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Abstract 
Novelty detection in video is a rapidly developing 
application domain within computer vision. The motivation 
behind this paper is a learning based framework for 
detecting novelty within video. Since, humans have a 
general understanding about their environment and possess 
a sense of distinction between what is normal and abnormal 
about the environment based on our prior experience; any 
aspect of the scene that does not fit into this definition of 
normalcy tends to be labeled as a novel event. In this paper, 
we propose a computational learning based framework for 
novelty detection and provide the experimental evidence to 
describe the results obtained by this framework. To begin 
with the framework extracts low-level features from scenes, 
based on the focus of attention theory and then combines 
unsupervised learning techniques such as clustering with 
habituation theory to emulate the cognitive aspect of 
learning.  

Introduction   
Novelty detection, also referred as event detection, in video 
has received widespread attention in the past several years 
within the computer vision and AI domains. Learning to 
detect novelty from a given video sequence is a very 
challenging task. In this paper we propose a novelty 
detection framework based on the low-level features 
extracted from a video sequence and a clustering based 
learning mechanism that incorporates habituation theory. 
Since the overall area of video processing is also referred 
to as video exploitation, we have termed our framework as 
the VENUS: Video Exploitation and Novelty 
Understanding in Scenes. Figure 1 provides a simple 
example to facilitate the understanding of such a novelty 
detection framework. The sequence of frames in the figure 
shows people walking in our laboratory. The system 
processes the incoming video data, extracts the features and 
learns the motion and still aspects over time. Initially any 
form of event in the scene is flagged as novel. Over time, as 
the system learns the events it tends to consider this as 
normal behavior and ‘habituates’.  
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Subsequent frames process this information and learn that 
such motion is normal. In the frame shown in 1(d) the 
placement of a bag is recorded as novel and in the frame 
shown in 1(f) the fact that two people stop walking and 
stand in front of each other is also flagged as novel by the 
system. These precisely are the expectations of a novelty 
detection framework. The system considers any activity in 
the scene as an event, such as people walking, cars entering 
and leaving an area. These events are classified as novel 
events if they have not been witnessed before in the scene 
This paper is organized as follows: In the next section we 
briefly overview the related work done in this domain. The 
subsequent sections describe the key components of the 
VENUS system followed by the experiments and results. 

Related Work 
Recent advances in video sequence understanding and 
video exploitation were motivated by an engineering 
perspective to develop state-of-the-practice video 
surveillance systems (Medioni et al. 2001). Research by 
Stauffer et al (2000) proposed detecting events in real-time 
by learning the general patterns of activity within a scene. 
This learnt information is subsequently used for activity 
classification and event detection in the videos. Prior to 
that, semantic event detection by Haering, Qian and Sezan 
(1999) successfully tracked and detected events in wild life 
hunt videos. Recently, Tentler et al., (2003) proposed an 

Figure 1: Selected frames a-f of an example video 
sequence describing normal vs. novel behavior 



event detection framework based on the use of low-level 
features. The proposed VENUS framework uses the low-
level features obtained from the focus of attention theory 
and combines it with habituation based clustering. 
Habituation is an effect by which a system ceases to 
respond after repeated presentations of the same stimulus 
(Siddle, Kuiack and Kroese 1983). Computational 
modeling of habituation has been applied in mobile robots 
by Marsland, Nehmzow and Shapiro (1999). Their work 
models habituation as an exponential function that lends to 
describing the short-term and long-term memory aspects of 
learning. In a related previous work we described the 
primitives of the learning aspect as inspired by biological 
theories such as habituation (Vaingankar et al. 2003). 
Initial experimental results on the video sequence described 
in Figure 1 are discussed in (Gaborski et al. 2004).   

VENUS’ System Framework 
The event detection model described in this paper consists 
of two major components. First, a focus of attention 
component that generates the low level features - intensity 
contrast, color, orientation and directional motion. Second, 
a learning component that handles novelty detection. The 
following sub-sections describe the system components. 

Focus of attention 
Figure 2 shows the block diagram of VENUS’ novelty 
detection framework. The first part of our framework is the 
focus of attention system. The motivation for using the 
focus of attention theory is provided by Koch and Ullman 
(1985). Given the enormous amount of visual information 
available in a scene, we, as humans, process only a subset 
of it. We tend to focus on the interesting aspects of the 
scene ignoring the uninteresting ones. The attention system 
in our framework is based on the selective attention theory 
initially modeled by Itti and Koch (2001), where a saliency 
map topographically represents the object’s saliency with 
respect to its surrounding. Attention allows us to focus on 
the relevant regions in the scene and thus reduces the 
amount of information needed for further processing as 
verified in Gaborski, Vaingankar and Canosa (2003). 
Objects that are highly salient in the scene are further 
tracked for possible novel events. The video sequences are 
processed in the still and motion saliency channels. The 
still saliency channel processes every frame individually 
and generates topographical saliency maps. Consider an 
airport scene where someone leaves an object in a 
restricted area and walks away. The still saliency channel 
detects this object as a salient item. Since this object was 
not part of the original scene, the introduction of the object 
fires a novel event, which is a feature of the still learning & 
novelty detection module. The motion saliency channel 
detects the salient moving objects of the scene, in this case 
the motion of the person who brought the object.  
Still Processing: The still saliency channel processes every 
frame of the video sequence and extracts the low-level 

 
 

Figure 2: The VENUS’ Novelty Detection Framework 
 
features. The information from the video frames is 
extracted using multi-resolution orientation, color, and 
intensity contrast filters. This form of processing is called 
the bottom-up focus of attention (Itti and Koch 2001), since 
objects evoke attention based on the low-level feature 
conspicuity. 
The 2D multiresolution spatial filters are convolved with 
the input image to obtain the topographical feature maps. 
Intensity contrast is extracted using difference of Gaussian 
filters. The intensity contrast filtering simulates the 
function of the retinal ganglion cells which posses the 
centre-surround mechanism. The color information is 
extracted using the color opponent filters.  
The orientation processing employs Gabor orientation 
filters to extracts edges of 0o, 45o, 90o, and 135o orientations. 
The sine and cosine Gabor filters oriented in the spatial 
axis is modeled based on the receptive field properties of 
the orientation tuned simple cells of the early visual cortex. 
Due to the centre surround antagonistic nature of the 
feature extraction filters, the topographical maps obtained 
are called the saliency maps. The still attention module 
combines the multi-resolution feature saliency maps within 
the respective feature channels to form the final orientation, 
color, and intensity contrast feature saliency maps which 
are inputs to the still learning & novelty detection module. 
Motion Processing: Motion detection in our system is 
achieved by using the 3D Gaussian derivative 
spatiotemporal filters tuned to respond to moving stimuli 
(Young, Lesperance and Meyer 2001). This method of 
motion filtering is similar to quadrature sine and cosine 
pair spatiotemporal energy filters developed by Adelson 
and Bergen (1985). The first step in the motion detection 
process is convolving the multi-resolution intensity 
saliency maps with a 3D band-pass spatiotemporal filter. 
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This filter gives optimal response to regions of motion in 
the scene irrespective of the direction of motion. 
Theoretically, such a filter would give the maximum 
response after an object which was not there before, now 
appears. The result of the above convolution is bounded 
(by a threshold) to produce a mask for the motion in an 
image. In order to extract directional motion, the multi-
resolution intensity saliency maps are then convolved with 
a set of four direction-selective spatiotemporal filters. The 
direction selective filters are similar to the band-pass filters 
except that the directional filters are oriented in both space-
time (x,t) axes. The orientation of the Gaussian derivative 
lobes in the (x, t) axis determines the direction to which the 
filter is tuned. Suppose an (x,t) orientation of 45 degree 
detects right moving objects, then an (x,t) orientation of 
135 degree would be tuned to detecting left moving 
objects. The result of this directional filtering is a set of 
multi-resolution directional motion maps (up, down, right, 
left). The degree of space-time orientation tunes the filters 
to varying speeds of moving objects. The previously 
obtained motion mask is then applied to the directional 
motion maps, to mask out any spurious response generated 
for stationary objects. The motion attention module 
combines the multi-resolution direction maps within each 
direction channel to give final four directional motion 
saliency maps. The still saliency and the motion saliency 
maps are the input into the novelty detection modules. The 
saliency maps as input to the learning & novelty detection 
modules causes only the salient regions of the scene to be 
tracked for potential novel events. 

Novelty Detection using Learning 
The novelty detection framework in VENUS has two 
components – “still learning & novelty detection module” 
and “motion learning & novelty detection module”. The 
still learning & novelty detection module in this system is 
based on Tentler et. al.(2003). Still aspects of the scenes 
are learned based on simple topographical averaging of 
feature values in the still feature saliency maps. This 
averaged map is called the still habituation map which is 
representative of changes to non-motion aspects of the 
scene over time. The still novelty is calculated by taking a 
difference between the current frame’s still saliency map 
and the still habituation map. An event can be novel by 
virtue of any of its low-level features or a combination of 
them. 
On presentation of a never-seen-before motion feature 
value, the ‘Motion learning & novelty detection module’ 
classifies it as being novel. If the same feature value is 
observed repeatedly over time, the system habituates to it 
and stops flagging it as a novel event. On the contrary, lack 
of additional occurrences of the same event causes the 
system to recover its original sensitivity for the feature, i.e. 
the habituation effect decreases. This concept is based on 
Kohonen’s theory (1988) of novelty detection filters with a 
forgetting effect. The theory states that the system can only 
memorize patterns when it is frequently exposed to them. 
The memorized pattern tends to be forgotten if it is not 

reinforced repeatedly over time. The forgetting term is 
similar to the dis-habituation effect described by Wang 
(1995).  
Novelty detection in this system is region based where a 
region is an 8-by-8 pixel area on a frame of the video. A 
new event in any region is captured by the creation of a 
cluster in that region. An event can be intuitively 
considered to be any activity depicted in the motion maps. 
Each region has a pool of clusters that represent unique 
events observed by the system in that region. A new cluster 
formed is compared with clusters in the pool to see if it can 
be merged with any of them. Merging of clusters indicates 
occurrence of an event that is similar to a previously learnt 
event. The clustering algorithm treats the data as a 
Gaussian mixture. Each cluster obtained represents a 
Gaussian in the mixture. Novelty detection is thus reduced 
to identifying novel clusters in every region. The algorithm 
does not limit the number of clusters per region since the 
number of novel event cannot be predicted ahead of time. 
Each cluster follows a sigmoidal-like habituation curve 
(Vaingankar et al. 2003) to model learning. As per 
habituation theory, an event is not instantaneously learnt. It 
takes some number of occurrences before a system gets 
completely habituated. Novelty is inversely related to the 
degree of habituation the cluster has attained. Higher the 
habituation value, the lower is its features’ novelty and vice 
versa.  The novel events gathered from each motion 
direction map are combined with still novelty map to form 
a final novelty map.  

Experiments and Results 

Analysis 1: 
The goal of the experiments was to quantify the amount of 
novelty and analyze the effect of the habituation model on 
learning. We define a novelty index which ranges from 
zero to one. The novelty index measures the amount of 
novelty as compared to the motion activity in the scene and 
is computed as the ratio of the number of novel regions to 
the number of motion activity regions in a frame. This ratio 
is calculated for every frame of the video. Higher the ratio, 
greater is the novelty in the frame. We also define degree 
of habituation as an index which describes how well a 
region has learnt a particular event. The experiments are 
conducted for two scenes. Scene ‘A’ shows a sequence of 
two people (P1 and P2) walking from right to left one after 
the other. Here, P1 and P2 walking are independent events 
which together form a single sequence. This sequence is 
repeated thrice without any delay between the sequences. 
The objective of this setup is to gauge the learning 
capability of the system to repeated occurrences of people 
walking in the scene. In scene ‘B’, the same scene is used 
but with considerable time delay (frames 130 to 440) 
between the second and third sequence. The objective for 
setting up this scenario is to test whether the system forgets 
a previously learnt event. Figure 3 and 4 show the 
variations in the novelty index over the complete video, for 



   P1               P2         P1               P2          P1           P2 
Sequence 1 Sequence 2 Sequence 3  

Figure 3: Novelty Index for Scene A 
 

 

Figure 4: Novelty Index for Scene B 
 
the two scenes respectively. It can be observed in figure 3 
for sequence 1 (frames 1 to 60), that the novelty index for 
event P2 is lower than that of P1 indicating that the system 
is getting habituated to the event. On the second sequence 
(P1, P2 frames 60 to130), the novelty index drops to zero. 
This effect is observed since the regions in the scene have 
already learnt the motion sequence that occurred in 
sequence 1. The system continues to invoke zero novelty 
(novelty index zero) for sequence 3 (frames 130 to 190). 
Thus with regular reinforcement of similar motion values 
the clusters do not fire novelty.   
Figure 4, shows the corresponding results for scene B. The 
delay between sequence 2 and 3 causes the system to 
completely forget the events which were learnt previously. 
This can be observed by the sudden rise in novelty index 
for event P1 in sequence 3. Again the system starts to learn 
this novel event which is visible in the reduced novelty 
index of the following P2.  
Graphs in figures 5 and 6 illustrate the habituation curve 
for a cluster in a particular region over all the frames in the 

 

Figure 5: Habituation curve for one cluster observed within a 
8X8 region (Scene A). 

 
 

Figure 6: Habituation curve for one cluster observed within a 
8X8 region (Scene B). 

 
scene. The y axis shows the degree to which the cluster is 
habituated to that particular event.  
Figure 5 shows the habituation curve for scene A. On 
seeing the event P1, a cluster is created for that region and 
an initial habituation value of 1 is assigned. Overtime the 
habituation value decays at a pre-assigned decay rate. This 
is seen in the smooth drop in the degree of habituation for 
the cluster. At frame 40, when the same region is activated 
by event P2, the cluster recovers from the drop in 
habituation. This is seen in sudden upward spike in the 
curve. Similar behavior is observed for the remaining 
events. As seen from the graph the cluster never reaches the 
cut-off threshold, indicating that the cluster was regularly 
reinforced, thereby retaining the event for a longer 
duration. After the cluster is reinforced with a repeated 
event, the decay rate is updated such that the system forgets 
the event at a slower rate. The decreasing slope of the 
habituation curve after each recovery confirms this effect. 
Figure 6 shows the corresponding habituation curve for 
scene B. During the delay after sequence 2, the habituation 
value reaches the cut-off threshold. This threshold 
symbolizes the loss of this event from the system’s 
memory. On frame 450 the event P1 reoccurs. Since the
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Frame # Image from video Motion mask Motion Novelty mask Analysis 
25 
Car entering the 
parking lot. 

   Car seen for the 
first time and was 
detected by the 
novelty mask 

133 
Person walking 
down the 
pathway. 

   The person 
walking briskly is 
detected by the 
novelty mask. 

200 
Person walking 
down the 
pathway. 

   The system still 
considers this 
novel since it is 
not completely 
habituated yet. 

364 
People walking 
and car leaving 
the parking lot. 
 

   Moving trees stop 
firing novelty as 
their swaying 
motion is learnt.  

628 
People walking  
on the already 
habituated 
pathway. 

   People walking 
are not detected 
as novel events. 

723 
People and cars 
on the learnt 
regions of the 
scene.  

   People and car 
are not detected 
as novel events. 

957 
People walking 
on the lawn  

   Novelty detected 
since this is first 
instance of people 
walking on the 
lawn 

1248 
People back on 
the pathway.  
 

   People not 
detected as novel 
since the pathway 
is already 
habituated to 
motion 

  

  

  

  

 

 

 

 

  

  

  

  

 

 

 

Figure 7: Images from video, Motion Mask and the Motion Novelty mask 



system has already forgotten this event, it fires a novelty for 
it and again assigns an initial habituation value.  
 
Analysis 2: The system successfully detects and tracks 
regional events. Figure 7 shows scenes of videos recorded 
on a university campus.  This video sequence shows people 
walking on the pathway and cars entering and leaving the 
parking lot.  The figure shows the actual image, the motion 
mask and the motion novelty mask during various frames 
of the video. Moving objects in the frame are shown within 
bounded box in the motion mask. The regions within the 
motion mask that depict a novel event are shown in the 
novelty mask. Initially the system fires novelty for each 
motion activity (event) until it learns the motion in the 
regions. Consider the example of motion detected for the 
swaying trees. Initially the system considers this tree 
motion as novel but gradually habituates to it and no more 
shows it as a novel event. This can be seen in novelty mask 
of frames 25, 133, 200 that detects the tree motion as 
novel, but in frames 364 and further the tree regions do not 
show a novel event. The system has been successfully 
tested on outdoor as well as indoor video scenes.  

Future Work and Discussion 
In the current framework we do not make use of any high 
level object descriptors. This can be one of the avenues to 
explore in future for content analysis. In this paper we 
described a system for novelty detection on natural scenes. 
We termed this system as VENUS. The central 
contribution of this work was to combine the recent 
advances in Computer Vision (saliency and focus of 
attention) with Data Mining (mining high speed data 
streams).  The described system successfully employs the 
theory of habituation for learning novel events over time in 
a video data stream. We did not place any constraints or 
assumptions on the type of video data our system can 
process. As long as low-level features can be extracted and 
motion maps can be generated to capture motion, the 
system’s learning component will detect the novel events. 
This combination, of the focus of attention theory with 
habituation theory; is the real strength of the VENUS 
system. 

References 
Adelson, E.H.; and Bergen, J.R. 1985. Spatiotemporal 
energy models for the perception of motion. Journal of  
Optical Society of America. 2:284-321. 
Gaborski, R.; Vaingankar V.S.; and Canosa, R.L. 2003. 
Goal Directed Visual Search Based on Color Cues: Co-
operative Effects of Top-down & Bottom-up Visual 
Attention. In Proceedings of ANNIE. Rolla, Missouri. 
Gaborski R. S., Vaingankar V. S., Teredesai A., Chaoji V., 
Tentler A. 2004. Detection of inconsistent regions in video 
streams. IS&T/SPIE Electronic Imaging: Human Vision 
and Electronic Imaging IX, San Jose. 

Haering, N. C., Qian, R.J., and Sezan, M. I. 1999. A 
Semantic Event Detection Approach and Its Application to 
Detecting Hunts in Wildlife Video. In IEEE Transactions 
on Circuits and Systems for Video technology, 10:857—
868. 
Itti L., and C. Koch. 2001. Computational modeling of 
visual attention. Nature Neuroscience Review., 2(3):194-
203. 
Koch, C., and S. Ullman. 1985. Shifts in selective visual 
attention: towards the underlying neural circuitry. Human 
Neurobiology. 4:219-227. 
Kohonen, T. eds. 1988. Self-Organization and Associative 
Memory. New York: Springer-Verlag. 
Marsland, S.; Nehmzow, U.; and Shapiro, J. 1999. A model 
of habituation applied to mobile robots. In Proceedings of 
Towards Intelligent Mobile Robots. Bristol, UK. 
Medioni,G.; Cohen, I.; Brmond, F.; Hongeng, S.; and 
Nevatia R. 2001. Event Detection and Analysis from Video 
Streams. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 23: 8, 873-889. 
Siddle, D. A. T.; Kuiack, M.; and Kroese, S. B. 1983. The 
Orienting reflex. (pp. 149-170). In Physiological 
Correlates of Human Behaviour. Edited by Gale A. and 
Edwards, J. Academic Press: London. 
Stauffer, C.; and Grimson, E. 2000. Learning Patterns of 
Activity Using Real-Time Tracking. In IEEE Transactions 
on Pattern Analysis and Machine Intelligence. 22(8):747-
757. 
Tentler A.; Vaingankar V.; Gaborski R.; and Teredesai A. 
2003. Event Detection in Video Sequences of Natural 
Scenes. In IEEE Western New York Image Processing 
Workshop, Rochester, New York. 
Vaingankar V.S, Chaoji V, Gaborski R S, Teredesai A M. 
2003. "Cognitively motivated habituation for novelty 
detection in video", NIPS Workshop on Open Challenges 
in Cognitive Vision. Whistler, Canada. 
Wang D.L. 1995. Habituation. Arbib M.A. (ed.), The 
Handbook of Brain Theory and Neural Networks. 441-444, 
MIT Press. 
Young, R. A; Lesperance, R. M., and Meyer, W. W. 2001 
The Gaussian Derivative model for spatialtemporal vision: 
I. Cortical Model. Spatial Vision, 14(3,4):261-319. 
 
 


