
Satisfying Varying Retrieval Requirements in Case-Based Intelligent
Directory Assistance

Vivek Balaraman
Sutanu Chakraborti

Artificial Intelligence Group
Tata Research Development and Design Centre, Pune, India - 411013

Email: vivekb,sutanuc@pune.tcs.co.in

Abstract
Intelligent directory assistance is the ability to retrieve
relevant subscriber records in the presence of mismatches
between the query and the subscriber record. The challenges
are to provide inexact retrieval over very large data volumes
within a reasonable timeframe as well as the ability to tailor
retrieval to differing query requirements. In this paper we
discuss a case-based approach to intelligent directory
assistance which focusses on a layered approach to
retrieval. The case-base is multiply indexed where each
level indexes the case-base at a level of dissimilarity. We
introduce the concepts of Levels of Lenience, Degree of
Lenience and Search templates and demonstrate how these
enable retrieval to be fast and yet tailored to query
requirements. A production quality system based on these
ideas has been implemented at a leading
telecommunications service provider and is giving excellent
performance.

Intelligent Directory Assistance
A directory assistance (henceforth DA) or subscriber
assistance system provides information on it’s subscribers.
People query these systems based on partial information
about the subscriber(s). Often, there is a mismatch between
the information provided by the caller and the information
in the subscriber repository. The mismatch may be due to
the query having incorrect information about the target
subscriber or being improperly understood by the call
operator. Common errors are: Misspellings, synonyms,
variations in ordinal forms, abbreviations and acronyms,
different punctuation, different levels of specification,
pronunciation and transcripting errors and numeric,
enumeration and date errors. We estimate that there are in
all twenty one different mismatches possible between a
query and a subscriber record.

Due to these factors, the query and the record being
searched may not correspond exactly. Unless the system
can handle such inaccuracies, the call operator has to do a
time consuming process of tweaking the query to locate the
right record leading to long call closure times and poor
customer service. Intelligent directory assistance systems
are systems that enable call operators or users in the case
of self-service systems to locate the most relevant records
from a repository in the presence of mismatches.

Developing intelligent directory assistance systems
throws up many engineering challenges: a) The system
must be capable of retrieving the most relevant records
from a very large volume within a limited time frame
(typically 5 to 10 seconds) in the presence of mismatches.
Since brute force inexact matching is computationally
expensive, strategies are required to minimise the time
taken to retrieve relevant records. b) The system should be
capable of catering to different user query requirements.
Directory assistance systems often have to cater to two
types of queries, viz., queries where the user is looking for
a specific entity in the subscriber base to yellow pages
queries where the user is looking for all fits to a
specification.

In this paper we discuss a case-based approach to
intelligent directory assistance based on a layered approach
to retrieval. The layering indexes the subscriber base at
different levels of dissimilarity. The approach introduces
concepts which we label Level of Lenience, Degree of
Lenience and Search Templates. These enable the retrieval
process to be fast and yet tailored to user needs.

Case Based Reasoning
Our approach is centered around case based reasoning
(CBR). The techniques underlying CBR such as similarity
based retrieval are applicable in more than experience
retrieval. CBR is already widely used in recommender
domains such as real estate estimation (Gonzalez and
Laureano Orti 1992) (O’Roarty et al 1997) where cases are
real estate properties. Similarly in this case, each
subscriber record is modelled as a case where a case is a
set of attribute value pairs. The case-base consists of the
set of subscriber records. The input case is compared with
the case-base to yield cognitively valid subscriber records.
As the function of the system is only to provide effective
retrieval, case-based processes such as case adaptation are
not required. Case acquisition and maintenance is also less
of an issue. Since directory assistance is a key function of
telecommunications service providers, subscriber data is
often available in standard data formats which can be
ported to the form required by the case-based reasoner.

The challenges in this domain are across the axes of
efficient yet effective retrieval where the retrieval needs to

be fast and tailored to different query requirements. In this
paper we discuss our approach to tackling these problems
and demonstrate it on name and address matching. We
should stress that the techniques discussed in this paper are
local similarity measures (attribute level match
techniques).

Lenience
Domains like directory assistance, job search and real
estate search share certain characteristics: they require
inexact search over very large data volumes N where the
output is a small set of relevant records k, where k << N
(for example in DA, k may be around 10 where N is of the
order of 1000,000 or more) and secondly, have
performance requirements where the time for retrieval has
to be less than an upper bound.
 Most case-based systems are singly indexed and
retrieval time is independent of the distance between the
input case and the set of the retrieved cases. While this
may not be a problem when case volumes are low, it is a
significant problem with large case volumes.
 Our approach is based on the following decisions: a)
Retrieval time should depend upon the distance between
the input case and the set of relevant cases and b) Each
case to be multiply indexed where an index tolerates an
extent or level of dissimilarity between the input and the
set of relevant cases. Lower the index level, lower the
dissimilarity tolerated and higher the index level, higher
the tolerance for mismatches. Correspondingly the search
space at an index level is smaller than that at a higher level
and thus in general lower the index level lower the retrieval
time.
 Thus where the set of relevant cases are close to the
input case, retrieval is fast while where the relevant cases
are far away, retrieval takes longer. Search begins at the
lowest level of index and proceeds step-wise through
higher levels gathering up cases until the required number
of cases to be retrieved is acquired. Figure 1 depicts the

difference between a uniform retrieval approach and the
level based retrieval approach. In uniform retrieval (Figure
1 A), retrieval time is dependent on the total volume of
cases but not on distance between the input case and the
target cases. However, in level based retrieval as given in
Figure 1 B, if only 3 cases are required, search will halt
after the inner most circle. If 5 cases are required, search
will proceed to the next level and if 6 cases to the
outermost circle. We now introduce a few concepts that
define our approach.

Lenience is the notion, Expand the search space only to
the extent to which you are willing to or need to tolerate
mismatches between the query and the cases in the case-
base. In other words the tolerance for mismatches defines
the search space around the query. A low tolerance leads to
a small neighbourhood and a small search space while a
high tolerance leads to an expanded neighbourhood.

Level of Lenience (LL): A class or extent of mismatches
tolerated between cases in a case-base C* for an attribute
which defines a search space. It is important to understand
that the LL is not a thresholding function that given a set
of retrieved cases, selects the cases using a similarity
threshold. Instead each Level of Lenience entails a
neighbourhood of cases around a query that will be
searched. Lenience is not confined to expanding a
neighbourhood by relaxing the bounds of the search but
could change the form of the index.

We have enforced an important property of the LL
approach which we call the Subsumption Criterion: The
cases returned at a higher level of lenience will be a
superset of the cases returned at a lower level. A case that
matches at a lower level will match at all higher levels.
Thus in Figure 1 C, Case 1 matches at Level 1 itself and
thus matches at all higher levels upto n, while Case 3
matches only at level n. This property implies that we can
stop the retrieval at a level once the required number of
cases are identified as we know the cases will also match at
higher levels. Formally,

(A) Uniform retrieval

Input Case Target Case

(B) Level based retrieval

Figure 1: Uniform and level based retrieval

Level 1

Level 2

Level j

Level n

Case 1

Case 2

Case 3

(C) Multiply indexed cases

jiji

jiji

n

n

ttandss

TttSssjinjiji
Then

timesretrievalaverageofsetthebetttT
levelsiousatspacessearchthebesssS

lenienceoflevelsofNumbern
Let

≤⊆

∈∈<≤≤∀

=
=
=

,,,,,,1,,
,

},....,,{
var},....,,{

,

21

21

Each level is assigned a weight that signifies the
importance of matching at that level. The similarity
measure between an input case q and a case r for an
attribute is discussed later. The weighting at each level
plays an important role since it has a direct influence on
the field level similarity score of a case. Given field
similarity thresholds, high weighting at lower levels and
very low weighting at higher levels signals that the search
is restrictive and wants only cases with a high likelihood of
relevance to be retrieved. In a sense this may be called
Precision centric. A less discriminative weighting signals
that the intent is to get all possibly relevant cases and can
thus be termed Recall centric. We define Degree of
Lenience (DL) as

ji

MaxLevelj j

j

j

WW
jiMaxLeveljiji

generalIn
MaxLevel

W
W

LenienceOfDegree

Then
levellenienceMaximumMaxLevel

jlevelatWeightW
Let

≥
<≤≤∀

−
=∆

=

=

∑
−=

+

,,1,,
,

1

,

1,1

1

If all levels have equal weighting DL becomes 1 while a
differentiated weighting will have low DL. The
combination of LL and DL enables us to offer Search
Templates where a Search Template is a combination of
LL and DL suitable for a type of search. Users use the
search template that best fits their requirement. While one
template may offer two levels of lenience with a very low
degree of lenience, suitable for high precision searches,
another may offer four levels with a high degree of
lenience, suitable for recall centric search. We demonstrate
these ideas in the domain of name and address search in
DA.

Matching over Names and Addresses
Names and addresses do not conform to standard linguistic
forms. Thus traditional methods of handling inexact string
matches such as stemming or trigrams are not blindly
applicable. The volume of subscriber records (i.e. cases) in
DA systems is often huge. Yet the system has to retrieve a
small set of relevant cases within time bounds.

Meeting these challenges was the motivation behind our
approach to name and address matching meant for DA
systems where people call a number to get assistance. The
essence of the approach is a pipelined strategy that goes
step-wise from the least lenient search level to increasingly
lenient levels.

We define four Levels of Lenience for names and
addresses. (a) The Token Level : Each name or address is
broken into a set of words after some transformations on
the string. For example: The name John Jacob gives the
two token set {John, Jacob}. (b) Strict Phonetic Code
(SPC): The Strict Phonetic Code is a modification of the
Metaphone algorithm (Binstock and Rex 1995) to encode
English words phonetically. Matches at this level can
recognise that “Rajeev” is similar to “Rajiv”. (c) Relaxed
Phonetic Code (RPC): The Relaxed Phonetic Code is a
modification of the Soundex algorithm. It is similar to the
Strict Phonetic Code technique, but is more forgiving of
errors This can recognise that “Aswini” is similar to
“Ashwinee” (d) Gram level : Here the Relaxed Phonetic
Code is broken into a set of bigrams. It helps the algorithm
to recover from insertion / deletion of a phonetically
significant consonant or substitution of a phonetically
significant consonant by another of a different phonetic
category. This can recognise that “Ashirwad” is similar to
“Asharswad”.

Names and addresses also embed numeric information
(such as house / street numbers and zip codes). We follow
a lenience based strategy even for such numeric matching
but do not discuss them in this paper for reasons of space.
We also have inter-field matching strategies for handling
high frequency tokens in names (common Indian surnames
such as “Shah“ or “Rao”) where retrieval might stop and
skip to another field to reduce the search space but which
we do not expand on in this paper.

Clustering (Kaufmann and Rousseeuw 1990) is
implemented at all levels of lenience. However unlike
traditional clustering where the global similarity between
strings is used as the distance measure, we use cluster
prototypes at all levels. Thus at the first level of clustering,
each token acts as an index to the set of cases that contain
this token. The clusters of cases formed at this level are
the smallest. At the second level, the SPC of each token is
used to index the set of cases that have at least one token
that maps onto that SPC. The third level of clustering uses
RPC to form the clusters and so forth. Once these clusters
are established, the search process traverses these clusters
at successive levels in a stepwise fashion during retrieval.

At the Token, SPC and RPC levels the match between a
token in query and target is exact and the similarity score is
either 0 or 1. At the gram level the similarity score is based
on the cardinality of intersection of query token grams and
target token grams divided by the cardinality of the union
and is thus over the interval [0,1].

Both query and target consist of many tokens. The field
similarity computation is a function of the similarity scores
and weight of each token at it’s lowest level of match.
Formally,

matchestokenithlevellowestatWeightW
levellowestatmatchingforWeightW

matchesitlevellowest
attokenithofscoreSimilarityimrqfsim

queryandettintokensofNumberNN
where

imrqfsimWNNW

imrqfsimW

rqsim

mi

qr

Ni
mqr

Ni
mi

r

r

=
=

∈
=

=

×−+×

×

=
∑

∑

=

=

1

,1
1

,1

]1,0[
),,,(

arg,
,

),,,()(

),,,(

),(

We define four Search Templates where a Search
Template signifies how search is to be carried out over all
tokens over the various levels of lenience defined.

itnoorvaluespecifieduseranumberabecankei
uNretrievedbetocasesofNumberk

thresholdsimilarityFieldf
tokensallforLgtraverforprocessAO

levelsiousatweightsthearewwwW
PforlenienceoflevelsthearelllL

wherekfOWLP
tupletheasdefinedisPtemplatesearchA

n

n

lim,.
,*}],,1{[

]1,0[
sin

var},...,,{
},...,,{

,},,,,{
,

21

21

∈=
∈=

=
=
=
=

O is a procedure for processing all tokens over the
various levels defined in this template including the
retrieval termination condition. The 4 Search Templates
provided are:
Exact Search: {{Token}, {4}, {Breadth, until k}, {0.3},
{u}}. Exact uses only the lowest LL with weight for
matching at that level as 4, processes all tokens through the
one level of lenience defined, the field similarity threshold
is 30% and the user specifies the number of cases to be
retrieved.
Slam Search: {{Token, SPC, RPC}, {4,3,2}, {Breadth, one
token match at Token level}, {0.3}, {1}}. Slam uses only 3
levels of search with weights of 4, 3 and 2 (thus DL is 0.7).
It proceeds level wise for all tokens, has the filter condition
that at least one of the tokens in the query must match a
token in the target at the token level and will retrieve only
the topmost case. It provides a high precision retrieval
where the target is expected to lie very close to the query
Simple Search: {{Token, SPC, RPC}, {4,3,2}, {breadth,
one token match at Token level}, {0.3}, {u (10)}}. Simple
is identical to Slam except that in Simple, the number of
records to be retrieved is user specified (default 10).
Simple also provides a high precision retrieval but will
however take longer to execute than Slam if u > 1.
Advanced Search: {{Token, SPC, RPC, Gram}, {w1 (4),
w2 (3.5), w3 (3), w4 (2.5)}, {Depth}, {0.3}, {u (10)}}.
Advanced search provides 4 levels of lenience, user
specified DL (default-0.86), processes each token through

all levels, no filter conditions and user specified k (default
10). Advanced provides a high recall, expansive search that
searches over all levels. However, Advanced also takes
more time on the average than Simple search.
 The overall process of matching for a field for all tokens
takes place as follows: After preprocessing of the tokens,
control passes to O for the search template chosen. The
process for simple search is: The cluster prototypes of
Level 1 are checked and the short list of all cases where at
least one token matches is created. This is the base set. The
scores of the matched tokens are computed. The non-
matching tokens are then passed to the next higher level
where their SPC codes are checked against level 2 cluster
prototypes. Only cases already in the base set are
considered. Again the scores of the matched tokens are
computed and added to the previous scores. The non-
matching tokens are passed to the RPC level. Once all
levels are traversed, the overall field similarity of the cases
in the base set with respect to the query is computed and
the field similarity threshold applied to get the final list of
short listed cases.
 While this paper focusses on local similarity measures,
we should note that we use a variation of the k nearest
neighbour algorithm for computing global similarity.
Details on the global similarity algorithm can be found in
(Balaraman, Chakraborti and Vattam 2000).

Implementation and Results
The test version of the system was first implemented as a
Visual C++ DLL that used ODBC to access Oracle V8
which stored the case-base. The results discussed below in
Figure 2 and Table 1 overleaf are from this test version
operating on a set of 50,000 subscriber records. The
subscriber record set was also ‘salted’ with records which
were distortions of existing records in order to test the
efficacy and power of the various search templates.

The graph on the left in Figure 2 compares the speeds of
Simple with Advanced search (with k set to 10 for each).
The speeds of Exact and Slam are not depicted because
they are so fast they lie nearly on the x-axis in the graph
(Exact averages sub 0.01 seconds while Slam averages
0.04 seconds for 50,000 cases). Simple search takes sub
0.2 seconds even for 50,000 cases while Advanced takes
nearly a second. But as Table 1 shows, Advanced is able to
handle more distortions than Simple. Of the 4 distorted
cases displayed, with a field similarity threshold of 30%,
Exact would retrieve only the second record, Slam the first,
Simple the first two and Advanced all four. Where the
target is close to the query, Slam and Simple perform
effectively while Advanced is required for phonetically
significant structural distortions. The graph on the right
shows the differences between a low DL and a high DL
approach in Advanced Search.

Figure 2: Simple Vs Advanced Search and Advanced Search Tuning

Table 1: Retrievals with Varying Distortion

Figure 3: Production version results

The former reduces to 50% similarity with just 8%
distortion while the latter tolerates 16% distortion for the
same similarity score.
 The production version of the system has been
implemented and is live at a leading telecommunications

service provider in India. The system provides directory
assistance on a volume of nearly 5 million subscribers with
over 100 concurrent users. The client system uses three
Levels of Lenience of Exact, SPC and RPC and three
Search Templates of Exact, Slam and Simple searches.

Similarity of all templates
Query String Exact

Slam

Simple

Advanced
Advanced Search Retrieval Results
Normal font token – Match at exact

Italicised token – Match at SPC / RPC
Bold token – Match at gram

10 50 50 78 Dutta Niwas 1019-2 Dip Buglw Chaw
33 33 33 70 Dartta Niwas 1019/2 Deep Bnglw Chowk
10 17 17 60 Dartta Niwas 1019-2 Deelp Bnglw Chowk

Datta Niwas 1019/2
Deep Bglw Chow

0 0 0 52 Dartta Neewas 1019-2 Deelp Bnglw Chowk

1 2 3 4 5
X 105

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of cases in case-base

R
et

ri
ev

al
 ti

m
e

in
 se

co
nd

s

Simple

Advanced

2 4 6 8 10 12 14 16

10

100

0

20

30

40

50

60

70

90

80

Degree of distortion

Pe
rc

en
ta

ge
 si

m
ila

ri
ty

Low DL High DL

Figure 3 provides details of the system size, growth and
performance. Search times averaged over all search
templates is sub 2 seconds even for 5 million records.
While the figure does not provide this detail, the average
retrieval times for different Search Templates were, Exact
0.9 seconds, Slam 2.1 seconds and Simple 5.5 seconds. On
average, 80% of the searches used Exact, 19% used Slam
and 1% used Simple. Thus around 20% of searches
required inexact matching.

Relevant Work
Several case-based systems use multiple indexes on the
case-base such as in (Gordon and Domeshek 1995).
However in these systems the multiple indexes are used to
provide different views on the case-base as required by
different users. In contrast, in our approach, the indexes are
provided primarily to provide a time performance
advantage when operating over very large case-bases with
strict time performance constraints. Additionally, the
indexes in our approach satisfy the criterion that cases
retrieved at an index level will be supersets of the cases at
a lower index level. This enables search to proceed in a
step-wise fashion on a need to basis from low levels of
lenience to increasing levels.

In (Schumacher and Bergmann 2000), a similarity
system is built directly on top of a database with query
relaxation taking place if the requisite cases k are not
retrieved. The concept of relaxation step is analogous to
our concept of level of lenience and query relaxation
satisfies our subsumption criterion. Our approach too is
targeted at recommender domains with the cases stored in
a conventional DBMS. However our approach differs from
their approach in at least four ways: a) our query relaxation
steps are precomputed in advance and the case-base is
indexed at the level of each relaxation step. b) relaxation
may be not just by increasing the bounds of the search but
by using different forms of indexes c) the concept of
degree of lenience, where different weightages are given to
matches at different levels and d) the concept of a Search
Template.

The directory assistance system developed by (Kawabe,
Fukumura et al 1997) carries out a sequence of operations
on each query of morphological analysis, semantic
analysis, intention understanding and building name
analysis to derive a code for an address which is used as a
single index. While details are sparse, it does not appear
that search conditions are relaxed or tightened based on
query proximity to existing records as carried out in our
approach. Additionally our approach differs from this
system and from commercial tools like Scansoft
(Scansoft), in that we do not use pre-compiled geography-
specific name or address dictionaries for our retrieval.

While the concepts in this paper were demonstrated in
the domain of name and address search, the same approach
is applicable to other applications with similar performance
requirements such as Job or Realtor search. Prototypes
have been developed in these domains and are showing
promising results. These domains require use of data types

like ontologies, ordered lists and numbers for which
lenience based algorithms have been developed.

We are currently working on extending the concept of
lenience to global similarity matching. Global similarity
will have global search templates which combine search
templates of different attributes. We have realised the need
for query planning in inexact retrieval especially when
operating over high volume, high dimensionality
repositories.

Acknowledgements
The implementation and ideas presented in this paper are
the joint effort of the authors and the Consult development
team, Pune, India.

References
Gonzalez, A.J.; Laureano-Ortiz, R. 1992. A Case-Based
Reasoning approach to Real Estate property appraisal.
Expert systems with Applications 4(2):229 – 246.
O’Roarty, B.; Patterson, D.; McGreal, S.; and Adair, A.
1997. A Case-Based Reasoning Approach to the selection
of comparable evidence for retail rent determination..
Expert Systems with Applications, 12(4):417 – 428.
Binstock, A; and Rex, J. 1995. Metaphone: A Modern
Soundex. In Practical Algorithms For Programmers. 160-
169, Addison-Wesley.
Kaufmann, L.; Rousseeuw, P. 1990. Finding groups in
data – An introduction to Cluster analysis. Wiley-
Interscience Publication.
Gordon, A.; Domeshek, E. 1995 Retrieval Interfaces for
Video Databases, In AI Applications in Knowledge
Navigation and Retrieval, Working notes of the AAAI-95
Fall Symposium, Massachusetts Institute of Technology,
Cambridge, MA.
Schumacher, J.; Bergmann, R. 2000. An Efficient
Approach to Similarity-Based Retrieval on Top of
Relational Databases. In Advances in Case-Based
Reasoning, Proceedings of the 5th European Workshop,
EWCBR-2000, 273-284, LNAI 1898, Springer.
Balaraman, V.; Chakraborti, S.; Vattam, S. 2000. Using
CBR Inexact Search for Intelligent Retrieval of Data. In
Proceedings of the International Conference KBCS 2000.
India. 119-130. National Centre for Software Technology,
Mumbai, India.
Kawabe, H.; Fukumura, Y.; Mutoh, N.; Karasawa, H.;
Iwase, S. 1997. An Intelligent Directory-Assistance
System Using Natural Language Processing and Mapping,
In Proceedings of the International Conference on Tools in
Artificial Intelligence, 486-487, California, IEEE
Computer Society
Scansoft product website.
http://www.scansoft.com/directoryassistance/features.asp

	Structured bookmarks
	Figure 2: Simple Vs Advanced Search and Advanced Search Tuning

