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Abstract 
Constraint satisfaction technology emerged from AI 
research. Its practical success is based on integration of 
sophisticated search with consistency techniques reducing 
the search space by removing as many as possible 
inconsistent values from the problem. Singleton consistency 
is a meta-consistency technique that reinforces other pure 
consistency techniques by their repeated invocation and 
thus it achieves even better domain pruning. The paper 
presents a new algorithm for singleton arc consistency that 
improves practical time efficiency of singleton arc 
consistency by applying the principles behind AC-4. 

Introduction   
Constraint programming (CP) is a successful technology 
for solving combinatorial problems modelled as constraint 
satisfaction problems. The power behind CP is hidden in 
filtering variables’ domains by removing inconsistent 
values, i.e., values that cannot be part of any solution. This 
technique reduces the search space and thus speeds up the 
solving process. Removing as many as possible 
inconsistencies from the constraint networks and detecting 
the future clashes as soon as possible are two main goals of 
consistency techniques. There exist many notions of 
consistency and many consistency algorithms were 
proposed to achieve these goals (Barták, 2001). Among 
these techniques, singleton consistency plays an 
exceptional role because of its meta-character (Debruyne 
and Bessière, 1997). Singleton consistency is not a 
“standalone” technique but it improves filtering power of 
another pure consistency technique like arc consistency or 
path consistency. Basically, the singleton consistency 
ensures that after assigning a value to the variable it is still 
possible to make the problem consistent in terms of the 
underlying consistency technique. By ensuring this basic 
feature for each value in the problem it is possible to 
remove more inconsistencies than by using the underlying 
consistency technique alone (Prosser, Stergiou, Walsh, 
2000). Moreover, singleton consistency removes 
(inconsistent) values from the variables’ domains so it does 
not change the structure of the constraint network like other 
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stronger consistency techniques e.g. path consistency. Last 
but not least, provided that we have the algorithm for 
achieving some basic consistency level, it is easy to extend 
this algorithm to achieve a singleton consistency for this 
consistency level. On the other hand, the current singleton 
consistency algorithm suffers from the efficiency problems 
because it repeatedly invokes the underlying consistency 
algorithms until domain of any variable is changed. In 
some sense, the basic singleton consistency algorithm 
mimics behaviour of the old-fashioned AC-1 and PC-1 
algorithms that were proposed many years ago 
(Mackworth, 1977). In this paper we propose to apply the 
improvement leading to AC-3 and AC-4 algorithms to 
singleton arc consistency (SAC). The basic idea of the new 
SAC-2 algorithm is to minimise the number of calls to the 
underlying AC algorithm (we use AC-4 there) by 
remembering the supporting values for each value. We 
compared the new algorithm with the original SAC-1 
algorithm from (Debruyne and Bessière, 1997) on random 
CSPs (Gent et al. 1998). The empirical evaluation shows 
that the new algorithm is significantly faster in the area of 
phase transition where the hard problems settle. 
 The paper is organised as follows. First we formally 
introduce the notion of singleton arc consistency and we 
present the original SAC-1 algorithm. Then we describe the 
improved algorithm called SAC-2, we show soundness and 
completeness of this new algorithm and we describe its 
worst-case time and space complexity. The paper is 
concluded with experimental results comparing SAC-1 and 
SAC-2 on random constraint satisfaction problems. 

Preliminaries 
A constraint satisfaction problem (CSP) P is a triple 
(X,D,C), where X is a finite set of variables, for each xi∈X, 
Di∈D is a finite set of possible values for the variable xi 
(the domain), and C is a finite set of constraints. In this 
paper we expect all the constraints to be binary, i.e., the 
constraint cij∈C defined over the variables xi and xj is a 
subset of the Cartesian product Di×Dj. We denote by 
P|Di={a} the CSP obtained from P by assigning a value a 
to the variable xi. 

Definition 1: The value a of the variable xi is arc 
consistent if and only if for each variable xj connected to xi 
by the constraint cij, there exists a value b∈Dj such that 



(a,b)∈cij. The CSP is arc consistent if and only if every 
value of every variable is arc consistent. 

The idea of singleton consistency was first proposed in 
(Debruyne and Bessière, 1997) and then studied in 
(Prosser, Stergiou, Walsh, 2000). Basically, singleton 
consistency extends some particular consistency level A in 
such a way that for any instantiation of the variable, the 
resulting sub-problem can be made A-consistent. In this 
paper we describe a new algorithm for singleton arc 
consistency so let us define singleton arc consistency first. 

Definition 2: The value a of the variable xi is singleton arc 
consistent if and only if the problem restricted to xi = a 
(i.e., P|Di={a}) is arc consistent. The CSP is singleton arc 
consistent if and only if every value of every variable is 
singleton arc consistent. 

Debruyne and Bessière (1997) proposed a straightforward 
algorithm for achieving singleton arc consistency. This 
algorithm is shown in Figure 1; we call it SAC-1. SAC-1 
first enforces arc consistency using some underlying AC 
algorithm and then it tests the SAC feature for each value 
of each variable. If the value is not singleton arc consistent, 
then the value is removed from the domain and arc 
consistency is established again. If any value is removed 
then the loop is repeated again and again until all the 
remaining values are singleton arc consistent. 
 
procedure SAC_1(P); 
 1 P <- AC(P); 
 2 repeat 
 3   change <- false; 
4   forall i ∈ X do 
5     forall a ∈ Di do 

 6       if P|Di={a} leads to wipe out then 
 7         Di <- Di \ {a}; 
 8         propagate the deletion of (i,a) 

in P to achieve AC; 
 9         change <- true; 
10 until change = false; 

Figure 1. Algorithm SAC-1. 
 
In some sense, SAC-1 behaves like AC-1 (Mackworth, 
1977) – all the consistency checks are repeated for all 
remaining values until a fix point is reached. However, it 
implies that many checks may be repeated useless because 
they have nothing in common with the deleted value. By 
using this observation we propose an improvement of the 
SAC algorithm called SAC-2 that performs only necessary 
checks after value deletion. 

Algorithm SAC-2 
As we mentioned above, the algorithm SAC-1 suffers from 
repeated checks of SAC that are not necessary. To decrease 
the number of checks we need to identify which values 
should be checked after deletion of a given value. A similar 
problem was resolved in the algorithm AC-3 that improves 

AC-1 (Mackworth, 1997). Thanks to a local character of 
arc consistency, AC-3 can only check the variables that are 
connected to the variable where some value has been 
deleted. AC-4 further improves this idea by remembering 
the direct relations between the values (Mohr, Henderson, 
1986). In fact, AC-4 keeps a set of values that are 
supported by a given value – it is called a support set. If a 
value is removed from domain then only the values from 
the support set need to be checked for arc consistency. 
 Unfortunately, singleton arc consistency has a global 
character that complicates the definition of a support set. 
Recall that a value a of the variable xi is singleton arc 
consistent if P|Di={a} is arc consistent. If we make the 
problem P|Di={a} arc consistent then this consistency can 
be broken only by removing some value from the current 
domain of some variable. In such a case SAC must be 
checked for a again. So it means that all the values in the 
domains of P|Di={a} after making this problem arc 
consistent are supporters for singleton arc consistency of a. 
Using this principle we have proposed an algorithm SAC-2 
that keeps a set of values supported by a given value. Like 
in AC-4, if the value is removed from domain then the 
values from the support set are checked for SAC. 
 Figure 2 formally describes the algorithm SAC-2 
together with all auxiliary procedures. Note that CSP P 
consists of the set of variables X, the set of constraints C, 
and domains Di for variables. We use the notation similar 
to other AC algorithms, for example (Mohr, Henderson, 
1986). 
 
procedure initializeAC(P, M, Counter, SAC, 

listAC); 
 1 forall (i,j) ∈ C do  
 2   forall a ∈ Di do 
 3     total <- 0; 
 4     forall b ∈ Dj do 
 5       if (a,b) ∈ cij then 
 6         total <- total + 1; 
 7         SjbAC <- SjbAC ∪ {(i,a)}; 
 8     if total = 0 then 
 9       Di <- Di \ {a}; 
10       M[i,a] <- 1; 
11       listAC <- listAC ∪ {(i,a)}; 
12    else Counter[(i,j),a] <- total; 
  
 
procedure pruneAC(P, M, Counter, SAC, 

listAC, SSAC, listSAC); 
 1 while listAC ≠ 0 do 
 2   choose and delete (j,b) from listAC;   
 3   forall (i,a) ∈ SjbAC do 
 4     Counter[(i,j),a] <- 

Counter[(i,j),a] – 1; 
 5     if Counter[(i,j),a]=0 

and M[i,a]=0 then 
 6       Di <- Di \ {a}; 
 7       M[i,a] <- 1; 
 8       listAC <- listAC ∪ {(i,a)}; 
 9       forall (k,c) ∈ SiaSAC do 
10         listSAC <- listSAC ∪ {(k,c)}; 



procedure initializeSAC(P,M,Counter,SAC, 
listAC,SSAC,listSAC); 

 1 forall i ∈ X do 
 2   forall a ∈ Di do 
 3     if P|Di={a} leads to wipe out then 
 4       Di <- Di \ {a}; 
 5       M[i,a] <- 1; 
 6       pruneAC(P, M, Counter, SAC, 

{(i,a)}, SSAC, listSAC); 
 7       forall (k,c) ∈ SiaSAC do 
 8         listSAC <- listSAC ∪ {(k,c)}; 
 9     else forall (j,b) ∈ P|Di={a} do 
10       SjbSAC <- SjbSAC ∪ {(i,a)}; 
 
procedure pruneSAC(P, M, Counter, SAC, 

listAC, SSAC, listSAC) 
1 while listSAC ≠ 0 do 
2   choose and delete (i,a) from listSAC; 
3   if a ∈ Di then 
4     if P|Di={a} leads to wipe out then 
5       Di <- Di \ {a}; 
6       M[i,a] <- 1; 
7       pruneAC(P, M, Counter, SAC, 

{(i,a)}, SSAC, listSAC); 
8       forall (k,c) ∈ SiaSAC do 
9         listSAC <- listSAC ∪ {(k,c)}; 
   
procedure SAC_2(P); 
 1 M <- 0; 
 2 Counter <- 0; 
 3 SAC <- 0; 
 4 listAC <- 0; 
 5 SSAC <- 0; 
 6 listSAC <- 0; 
 7 initializeAC(P, M, Counter, SAC, listAC); 
 8 pruneAC(P, M, Counter, SAC, 

listAC, SSAC, listSAC); 
 9 initializeSAC(P, M, Counter, SAC, 

listAC, SSAC, listSAC); 
10 pruneSAC(P, M, Counter, SAC, 

listAC, SSAC, listSAC); 

Figure 2. Algorithm SAC-2. 
 
The algorithm SAC-2 is tightly integrated with AC-4 so the 
arc consistency procedures in SAC-2 are derived from  
AC-4. However, note that SAC-2 is not the same as SAC-1 
where AC-4 is used for consistency tests. SAC-2 uses the 
standard AC-4 data structures like the support sets SAC, the 
counters C, and the queue listAC of values to be checked 
for AC. We use an array M to indicate whether the value is 
still in the domain. There are also similar data structures for 
checking singleton arc consistency, namely the support sets 
SSAC and the queue listSAC. 
 First, the algorithm SAC-2 establishes arc consistency by 
using the procedures initializeAC and pruneAC. Note that 
these procedures are almost identical to the relevant 
procedures in AC-4; these new procedures only modify the 
new data structures SSAC and listSAC in addition to the 
standard “AC job”. Nevertheless, during the first run of 
initializeAC and pruneAC, the SAC data structures remain 

empty. The SSAC and listSAC are filled during 
initializeSAC; SSAC captures the support sets as described 
earlier in this section while listSAC keeps the values that 
need to be re-checked for SAC again. Note that as soon as 
SSAC is filled, this data structure is no more updated during 
the algorithm (for simplicity of implementation). The rest 
of the algorithm uses more or less a standard principle: the 
value is removed from the queue, checked for SAC and in 
case of failure, the value is removed from the domain, AC 
is established, and the supported values are added to the 
queue. The main difference of SAC-2 from SAC-1 is that 
only the relevant values are re-checked for SAC. 
 Naturally, the algorithms for singleton arc consistency 
are based on some underlying arc consistency algorithm. 
While SAC-1 is more or less independent of the AC 
algorithm, in SAC-2 we decided to integrate AC-4 as the 
underlying AC algorithm. AC-4 has the best worst-case 
time complexity but due to complex initialisation the 
average complexity is close to the worst complexity. To 
remove this difficulty, AC-6 algorithm was proposed in 
(Bessière, 1994). It remembers just one support for each 
value and when this support is lost, it looks for another one. 
Thus AC-6 spreads the initialisation phase over the 
propagation phase. 
 In SAC-2, the AC algorithm is called to establish arc 
consistency (pruneAC) as well as to test SAC of a given 
value (“P|Di={a} leads to wipe out”). In the second case, 
we use a modified version of pruneAC applied to a copy of 
the problem where the domain of Xi is reduced to {a}. This 
helps us to “recover” domains and other data structures 
after the test. Note also that SAC data structures are not 
used during the test on SAC (as they are useless) while AC 
data structures are taken up from the main algorithm. 
Therefore initialisation of data structures is not repeated 
(they are just copied) so we believe that AC-4 pays off 
there. However, we did not test AC-6 yet. 
 Note finally that for simplicity reasons we removed the 
tests of domain emptiness from the description of the 
algorithms. If any domain is made empty then the affected 
procedure stops and returns a failure to the top procedure. 

Theoretical Analysis 

To show the correctness of the algorithm SAC-2 it is 
necessary to prove that every SAC inconsistent value is 
removed (completeness) and that no SAC consistent value 
is removed when SAC-2 terminates (soundness). Moreover, 
we also need to prove that SAC-2 terminates. 

Proposition 1: The algorithm SAC-2 terminates for any 
constraint satisfaction problem. 

Proof: The initialisation procedures consist of for loops 
only so they terminate. The pruning procedures use a while 
loop over the list of pairs (variable, value). During each 
cycle, one element is removed from the list. The elements 
are added to this list only when a value is removed from 
some domain. Thus, it is possible to add only a finite 
number of elements to the list (some elements can be added 



repeatedly). Together, the pruning procedures terminates 
and the algorithm SAC-2 terminates too. 

q 

Proposition 2: The algorithm SAC-2 does not remove any 
SAC consistent value from the variables’ domains. 

Proof: Notice that a value is removed from the domain 
only if the value is not arc consistent (in pruneAC) or the 
value is not singleton arc consistent (in pruneSAC). Thus, 
the algorithm SAC-2 does not remove any SAC consistent 
value from the variables’ domains so the algorithm is 
sound. 

q 

Proposition 3: When the algorithm SAC-2 terminates, then 
the domains of variables contain only singleton arc 
consistent values (or some domain is empty). 

Proof: Every value in the domain passed the SAC test and 
since then the validity of the test was not violated by 
deleting any supporter. 

q 
The worst-case time complexity of the algorithm AC-4 is 
O(d2e), where d is a maximum size of the domains and e is 
a number of constraints (Mohr and Henderson, 1986). The 
worst-case time complexity of the algorithm SAC-2 is thus 
O(n2d4e). If SAC-1 uses AC-4 algorithm as the underlying 
arc consistency solver then its worst-case time complexity 
is O(n2d4e) too. Nevertheless, the average complexity of 
SAC-2 is better because it does not need to perform so 
many repetitive consistency checks (see Experiments). 
 The space complexity of AC-4 is O(d2e), where d is a 
maximum size of the domains and e is a number of 
constraints. In addition to AC-4 data structures, the 
algorithm SAC-2 uses two additional data structures: 
listSAC and SSAC. Thus, the space complexity of the 
algorithm SAC-2 is O(n2d2) which is comparable to AC-4 
for problems with a very high density of the constraints 
where e = O(n2). 

Implementation of Data Structures 
Many current research papers discuss constraint 
satisfaction algorithms from the theoretical point of view 
but without giving the implementation details. However, 
the practical efficiency of the algorithm is strongly 
influenced by the used data structures as well as by applied 
programming techniques. We believe that providing 
implementation details is at least as important as the 
theoretical study. In this section we show how the choice of 
the data structure implementing the list used in SAC-2 
algorithm may influence the efficiency. 
 One of the main data structures in SAC-2 is the list 
listSAC keeping the values that need to be re-checked 
for singleton arc consistency. Visibly the ordering of values 
in this list may influence the number of SAC checks. On 
the other hand, the choice of the data structure does not 
influence the result of the algorithm, i.e., at the end, the 

same values will be removed from the domains 
independently of the data structure used for listSAC. 
 Let us first summarise what operations over listSAC 
are required by the SAC-2 algorithm. It must be possible to 
add a new value to the list. In this case the list should 
behave as a set, i.e., each value can be placed at most once 
in the list. We also need to select and delete a value from 
the list and to check whether the list is empty. All these 
operations should be performed in a constant time, if 
possible. The space complexity of listSAC should be 
O(nd), where n is a number of variables and d is a 
maximum size of the domains. Note that this is the smallest 
possible space complexity because the listSAC may 
contain all the values for all the variables in the problem. 
 We have explored the standard implementations of lists 
using stack (LIFO) and queue (LILO) combined with a 
binary array modelling the set features of the list. The 
practical efficiency of the stack was not very good, the 
queue behaved well but it is hard to compare this data 
structure with SAC-1. Therefore we proposed a new data 
structure called a cyclic list. The cyclic list is basically a 
binary array indicating which elements are currently in the 
list. There is a pointer to this array indicating which 
element was explored last. The elements are explored in a 
lexicographic order, i.e. all values for a single variable are 
explored first before going to the next variable. The 
exploration always starts at the position of the last selected 
value. We call the structure a cyclic list because when the 
last value of the last variable is explored then the first value 
of the first variable is tested. Naturally, only the values 
marked as being in the list are checked for SAC (see Figure 
3). To simplify checking emptiness of the list, there is also 
a counter indicating the number of elements in the list. 
Note that in some sense the cyclic list implements a priority 
queue where the elements closer (in lexicographic 
ordering) to the current element are preferred. 
 Visibly, inserting a new element to this list as well as 
checking emptiness requires a constant time. However, 
time complexity of selecting and deleting the next element 
from the list is O(nd), where n is a number of variables and 
d is a maximum size of the domains. Nevertheless, this is a 
hypothetical complexity of the worst case which does not 
influence the complexity analysis of the algorithm SAC-2 
in the previous section. The space complexity is O(nd) as 
we requested. 
 
  

  0->0->0->0->0->0 
 0->1  0  0  0  0 
 0  0  0  0  1  0 
 1  0  0  0  0  0 
 0  1  0  0  1  1 
 0  0  0->0->0->0      
 0->0->0->0->0->0 

 
Figure 3. Values in the cyclic list are explored in a lexicographic 
order defined by the variables and ordering of values in the 
variable domain. Each row corresponds to domain of a variable. 



The empirical study showed that real efficiency of the 
cyclic list is similar to a standard queue. However, thanks 
to nature of the cyclic list we can now formally prove that 
SAC-2 with the cyclic list does not perform more SAC tests 
than the SAC-1 algorithm. 

Proposition 4: If the queue listSAC is implemented 
using the data structure cyclic list in the algorithm SAC-2, 
then SAC-2 does not perform more SAC tests than the 
SAC-1 algorithm. 

Proof: During the first pass of the repeat-until loop, the 
SAC-1 algorithm checks all the variables’ values for SAC, 
the same is done by SAC-2 during the procedure 
initializeSAC(). If no SAC inconsistency is detected then 
both algorithms terminate: SAC-1 because the flag of 
variable change remains false, SAC-2 because the 
listSAC remains empty. If some value is removed due to 
SAC inconsistency then SAC-1 repeats the tests for all the 
variables’ values again starting from the first value of the 
first variable. SAC-2 explores the same set of variables’ 
values in the procedure pruneSAC() but only the values that 
are possibly affected by the deletion are tested (these 
values are in the listSAC). Moreover, the values are 
explored in the same order as in SAC-1 thanks to the nature 
of the cyclic list. Thus during the second pass of the loop, 
SAC-2 will probably test a smaller number of values but 
definitely it does not test a larger number of values. Again, 
if some value is deleted then SAC-1 repeats the loop 
completely while SAC-2 tests only the affected values. 
Moreover, if the affected values are in listSAC before 
the “turnover” then these values will be tested in the same 
loop while SAC-1 requires one more run of the loop. 
Together, SAC-2 performs a smaller or equal number of 
loops than SAC-1 and in each loop SAC-2 tests a smaller 
or equal number of values. Thus the proposition holds. 

q 

Experimental Results 
To confirm our expectations about better practical 
efficiency of SAC-2 in comparison to SAC-1 we have 
implemented both algorithms in Java and we compared 
them using random constraint satisfaction problems. The 
experiments run on 1.7 GHz Pentium 4 and 512 MB RAM. 

Random CSP 

Random constraint satisfaction problems became a de facto 
standard for testing constraint satisfaction algorithms (Gent 
et al., 1998). Random CSP is a binary constraint 
satisfaction problem specified by four parameters: 

• n - a number of variables, 
• d - a size of domains, 
• density - defines how many constraints appear in the 

problem, 
• tightness - defines how many pairs of values are 

inconsistent in a constraint. 

We have implemented a generator of Random CSP that 
works as follows. First, n variables are introduced together 
with the domains of size d. A random path of constraints 
between all the variables is generated to ensure that the 
constraint network is continuous. Then additional 
constraints between the random pairs of variables are 
added until the number of constraints is        
density*n*(n –1)/2. A complete domain is defined for 
each constraint and tightness*d*d random pairs of values 
are removed from this domain. 
 Three different areas can be identified in Random CSP: 

• the under-constrained problems, where almost every 
value is singleton arc consistent so SAC is run just 
once for each value (small tightness), 

• the over-constrained problems, where arc consistency 
already discovered the clashes so SAC is not run at all 
(large tightness), 

• a phase transition area where the hard problems settle. 

 
 
Comparison 

We compare both the number of SAC tests performed by 
both algorithms and the total running time.  Usually, the 
number of variables (n) and the size of domains (d) is 
fixed, while density and tightness is variable to get a set of 
different problems. We present the results for n=50 and 
d=20, the results for other pairs n/d are quite similar – we 
have performed the experiments for all combinations of 
n∈{10,20,30} and d∈{10,20,30}. We have generated a 
hundred instances of each problem and for every instance 
both algorithms were run. 
 When comparing the number of SAC tests performed by 
SAC-1 and SAC-2 (Figure 4), we can see that in the under-
constrained and over-constrained areas, the number of tests 
is identical for both algorithms. This is not surprising 
because both algorithms finish in the first stage either with 
a failure for the over-constrained problems or with a 
success for the under-constrained problems. However, in 
the phase transition area SAC-2 performs a visibly smaller 
number of tests. Actually, SAC-2 performs as 40% less 
SAC tests than SAC-1. The reason is that SAC-2 checks 
only the values that are possibly affected by some domain 
reduction and it may do the test earlier than SAC-1, if the 
affected value is already in the listSAC. Moreover as we 
showed in Proposition 4, SAC-2 never performs more tests 
than SAC-1, if we use the proposed data structure for 
listSAC. 
 When comparing the running times (Figure 5), in the 
area of over-constrained problems both algorithms run at 
the same speed simply because the SAC part is not invoked 
at all – the clash is already detected during establishing arc 
consistency. In the area of under-constrained problems, 
SAC-2 is slightly handicapped because of the overhead 
with the initialisation of the data structures. Still the 
running time is comparable to SAC-1. In the area of phase 
transition, SAC-2 again significantly outperforms SAC-1. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. A comparison of the number of SAC tests performed by 
SAC-1 and SAC-2. The big graph (left) shows a relative 
comparison (100*(SAC1 - SAC2)/SAC1), the small graph (right) 
shows an absolute number of SAC tests performed by SAC-2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. A comparison of running times for SAC-1 and SAC-2. 
The big graph (left) shows a time difference (SAC1 - SAC2) 
while the small graph (right) shows an absolute time of SAC2. 
Time is measured in milliseconds. 
 

Conclusions 
The paper presents a new algorithm for achieving singleton 
arc consistency called SAC-2. The algorithm is based on 
the ideas of AC-4 and it uses AC-4 as the underlying 
consistency algorithm. We formally proved that the new 
algorithm does not invoke the AC procedure to test the 
SAC condition (“P|Di={a} leads to wipe out”) more times 
than the original SAC-1 algorithm. In fact the empirical 
study shows that it invokes the AC procedure a 
significantly smaller number of times. Due to maintaining 
internal data structures, the SAC-2 algorithm has larger 
overhead than the SAC-1 algorithm but the empirical 
results show that SAC-2 still achieves better running times 
than SAC-1 in the area of phase transition where the hard 
problems settle. Still the time and space complexity of 
SAC-2 is not neglecting so SAC should be applied with 

caution. We believe that SAC can help to prune the search 
space before the labelling procedure starts or when variable 
domains are small, for example binary. 
 SAC-2 is useful especially when AC-4 is applied in the 
solving procedure as the long initialisation stage of AC-4 
pays of there. Other improvements of AC-4 like AC-6 
might or might not help; we have no evidence about it yet. 
 SAC-2 has the same time complexity as SAC-1 and this 
complexity is not optimal (personal communication to 
Christian Bessière). Nevertheless, SAC-2 can be further 
improved by updating the data structure SSAC during the 
SAC tests and by using it to update the domains before 
doing the SAC tests. This improvement might lead to the 
optimal SAC algorithm but the question is whether the 
additional overhead pays-off. 
 Note finally that the ideas of SAC-2 can be extended to 
n-ary constraints as well as to other consistency levels like 
path consistency as showed in (Erben, 2002). 
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