups corresponding to
different diagnoses.

We assume that in the multiple disorder situation not all
the diagnoses in the solutions of thek most similar cases
will be suggested as the current diagnosis. Only the diag-
noses with a high occurrence among thek most similar cases
have a high probability to appear in the final solution of the
query case. The underlying meaning of this assumption is
that those findings in thek similar cases which are similar
to the query case will contribute to those desired diagnoses
with a high occurrence in the similar case solutions.

At the same time, we assume that the more similar the re-
trieved case is to the query case, the higher the probability
that the diagnoses in this retrieved case will appear in the
final solution. Thus, we add weights to the occurrences of
diagnoses in the set of retrieved cases. The weights are de-
termined according to the similarity between the retrieved
case the diagnoses occur in and the query case.
Definition 4 (Similarity-Weighted Frequency). The
similarity-weighted frequency of a diagnosisD is the
weighted frequency ofD within thek most similar cases.

FQC(D) =
k∑

i=1

Wiδ(Ci, D) ,

whereD ∈ ΩD is a diagnosis;Ci ∈ CB is the ith most
similar case to the query case.δ(Ci, D) is 1, if D occurs in
theith most similar caseCi, and 0 otherwise.Wi represents
the associated weight, where we used the squared relative
similarity betweenCi and the query case. Therefore, the
weight is proportional to the similarity.

After calculating the similarity-weighted frequency of the
diagnoses appearing in thek most similar cases, we generate
a candidate solution defined as follows:
Definition 5 (Candidate Solution). A candidate solution

CS = {D ∈ ΩD : FQC(D) ≥ ε} ,

is the set of diagnoses with a similarity-weighted frequency
above a dynamic thresholdε = α · maxD∈ΩD

FQC(D).
This threshold has a linear relationship with the frequency
value of the diagnosis occurring most frequently in thek
most similar cases. We used the default valueα = 0.55.

Thus, we only include a diagnosis of thek most similar
cases into the candidate solution, if the similarity-weighted
frequency of the diagnosis is greater or equal than the thresh-
old defined byε. The diagnoses that do not appear in thek
most similar cases are not considered. We summarize our
compositional adaptation approach as follows:

1. Retrieve thek most similar cases to the query case.

2. Compute the similarity-weighted frequency for each di-
agnosis appearing in thek most similar cases.

3. Create a candidate solution as the hypothesized solution
for the query case.

4. Generate a candidate case as introduced in Definition 1.
The subcases consist of thek most similar cases. The con-
tained diagnoses are then defined as the set of diagnoses,
that are included in the candidate solution.



Related Work Compositional case adaptation has been
investigated in the medical domain in recent years. In (Voro-
bieva, Gierl, & Schmidt 2002), when calculating the dose
for an endocrinopathic patient, the most similar cases with
the best therapy results are taken into account. The system
TeCoMed (Schmidt & Gierl 2001) splits the set of the most
similar cases into two sets according to whether a warning
was appropriate to predict an influenza wave. Then, the so-
lution is adapted according to a voting between these two
sets. Our approach computes a weighted frequency of each
diagnosis in the similar cases. Using this measure, we then
select these diagnoses, which are accounted for best by the
set ofk most similar cases.

The Partition Class Approach
The partition class approach takes advantage of the fact that
many domains can be divided into rather independent sub-
domains, e.g., in the medical domain partitions are repre-
senting the different organ systems. For this approach, the
expert providespartition classknowledge describing how to
divide the set of diagnoses and attributes into partially dis-
junctive subsets, i.e., partitions. These subsets correspond to
certain problem areas of the application domain. For exam-
ple, in the medical domain of sonography, we have subsets
corresponding to problem areas likeliver, pancreas, kidney,
stomach, andintestine.

The idea of using partition class knowledge is to split the
original case base into several case bases containing par-
tial, decomposed cases corresponding to different partition
classes. This decomposition is static, and therefore can be
precomputed at compile-time.

Definition 6 (Partition Class). A partition classpc is de-
fined as a tuple

pc = (Dpc,Fpc),
whereDpc ⊆ ΩD andFpc ⊆ ΩF . For a partition class
pc the setsDpc andFpc refer to the same problem area of
the application domain. All diagnoses are covered by the
different partition classespci, i.e.,ΩD =

⋃
iDpci

.

According to the given subsets of attributes and diagnoses
of each partition class we can split cases into subcases, i.e.,
partial cases, where a case is divided by forming sets of at-
tributes and diagnoses for each partition class. Since the
partition classes are only partially disjunctive we apply a
refinement step to the partial cases to prune the irrelevant
findings. This refinement step is motivated by the fact, that
findings which occur in many partition classes and which
are not accounted for by a diagnosis may be too general to
be meaningful in the partial case.

Let PCe denote the set of partition classes the elemente
is contained in, wheree can be a diagnosis or an attribute.
Then, we check for each attributea ∈ ΩA contained in the
partial case if there exists a diagnosisD ∈ ΩD of the partial
case such thatPCa ⊆ PCD. If the check fails, then we apply
theχ2-test for indecencefor the attribute and each diagnosis
of the partitioned case. If the attribute is not dependent on
any diagnosis, then we remove the attribute.

A partial case may even contain only a single diagnosis.
However, we have to make sure that the decomposed cases

are still meaningful. Firstly, they must contain a minimum
number of attributes to guarantee a certain support for the
diagnoses contained in the case. Secondly, cases should still
contain diagnostic information, i.e., they should contain at
least one diagnosis. If a generated subcase does not fulfill
these requirements, then it is not considered and removed.

By recombining partial cases to candidate cases as intro-
duced in Definition 1, we find possible solutions, i.e., most
similar cases for the query case. In summary, we first de-
compose the query case into several subcases. Then, we ap-
ply CBR for each query subcase in order to retrieve the most
similar partial cases, and finally recombine the retrieved par-
tial cases. We outline the process in the following:

1. Precomputed: Divide the original case base into several
’partition class’ case bases.

2. Decompose the query case into a set of partial cases ac-
cording to the given partition classes.

3. For each partial case, apply standard CBR using the re-
spective partitioned case base storing the set of most sim-
ilar cases for each partial case in the result sets.

4. Generate candidate cases by combining the result sets:
Construct a set of subcases, for which one case from each
result set is drawn. Create a candidate case using these
subcases.

5. Use the generated candidate cases for case comparison.

Related Work In the literature there exist several ap-
proaches based on case decomposition techniques. (Watson
& Perera 1998) presented a system, which retrieves decom-
posed cases from hierarchically structured cases, and adapts
multiple subcases into a solution. TheCADSYN(Maher
& Zhang 1991) system recombines sub-problems formed
of decomposed cases into a solution taking the contexts of
such partial cases into account. (Smyth, Keane, & Cunning-
ham 2001) presented case-based reasoning on hierarchical
case bases, which allows complex problems to be solved by
reusing multiple cases at various levels of abstraction.

These approaches mainly apply techniques from case-
based planning, i.e., utilizing hierarchical relations either in
the CBR retrieve or reuse step, or both. In contrast, our can-
didate case generation strategy using partition class knowl-
edge is a knowledge intensive approach, which uses the ex-
plicit partitioning information as background knowledge to
decompose cases.

Evaluation
For the evaluation we applied cases from the knowledge-
based documentation and consultation system for sonogra-
phy SONOCONSULT (Huettig et al. 2004). The quality of
the derived diagnoses is very good as checked by medical
experts in a medical evaluation (cf. (Huettiget al. 2004)).
Our evaluation case base consists of 744 cases. The case
base contains an overall number of 221 diagnoses and 556
attributes, with a meanMD = 6.71± 04.4 of diagnoses per
case and a meanMF = 48.93±17.9 of relevant findings per
case. To evaluate the three presented approaches, we used a
leave-one-out cross-validation method.



We adopted the intersection accuracy, proposed by
(Thompson & Mooney 1994), as a measure for multiple dis-
order problems. Intersection accuracy is derived by the two
standard measures:sensitivityandprecision.

Definition 7 (Intersection Accuracy). The intersection ac-
curacyIA(c, c′) is defined as

IA(c, c′) =
1
2
·
(
|Dc ∩ Dc′ |
|Dc|

+
|Dc ∩ Dc′ |
|Dc′ |

)
(2)

wherec and c′ are two cases,Dc ⊆ ΩD is the set of di-
agnoses of casec, andDc′ ⊆ ΩD is the set of diagnoses
contained in casec′ likewise.

Essentially, the intersection accuracy metric is equal to
the intersection coverage defined in Definition 3. However,
since the semantics are slightly different, we define intersec-
tion accuracy as a metric for comparing solutions of cases
while intersection coverage relates a solution of a case and a
hypothesis.

Experimental Results and Discussion Initially, we per-
formed an analysis to determine, how many cases could be
solved by a ”perfect” case-based reasoning method. We
compared each query case in the case base with the case
that solved the query case best, i.e. using the case with the
highest intersection accuracy of its diagnoses with the diag-
noses of the query case. It turned out, that in principle all
744 cases are solvable with a mean intersection accuracy of
about 90%. However, due to the multiple disorder charac-
teristic of our case base, intersection accuracy did not nec-
essarily correlate with similarity. This can be explained by
the special characteristic of our case base, which shows a
high count of diagnosis combinations per case and rare rep-
etitions of diagnosis combinations in the case base. The high
variance of diagnosis combinations on the other hand causes
a high variance of possible problem descriptions. Thus, it
is possible to assess a high intersection accuracy between
two cases with a low similarity, because the diagnoses which
are not common to both cases can distinguish the respective
problem descriptions quite significantly.

For the different approaches, we employ two rating mea-
sures to assess a case as solved, or not solvable. For the set-
covering and the partition class method, we employ a simi-
larity thresholdTCBR. We say that a compare casec′ solves
a query casec, iff sim(c, c′) ≥ TCBR, i.e., if the cases are
sufficiently similar. Cases below this threshold were with-
drawn and marked asnot solvable. The compositional case
adaptation approach generates a set of suggested diagnoses,
which are returned as the solution. These are packaged into a
candidate case, together with the set of cases the diagnoses
were derived from. LetCS denote the candidate solution,
i.e., hypothesized diagnoses, of thek most similar cases, and
Dk denote all diagnoses of thek most similar cases. We say
that a case is solved, if the maximum frequency of a diag-
nosisD ∈ CS exceeds a certain minimal support threshold,
and if

∑
D∈CS freq(D)/

∑
D∈Dk

freq(D) exceeds a cer-
tain threshold as well. We present the results of comparing
the three approaches in Table 1.

744 Cases from the SonoConsult Case Base
Approach rating solved mean

threshold(s) cases acc
Standard CBR 0.90 20 (3%) 0.66
Set-Covering 0.43 502 (67%) 0.70
Comp. Adaptation 3, 0.28 534 (72%) 0.70
Partition Class 0.30 624 (84%) 0.73

Table 1: Comparison of the approaches, using 744 cases

The results in the first line show, that the standard CBR
method is performing poor for cases with multiple disorders.
Standard CBR utilizing no additional background knowl-
edge can only solve 3% of the cases in the case base, which
is obviously insufficient. The set-covering approach per-
forms promising, since it returns 502 cases as solved, i.e.,
it can solve about 67% of the cases in the case base with a
mean accuracy of 70%. This means a significant improve-
ment compared to the standard CBR method performed on
cases with multiple disorders. The compositional adaptation
method solves 534, i.e., 72% of the cases in the case base,
with a mean accuracy of 70%. This demonstrates the rele-
vance of this method in the multiple disorder situation. The
compositional adaptation method is slightly better than the
set-covering approach. This is probably due to two issues:
The set-covering approach returns candidate cases in terms
of cases with all their solutions, and therefore no sophisti-
cated adaptation step is applied. Secondly, refining the set-
covering models based on quality measures would probably
increase their predictive accuracy.

The knowledge-intensive method using partition class
knowledge performs best, since it can solve about 84% of
the cases in the case base with a mean accuracy of 73%. In
summary, the partition class based strategy can deal with the
multiple disorder problem quite well.

However, one of the the main differences between the
three method needs always to be considered: The partition
class strategy uses special background knowledge, while the
other approaches do not require background knowledge, and
so can be applied in arbitrary situations, e.g., when no parti-
tioning knowledge is available.

Conclusion and Outlook
Our context was to supplement a medical documentation and
consultation system by CBR techniques to enable the ex-
tended retrieval of experiences. Here, naive CBR showed
to be not appropriate for handling multiple disorders. In this
paper, we presented three improved approaches for handling
multiple disorders in case-based reasoning. One approach
uses set-covering knowledge to create hypotheses and can-
didate cases. The second approach also reuses existing cases
to explain the query case. It applies a compositional adap-
tation method to generate a set of suggested diagnosis. The
third approach uses special background knowledge, i.e., par-
tition class knowledge, to decompose and recombine cases
and produced very promising results.

All three approaches improved the handling of multiple
disorders significantly, but among these, the partition class



method performs best. For the partition class approach, the
decomposition of cases can be precomputed in advance at
compile-time, which is more efficient concerning run-time
than the two other methods. The advantage of the set-
covering approach and the compositional case adaptation
approach is their simple applicability, since they do not re-
quire additional background knowledge.

In the future, we are interested in trying to apply refined
partition class knowledge and learn partition classes auto-
matically. Formal concept analysis for CBR, as described
in (Dı́az-Agudo, Gerv́as, & Gonźalez-Calero 2003) seems
a promising direction for this. Furthermore, concerning the
construction of set-covering models, fine-tuning the knowl-
edge elements seems very interesting as well. Looking at the
combine step of candidate cases more closely, techniques
that evaluate the quality of candidate cases may prove es-
sential to ensure a certain quality of the generated candi-
date cases. So, methods which can evaluate combinations of
cases, e.g., using Bayesian networks (Hennessy, Buchanan,
& Rosenberg 2002), are a promising direction. This also
holds for the compositional case adaptation methods to ver-
ify the generated candidate solutions more extensively.

An integration of methods, which do not need additional
background knowledge, i.e., the set-covering method and
the compositional case adaptation approach, with the par-
tition class strategy could be another worthwhile approach.
Cases could be decomposed using partitioning knowledge in
a first step. Then, the other methods could be applied in a
second step to produce solutions for the subproblems which
can then be recombined.
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