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Abstract 

A reversible outcome is one that can be changed.  For 
example, the failure of an ongoing project may be avoided if 
certain actions are taken, while an outcome such as the path 
of a hurricane cannot be changed under current knowledge. 
The major benefit of predicting reversible outcomes resides 
in the possibility to avoid unwanted results. For this 
purpose, it is necessary to identify contributing factors 
responsible for the outcome, which once modified, can steer 
the result to a desired outcome. Consequently, the 
incorporation of a method into a case-based reasoning 
system to identify contributing factors affecting an outcome 
can improve its usefulness.  This paper compares different 
approaches, particularly the use of domain knowledge, with 
respect to their ability to identify sets of factors that reverse 
software development projects predicted to fail into a 
prediction of success.   

Introduction 
When predicting an outcome to a problem situation, the 
user might also want to know the reasons for the prediction 
in order to reverse an unwanted outcome. To take into 
account this user’s perspective and consider the entire 
application context, case-based reasoning (CBR) systems 
can be equipped with the ability to identify factors 
responsible for a predicted outcome, which will increase 
their usefulness (Aamodt and Nygaard 1995).  
 Case-based prediction is typically performed with the 
use of cases consisting of real experiences. These cases 
tend to be sparse and biased (Kadoda, Cartwright and 
Shepperd 2001), but the incorporation of domain 
knowledge has been shown to provide valuable 
compensation (Cain, Pazzani and Silverstein 1991; Watson 
et al. 2002; Weber et al. 2003). Real cases represent 
anecdotal evidence of a probable prediction while domain 
knowledge offers scientific support.  
 There is enough evidence in the literature supporting the 
use of domain knowledge in case-based prediction, hence 
we want to explore its potential benefits to identify critical 
factors responsible for such predictions. For this purpose, 
we compare a number of different approaches and evaluate 
their abilities to reverse predictions in software 
development projects. 

CBR systems have been used to explain events (Leake 
1991) and identify reversible measures for failures 
(Kolodner 1993). For example, CHEF (Hammond 1986) 
included failures as part of the case and acquired reversible 
measures when failures occurred. This strategy has more 
chance to succeed in mature and stable domains, whereas 
in reasonably new fields of study, e.g. software 
engineering, or in highly subjective and social contexts, i.e. 
management, it would be difficult to guarantee the 
accuracy of the acquired reversible measures.  
 On the other hand, Leake’s work (1991) on explanations 
although seeking to explain past events, and therefore is not 
concerned with reversible measures, seeks to link an 
explanation to a useful strategy based upon the explainer’s 
goals. Analogously, preferable critical factors are the ones 
that are more likely to reverse unwanted outcomes, which 
is the user’s goal. 

Domain Knowledge in Case-Based Prediction 
Case-based prediction has been applied to different 
problems. Some examples of reversible outcomes are legal 
cases (Brüninghaus and Ashley 2003), potential victims of 
crime (Redmond and Line 2003), expenses (Weber et al. 
1996), cost (Stottler 1994), sales (Mcintyre, Achabal and 
Miller 1993), and projects (Cain, Pazzani and Silverstein 
1991). In software engineering, CBR has been used to 
predict effort (Kadoda, Cartwright and Shepperd 2001; 
Watson et al. 2002), and success or failure (Weber et al. 
2003).  
 The applications of case-based prediction tend to use real 
cases, which are usually scarce and thus expensive, leading 
to sparse case bases that do not generate good predictions. 
The use of domain knowledge has been suggested to 
compensate for sparse data particularly where features can 
outnumber the available cases. For example, Cain, Pazzani 
and Silverstein (1991) have demonstrated that a combined 
method of explanation-based learning (EBL) and CBR can 
produce more accurate predictions than CBR alone. One 
benefit of using this approach is that it can provide accurate 
predictions even when features outnumber cases because 
domain knowledge compensates for the lack of data. This 
same EBL+CBR approach was applied in Weber et al. 



(2003), confirming its superiority with respect to traditional 
CBR. This method can also be useful for general prediction 
in relatively immature fields, where domain expertise 
cannot yet explain many occurrences. Another problem 
with case-based prediction (Kadoda, Cartwright and 
Shepperd 2001) refers to the existence of biases in specific 
design decisions (e.g., choice of similarity measure). The 
use of empirical methods represents a way to substantiate 
design choices (Watson et al. 2002); however, besides 
greater accuracy, the incorporation of domain knowledge 
has the potential to diminish the biases because it steers the 
retrieval and overall CBR performance to conform to 
domain knowledge. When using CBR for prediction, 
design decisions can impose bias, but adding domain 
knowledge tends to alleviate those biases. 
 The focus of this paper is to identify critical factors 
responsible for an outcome and to determine the role of 
domain knowledge in this task. This represents an 
additional aspect to take into account when selecting the 
technique to implement for case-based prediction. In the 
following, we briefly present the EBL+CBR approach that 
combines domain knowledge and experience for prediction. 

Knowledge and CBR: The EBL+CBR Approach  
The EBL+CBR approach introduced in  (Cain, Pazzani and 
Silverstein 1991) combines both elements of unweighted 
CBR (similarity of features between cases) and elements of 
EBL (relevance of features according to domain 
knowledge). For example, in a successful software 
development project, whether or not requirements were 
gathered using a specific methodology is considered to 
indicate relevance to the project’s result. Relevance is 
assigned in accordance with domain knowledge.  

Implementing EBL+CBR.  The implementation of this 
method includes a knowledge acquisition step. Each feature 
has to be laid out with its meaning and all of its allowable 
values.  Domain experts have to answer, for each feature, 
whether each of its allowable values supports one or 
another outcome. Although this approach has been 
implemented by Cain, Pazzani and Silverstein (1991) and 
Weber et al. (2003) for binary classification, there is no 
reason, in principle, why this approach could not be 
implemented for a ternary classification scheme.  The 
knowledge acquired from domain experts is represented in 
the system through rules. These rules assign relevance 
factors to each feature of each case. The original method 
uses crisp values 0 or 1 for relevance factors. The rules 
assess associations between feature values and outcome 
according to domain knowledge. For example, in a case 
describing the history of a patient with an outcome of 
emphysema, the attribute smoking having a value ‘yes’ 
results in the assignment of a relevance factor of 1. This 

means that domain expertise recognizes the value of this 
attribute as a contributor to the outcome. 
 This approach produces an interesting result when 
computing similarity: many cases end up having the same 
similarity value. This requires a special method to perform 
the retrieval’s Select step (Aamodt and Plaza 1994) to 
determine the final prediction. Because this is an 
interpretive reasoner, the result is that more than one case 
can be used as references to a new case. For instance, the 
similarity assessment may find 3 cases above the threshold 
with the same similarity and they may not necessarily lead 
to the same classification. In this case, the system uses the 
mode to make the prediction. 

Methods to Identify Critical Factors 
When using a case-based prediction system, if the predicted 
outcome is different than the user desires, then critical 
failure factors can indicate problem areas which may be 
mitigated to reverse the predicted outcome. On the other 
hand, if the outcome is favorable, then the values of critical 
success factors can identify the strengths of the input case. 
 In this section we describe six methods to identify 
critical factors in prediction. These methods are based on 
knowledge, statistics or are instance-based.  They also vary 
with respect to the scope of the factors they identify, some 
methods identify factors for the entire dataset whereas 
others are able to individualize factors for each project. The 
utility of methods that identify critical factors for an entire 
dataset is that they provide trends based upon a community 
of cases. When this community consists of real world 
experiences, they represent evidence of the importance of 
these factors.  
 The first approach to identify factors for the entire 
dataset is based on the gradient descent (GD) method. It is 
an instance-based method that is recommended to 
determine the relative importance of features in a dataset – 
and particularly to CBR - because it uses feedback from 
similarity to assign weights to each feature (Aha 1998). 
Our approach selects as critical factors all of those 
variables whose resulting importance values are above the 
overall average. 
 The second method is statistical and illustrates the strong 
association between critical factors with the prediction task. 
Logistic regression (LR) (Cleary and Angel 1984) is 
commonly used to predict the outcome of dichotomous 
variables. In LR, the dataset is examined to select features 
with the strongest correlations to the outcome and then 
these features are used for prediction purposes. Therefore, 
in LR, finding predictor variables is a requirement for 
prediction. LR also identifies factors in the entire dataset 
rather than in one specific project. LR selects predictor 
variables using a maximum likelihood approach. 



Some of the approaches we discuss are derived from the 
EBL+CBR  (Cain, Pazzani and Silverstein 1991) prediction 
method described above. This method has been 
implemented to predict the outcome of software 
development projects (Weber et al. 2003) and it is in this 
context that we present the remaining methods. 
 The third method was already introduced in Weber et al. 
(2003) as an alternative to identify critical factors in 
software development projects. It can be interpreted as a 
prediction-oriented or feature-oriented method. It identifies 
factors by measuring the prediction accuracy of a case-
based prediction system and then submits each feature 
alone to the same system. The general idea is that critical 
factors will be the ones whose accuracy is closest to the 
overall accuracy of the dataset. More specifically, we adopt 
the EBL+CBR approach for the predictions and evaluate 
the metrics for true positives and true negatives with leave-
one-out cross validation. We identify as success factors the 
features that produce accuracy closest to the overall 
accuracy of true positives and as failure factors the ones 

with overall accuracy closest to true negatives. 
 The fourth method also uses the EBL+CBR prediction 
system. It utilizes cases used in the prediction of each new 
project -- a genuine case-based method that can 
individualize the identification of critical factors. Before 
detailing how it works, we have to point out that because of 
the way that EBL+CBR computes similarity; more than 
one case may be used to generate a prediction. Thus, the 
number of cases actually used is one of its variables. The 
general idea is that if a previous case had, for example, a 
successful outcome and it is sufficiently similar to a new 
case to predict the outcome of this new case, then the 
features whose values are equal in both cases are success 
factors. Analogously, when the predicted outcome is 
failure, equal feature values suggest failure factors. When 
two cases are used for the prediction, we determine 
whether the value for each feature in the target case is 
either equal to all values in the two similar cases or 
different to all values in similar cases (interpreting the 
value as a failure factor in successful outcomes when 

Table 1. Examples of 3 projects from the dataset 
 

     Case # Feature 83 92 115 4 14 35 

PM authority No No Yes Yes Yes Yes
Initial commitment Yes Yes Yes Yes Yes Yes
Sponsors involved No Yes No Yes No Yes
SH involved NA NA No Yes No Yes
SM involved No No Yes No No No
EU involved High Some Little High RSN RSN
EU trust PM Low AVE AVE High High AVE
EU involved schedule No No Yes Yes No No
Good REQ No No No Yes Yes Yes
Realistic EU No NA No NA NA Yes
Any method REQGD No Yes No NA No No
ACCC REQ No No No No No No
Method REQGD NM INTW NM NM NM NM
Scope well defined No No No Yes Yes Yes
EU time REQGD No No No Yes Yes Yes
REQ central REP No No No Yes Yes No
REQ clear DLV No No No Yes Yes Yes
Size hurt REQGD Yes Yes No No No No
DD set with REQINF No No No Yes Yes Yes
How was DD set? No DD EXTE CLLCMT No DD SM PM
DP involved schedule NA NA No NA NA No
Enough staff No No No Yes Yes Yes
Schedule consult HR No No No No No Yes
Outcome Failure Failure Failure Success Success Success

 
Abbreviations:  PM: project manager; SH: stakeholders; SM: senior management; EU: end users; REQ: requirements; 
REQGD: REQ gathering;    ACCC: accurate and complete; DLV: deliverables; REP: repository; DD: delivery date;  REQINF: 
information about REQ; DP: developers; HR: human resources and employee related issues; NA: Missing; NM: No 
Methodology; RSN: Reasonable; AVE: Average; No DD: No Delivery Date; INTW: Interview; EXTE: External Entity; CLLCMT: 
Collaboration committee 
 



different). We do not use values when using two cases and 
the new case’s value is neither different from nor equal to 
both. The EBL+CBR approach can also produce sets of 
three cases actually used in the prediction. In those 
predictions, we also consider when the new case has 
feature values that are equal to the values of the majority of 
similar cases and different from the majority. The former 
values are interpreted as success factors while we consider 
the criticality to be inversely proportional in the latter.  
 Based on domain knowledge, we adopt the knowledge-
based portion from the EBL+CBR approach to identify 
critical factors. First, we examine which features of the new 
case would have been assigned relevance factors by the 
EBL method (described in the previous section) with the 
predicted outcome. These features are the ones in which 
domain knowledge supports the conclusion that they are 
contributors to the predicted outcome. For simplification 
purposes, we assume that the reasoner predicts a binary 
variable. The dependent variable has allowable values, both 
positive and negative. If the prediction is a positive 
outcome, then the features that are assigned relevance 
factors for a positive outcome are success factors or failure 
factors otherwise. For the remaining features, we replace 
the predicted outcome to assign relevance factors for a 
negative outcome and then obtain the failure factors. 
 Finally, we combine the knowledge-based and the case-
based methods by taking the union of the factors each 
individually identify. Our assumption is that cases can 
complement knowledge, particularly in immature fields. 
Next we compare these methods.  

Preliminary Studies 
In this study we want to compare the different methods 
described above and explore their strengths and weaknesses 
in identifying success and failure factors in the dataset 
described below. More specifically, we want to determine 
how the above methods perform in comparison to domain 
experts with respect to the ability of the success factors 
they identify to reverse predictions of failure in our dataset. 

Dataset 
The dataset used for this study consists of 88 real cases 
describing software development projects. This dataset has 
23 symbolic features describing 67 projects that have 
succeeded 21 that failed. For the identification of individual 
success factors, we have selected twenty projects. These 
projects have all originally failed and when submitted to 
the EBL+CBR prediction, they were predicted to fail. 
Table 1 shows 6 projects, 3 that failed and 3 that 
succeeded, as an illustration of the dataset.   

Methodology 
The methodology consists of 3 stages:  1) Identification,   
2) Reversal, and 3) Prediction. Identification is the step 
where each method identifies critical factors either for the 
entire dataset or for the twelve selected projects. When 
these methods use case-based prediction, they use the 
EBL+CBR method described earlier. Given that all twelve 
projects are initially predicted to fail, the methods will 
identify exclusively critical success factors. The methods 
that identify critical factors have been described previously. 
For the study, we add the identification of factors by 
domain experts, in order to provide a realistic base for 
comparison. 
 Reversal is the second stage that is executed for all of the 
methods in the same fashion, including the ones based on 
knowledge. The method for reversal takes each factor and 
reverses the value given in each of the 12 projects. The 
reversal of the value uses the same categorization learned 
in the elicitation of knowledge for the rules, which 
establishes values that are aligned or not with an outcome. 
For example, if the factor identified refers to the 
availability of enough staff in the project, a value 
corresponding to yes is converted into no, and vice-versa. 
This reversal step does not evaluate the quality of the 
converted value for the reversal. This means that the 
reversal is executed regardless of the intention of success. 
We decided on this approach in order to keep the 
methodology uniform for all of the methods. 
 Prediction is the last stage; it examines the quality of the 
identified factors by assessing their ability to reverse failure 
predictions into success. Note that all twelve projects have 
actually failed and were predicted to fail when submitted to 
the case-based prediction system. Therefore, we conclude 
that a set of factors, whose opposite values lead  to  
predictions of success for the projects using the same 
prediction tool, are of good quality. Hence, each new 
project obtained after the conversion of its values is 
submitted to the EBL+CBR prediction system again to 
assess whether the factors are capable of reversing a 
prediction to fail into a success.  
 

Table 2.  Reversed predictions by method 
 

 
Method 

Reversed 
projects 

%        Abs. 

Factors 
 

Num.      Eff. 
Domain experts 66% 8 6 1.3 
Gradient descent 92% 11 11 1 
Logistic regression 42% 5 4 1.25 
Feature-oriented 58% 7 5 1.4 
Case-based 0 0 3.25 0 
Knowledge-based 0 0 6.66 0 
Union 8% 1 8.5 0.1 



Results 
Table 2 shows the results of applying the methodology as 
follows. The first column shows the percentage of reversed 
projects out of the twelve projects studied. The second 
column lists the absolute number of reversed projects. The 
third column presents the number of factors identified by 
each method that targeted the entire dataset (integer values) 
and the average amount (fractional values) of factors 
identified per project by the methods that target each 
project. The fourth column shows the project-factor ratio, 
i.e. the number of reversed projects by factor. This is a first 
attempt towards defining measures of efficiency.  
 We analyze separately the results of methods that target 
the entire dataset and the ones that individualize each 
project (the rows highlighted in gray). The superiority of 
the gradient descent method with respect to the number of 
reversed projects is evident but it does not seem promising 
given the low efficiency demonstrated by the project-factor 
ratio. Examining GD’s factors, we notice that most factors 
identified by GD were also identified by the other methods. 
However, only two factors--a well defined scope and end 
users having time for requirements gathering--were 
identified by all of them. The negative aspect of these 
methods, particularly the GD method, is the large set of 
factors. It does not seem realistic to expect that users will 
be able to reverse eleven aspects in a project. 
 To analyze the methods that individualize each project 
(last three in Table 2), we revised our methodology to 
allow these methods to use their knowledge to guide their 
reversal strategy. These methods indeed have the ability to 
use embedded knowledge to reverse only the values that 
are not supportive of success.  
 

Table 3.  Effect of knowledge-based reversal 
 

 
Method 

Reversed 
projects 

%        Abs. 

Factors 
 

Ave.      Eff. 
Case-based 0 0 1.9 0 
Knowledge-based 16% 2 0.92 2.2 
Union 8% 1 2.6 0.4 

 
The results of this study are laid out in Table 3. Even 
employing knowledge-based reversal, these methods still 
perform poorly.  The number of factors decreases, although 
their efficiency seems to increase, given the project-factor 
ratio. The knowledge-based method was able to reverse 
two projects, while in the first study it did not reverse any; 
showing that without the knowledge-based reversal, good 
values were replaced by bad ones.  
 Finally, we examine the last potential contribution of 
knowledge-based methods to the identification of critical 
factors. We investigate whether the use of knowledge-

based reversal can be used to complement statistical and 
instance-based methods. For example, GD failed to reverse 
one project. However, when we perform knowledge-based 
reversal we find that it still cannot reverse that one project. 
More interestingly, some projects are no longer reversed. 
This also occurs for the other methods. For example, the 
union method has identified sixteen factors for project 
number 89. Using knowledge-based reversal, only one 
value is changed, namely the value for whether the size of 
the project had hurt the elicitation of requirements. The 
result is that after only one change, the case now is 
predicted to succeed. Interestingly, this same project was 
reversed when different values were changed. In fact, those 
were values that contradicted domain knowledge and thus 
they were not changed with knowledge-based reversal.  

Discussion 
The ultimate goal of equipping CBR systems with a 
method to identify critical factors is to maximize the 
usefulness of case-based prediction to its users. Keeping 
this in mind, it is unrealistic to consider methods that 
identify larges sets of factors, particularly in the context of 
software development projects, where the change of a 
single variable can represent a significant shift in resource 
allocation. 
 The number of factors has been decisive in choosing our 
strategy to examine potential success factors. We could 
have, instead, started by examining failure factors, but 
these resulted in larger sets, which is not practical as a final 
solution. However, it is a source that this dataset can offer 
that may be revisited. 
 Although most software engineering studies implement 
linear modeling (e.g., Verner and Evanco 1999, Khalifa 
and Verner 2000), it is likely that different factors 
responsible for a given prediction are interdependent. As 
we observed in our preliminary studies, different methods 
were able to reverse a project’s prediction using different 
sets of factors, and one method reversed a prediction 
contrary to domain knowledge. These observations suggest 
that an optimized CBR system that accounts for an entire 
context may have the additional benefit to help uncover 
knowledge previously unknown. 

Conclusion and Future Work 
The incorporation of knowledge into case-based prediction 
has been proposed to alleviate the biases imposed by design 
decisions and to compensate for sparse case bases. We 
conclude that, currently, the use of domain knowledge in 
immature domains should be used in combination with 
other methods, in the pursuit of a minimal set of factors to 
reverse unwanted predictions. It seems that there is 
potential in combining knowledge, particularly instance 
based methods, to explore the space of factors and uncover 



relations between factors not yet studied. Additionally, the 
use of previous cases has the advantage of conveying 
contextual knowledge, which can also be helpful in 
uncovering interdependencies among factors. 
 Besides the study of the interdependence of critical 
factors, it is also necessary to define the level of 
reversibility of factors, e.g., using measures of efficiency of 
factors throughout the dataset and by project. Factors that 
are easy to reverse should receive priority. 
 In future work, we want to compare these contributing 
factors to other factors studied in CBR systems. For 
example, factors used in HYPO (Ashley 1990) to support 
arguments, issues in the IBP algorithm (Brüninghaus and 
Ashley 2003), and goal-based explanation (Leake 1991) are 
likely candidates. In order to improve case-based 
prediction, the first step is to incorporate methods to 
identify critical factors that are able to individualize the 
identification of factors, and that minimize the number of 
factors while maximizing their chances to reverse 
unwanted outcomes. Additionally, we would also like to 
incorporate methods to identify reversible measures and to 
determine their chances to reverse outcomes. 
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