
A New Algorithm for Singleton Arc Consistency

Roman Barták, Radek Erben

Charles University, Institute for Theoretical Computer Science
Malostranské nám. 2/25, 118 00 Praha 1, Czech Republic

bartak@kti.mff.cuni.cz, erben@fbl.cz

Abstract
Constraint satisfaction technology emerged from AI
research. Its practical success is based on integration of
sophisticated search with consistency techniques reducing
the search space by removing as many as possible
inconsistent values from the problem. Singleton consistency
is a meta-consistency technique that reinforces other pure
consistency techniques by their repeated invocation and
thus it achieves even better domain pruning. The paper
presents a new algorithm for singleton arc consistency that
improves practical time efficiency of singleton arc
consistency by applying the principles behind AC-4.

Introduction
Constraint programming (CP) is a successful technology
for solving combinatorial problems modelled as constraint
satisfaction problems. The power behind CP is hidden in
filtering variables’ domains by removing inconsistent
values, i.e., values that cannot be part of any solution. This
technique reduces the search space and thus speeds up the
solving process. Removing as many as possible
inconsistencies from the constraint networks and detecting
the future clashes as soon as possible are two main goals of
consistency techniques. There exist many notions of
consistency and many consistency algorithms were
proposed to achieve these goals (Barták, 2001). Among
these techniques, singleton consistency plays an
exceptional role because of its meta-character (Debruyne
and Bessière, 1997). Singleton consistency is not a
“standalone” technique but it improves filtering power of
another pure consistency technique like arc consistency or
path consistency. Basically, the singleton consistency
ensures that after assigning a value to the variable it is still
possible to make the problem consistent in terms of the
underlying consistency technique. By ensuring this basic
feature for each value in the problem it is possible to
remove more inconsistencies than by using the underlying
consistency technique alone (Prosser, Stergiou, Walsh,
2000). Moreover, singleton consistency removes
(inconsistent) values from the variables’ domains so it does
not change the structure of the constraint network like other

Copyright © 2004, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

stronger consistency techniques e.g. path consistency. Last
but not least, provided that we have the algorithm for
achieving some basic consistency level, it is easy to extend
this algorithm to achieve a singleton consistency for this
consistency level. On the other hand, the current singleton
consistency algorithm suffers from the efficiency problems
because it repeatedly invokes the underlying consistency
algorithms until domain of any variable is changed. In
some sense, the basic singleton consistency algorithm
mimics behaviour of the old-fashioned AC-1 and PC-1
algorithms that were proposed many years ago
(Mackworth, 1977). In this paper we propose to apply the
improvement leading to AC-3 and AC-4 algorithms to
singleton arc consistency (SAC). The basic idea of the new
SAC-2 algorithm is to minimise the number of calls to the
underlying AC algorithm (we use AC-4 there) by
remembering the supporting values for each value. We
compared the new algorithm with the original SAC-1
algorithm from (Debruyne and Bessière, 1997) on random
CSPs (Gent et al. 1998). The empirical evaluation shows
that the new algorithm is significantly faster in the area of
phase transition where the hard problems settle.
 The paper is organised as follows. First we formally
introduce the notion of singleton arc consistency and we
present the original SAC-1 algorithm. Then we describe the
improved algorithm called SAC-2, we show soundness and
completeness of this new algorithm and we describe its
worst-case time and space complexity. The paper is
concluded with experimental results comparing SAC-1 and
SAC-2 on random constraint satisfaction problems.

Preliminaries
A constraint satisfaction problem (CSP) P is a triple
(X,D,C), where X is a finite set of variables, for each xi∈X,
Di∈D is a finite set of possible values for the variable xi
(the domain), and C is a finite set of constraints. In this
paper we expect all the constraints to be binary, i.e., the
constraint cij∈C defined over the variables xi and xj is a
subset of the Cartesian product Di×Dj. We denote by
P|Di={a} the CSP obtained from P by assigning a value a
to the variable xi.

Definition 1: The value a of the variable xi is arc
consistent if and only if for each variable xj connected to xi
by the constraint cij, there exists a value b∈Dj such that

(a,b)∈cij. The CSP is arc consistent if and only if every
value of every variable is arc consistent.

The idea of singleton consistency was first proposed in
(Debruyne and Bessière, 1997) and then studied in
(Prosser, Stergiou, Walsh, 2000). Basically, singleton
consistency extends some particular consistency level A in
such a way that for any instantiation of the variable, the
resulting sub-problem can be made A-consistent. In this
paper we describe a new algorithm for singleton arc
consistency so let us define singleton arc consistency first.

Definition 2: The value a of the variable xi is singleton arc
consistent if and only if the problem restricted to xi = a
(i.e., P|Di={a}) is arc consistent. The CSP is singleton arc
consistent if and only if every value of every variable is
singleton arc consistent.

Debruyne and Bessière (1997) proposed a straightforward
algorithm for achieving singleton arc consistency. This
algorithm is shown in Figure 1; we call it SAC-1. SAC-1
first enforces arc consistency using some underlying AC
algorithm and then it tests the SAC feature for each value
of each variable. If the value is not singleton arc consistent,
then the value is removed from the domain and arc
consistency is established again. If any value is removed
then the loop is repeated again and again until all the
remaining values are singleton arc consistent.

procedure SAC_1(P);
 1 P <- AC(P);
 2 repeat
 3 change <- false;
4 forall i ∈ X do
5 forall a ∈ Di do

 6 if P|Di={a} leads to wipe out then
 7 Di <- Di \ {a};
 8 propagate the deletion of (i,a)

in P to achieve AC;
 9 change <- true;
10 until change = false;

Figure 1. Algorithm SAC-1.

In some sense, SAC-1 behaves like AC-1 (Mackworth,
1977) – all the consistency checks are repeated for all
remaining values until a fix point is reached. However, it
implies that many checks may be repeated useless because
they have nothing in common with the deleted value. By
using this observation we propose an improvement of the
SAC algorithm called SAC-2 that performs only necessary
checks after value deletion.

Algorithm SAC-2
As we mentioned above, the algorithm SAC-1 suffers from
repeated checks of SAC that are not necessary. To decrease
the number of checks we need to identify which values
should be checked after deletion of a given value. A similar
problem was resolved in the algorithm AC-3 that improves

AC-1 (Mackworth, 1997). Thanks to a local character of
arc consistency, AC-3 can only check the variables that are
connected to the variable where some value has been
deleted. AC-4 further improves this idea by remembering
the direct relations between the values (Mohr, Henderson,
1986). In fact, AC-4 keeps a set of values that are
supported by a given value – it is called a support set. If a
value is removed from domain then only the values from
the support set need to be checked for arc consistency.
 Unfortunately, singleton arc consistency has a global
character that complicates the definition of a support set.
Recall that a value a of the variable xi is singleton arc
consistent if P|Di={a} is arc consistent. If we make the
problem P|Di={a} arc consistent then this consistency can
be broken only by removing some value from the current
domain of some variable. In such a case SAC must be
checked for a again. So it means that all the values in the
domains of P|Di={a} after making this problem arc
consistent are supporters for singleton arc consistency of a.
Using this principle we have proposed an algorithm SAC-2
that keeps a set of values supported by a given value. Like
in AC-4, if the value is removed from domain then the
values from the support set are checked for SAC.
 Figure 2 formally describes the algorithm SAC-2
together with all auxiliary procedures. Note that CSP P
consists of the set of variables X, the set of constraints C,
and domains Di for variables. We use the notation similar
to other AC algorithms, for example (Mohr, Henderson,
1986).

procedure initializeAC(P, M, Counter, SAC,

listAC);
 1 forall (i,j) ∈ C do
 2 forall a ∈ Di do
 3 total <- 0;
 4 forall b ∈ Dj do
 5 if (a,b) ∈ cij then
 6 total <- total + 1;
 7 SjbAC <- SjbAC ∪ {(i,a)};
 8 if total = 0 then
 9 Di <- Di \ {a};
10 M[i,a] <- 1;
11 listAC <- listAC ∪ {(i,a)};
12 else Counter[(i,j),a] <- total;

procedure pruneAC(P, M, Counter, SAC,

listAC, SSAC, listSAC);
 1 while listAC ≠ 0 do
 2 choose and delete (j,b) from listAC;
 3 forall (i,a) ∈ SjbAC do
 4 Counter[(i,j),a] <-

Counter[(i,j),a] – 1;
 5 if Counter[(i,j),a]=0

and M[i,a]=0 then
 6 Di <- Di \ {a};
 7 M[i,a] <- 1;
 8 listAC <- listAC ∪ {(i,a)};
 9 forall (k,c) ∈ SiaSAC do
10 listSAC <- listSAC ∪ {(k,c)};

procedure initializeSAC(P,M,Counter,SAC,
listAC,SSAC,listSAC);

 1 forall i ∈ X do
 2 forall a ∈ Di do
 3 if P|Di={a} leads to wipe out then
 4 Di <- Di \ {a};
 5 M[i,a] <- 1;
 6 pruneAC(P, M, Counter, SAC,

{(i,a)}, SSAC, listSAC);
 7 forall (k,c) ∈ SiaSAC do
 8 listSAC <- listSAC ∪ {(k,c)};
 9 else forall (j,b) ∈ P|Di={a} do
10 SjbSAC <- SjbSAC ∪ {(i,a)};

procedure pruneSAC(P, M, Counter, SAC,

listAC, SSAC, listSAC)
1 while listSAC ≠ 0 do
2 choose and delete (i,a) from listSAC;
3 if a ∈ Di then
4 if P|Di={a} leads to wipe out then
5 Di <- Di \ {a};
6 M[i,a] <- 1;
7 pruneAC(P, M, Counter, SAC,

{(i,a)}, SSAC, listSAC);
8 forall (k,c) ∈ SiaSAC do
9 listSAC <- listSAC ∪ {(k,c)};

procedure SAC_2(P);
 1 M <- 0;
 2 Counter <- 0;
 3 SAC <- 0;
 4 listAC <- 0;
 5 SSAC <- 0;
 6 listSAC <- 0;
 7 initializeAC(P, M, Counter, SAC, listAC);
 8 pruneAC(P, M, Counter, SAC,

listAC, SSAC, listSAC);
 9 initializeSAC(P, M, Counter, SAC,

listAC, SSAC, listSAC);
10 pruneSAC(P, M, Counter, SAC,

listAC, SSAC, listSAC);

Figure 2. Algorithm SAC-2.

The algorithm SAC-2 is tightly integrated with AC-4 so the
arc consistency procedures in SAC-2 are derived from
AC-4. However, note that SAC-2 is not the same as SAC-1
where AC-4 is used for consistency tests. SAC-2 uses the
standard AC-4 data structures like the support sets SAC, the
counters C, and the queue listAC of values to be checked
for AC. We use an array M to indicate whether the value is
still in the domain. There are also similar data structures for
checking singleton arc consistency, namely the support sets
SSAC and the queue listSAC.
 First, the algorithm SAC-2 establishes arc consistency by
using the procedures initializeAC and pruneAC. Note that
these procedures are almost identical to the relevant
procedures in AC-4; these new procedures only modify the
new data structures SSAC and listSAC in addition to the
standard “AC job”. Nevertheless, during the first run of
initializeAC and pruneAC, the SAC data structures remain

empty. The SSAC and listSAC are filled during
initializeSAC; SSAC captures the support sets as described
earlier in this section while listSAC keeps the values that
need to be re-checked for SAC again. Note that as soon as
SSAC is filled, this data structure is no more updated during
the algorithm (for simplicity of implementation). The rest
of the algorithm uses more or less a standard principle: the
value is removed from the queue, checked for SAC and in
case of failure, the value is removed from the domain, AC
is established, and the supported values are added to the
queue. The main difference of SAC-2 from SAC-1 is that
only the relevant values are re-checked for SAC.
 Naturally, the algorithms for singleton arc consistency
are based on some underlying arc consistency algorithm.
While SAC-1 is more or less independent of the AC
algorithm, in SAC-2 we decided to integrate AC-4 as the
underlying AC algorithm. AC-4 has the best worst-case
time complexity but due to complex initialisation the
average complexity is close to the worst complexity. To
remove this difficulty, AC-6 algorithm was proposed in
(Bessière, 1994). It remembers just one support for each
value and when this support is lost, it looks for another one.
Thus AC-6 spreads the initialisation phase over the
propagation phase.
 In SAC-2, the AC algorithm is called to establish arc
consistency (pruneAC) as well as to test SAC of a given
value (“P|Di={a} leads to wipe out”). In the second case,
we use a modified version of pruneAC applied to a copy of
the problem where the domain of Xi is reduced to {a}. This
helps us to “recover” domains and other data structures
after the test. Note also that SAC data structures are not
used during the test on SAC (as they are useless) while AC
data structures are taken up from the main algorithm.
Therefore initialisation of data structures is not repeated
(they are just copied) so we believe that AC-4 pays off
there. However, we did not test AC-6 yet.
 Note finally that for simplicity reasons we removed the
tests of domain emptiness from the description of the
algorithms. If any domain is made empty then the affected
procedure stops and returns a failure to the top procedure.

Theoretical Analysis

To show the correctness of the algorithm SAC-2 it is
necessary to prove that every SAC inconsistent value is
removed (completeness) and that no SAC consistent value
is removed when SAC-2 terminates (soundness). Moreover,
we also need to prove that SAC-2 terminates.

Proposition 1: The algorithm SAC-2 terminates for any
constraint satisfaction problem.

Proof: The initialisation procedures consist of for loops
only so they terminate. The pruning procedures use a while
loop over the list of pairs (variable, value). During each
cycle, one element is removed from the list. The elements
are added to this list only when a value is removed from
some domain. Thus, it is possible to add only a finite
number of elements to the list (some elements can be added

repeatedly). Together, the pruning procedures terminates
and the algorithm SAC-2 terminates too.

q

Proposition 2: The algorithm SAC-2 does not remove any
SAC consistent value from the variables’ domains.

Proof: Notice that a value is removed from the domain
only if the value is not arc consistent (in pruneAC) or the
value is not singleton arc consistent (in pruneSAC). Thus,
the algorithm SAC-2 does not remove any SAC consistent
value from the variables’ domains so the algorithm is
sound.

q

Proposition 3: When the algorithm SAC-2 terminates, then
the domains of variables contain only singleton arc
consistent values (or some domain is empty).

Proof: Every value in the domain passed the SAC test and
since then the validity of the test was not violated by
deleting any supporter.

q
The worst-case time complexity of the algorithm AC-4 is
O(d2e), where d is a maximum size of the domains and e is
a number of constraints (Mohr and Henderson, 1986). The
worst-case time complexity of the algorithm SAC-2 is thus
O(n2d4e). If SAC-1 uses AC-4 algorithm as the underlying
arc consistency solver then its worst-case time complexity
is O(n2d4e) too. Nevertheless, the average complexity of
SAC-2 is better because it does not need to perform so
many repetitive consistency checks (see Experiments).
 The space complexity of AC-4 is O(d2e), where d is a
maximum size of the domains and e is a number of
constraints. In addition to AC-4 data structures, the
algorithm SAC-2 uses two additional data structures:
listSAC and SSAC. Thus, the space complexity of the
algorithm SAC-2 is O(n2d2) which is comparable to AC-4
for problems with a very high density of the constraints
where e = O(n2).

Implementation of Data Structures
Many current research papers discuss constraint
satisfaction algorithms from the theoretical point of view
but without giving the implementation details. However,
the practical efficiency of the algorithm is strongly
influenced by the used data structures as well as by applied
programming techniques. We believe that providing
implementation details is at least as important as the
theoretical study. In this section we show how the choice of
the data structure implementing the list used in SAC-2
algorithm may influence the efficiency.
 One of the main data structures in SAC-2 is the list
listSAC keeping the values that need to be re-checked
for singleton arc consistency. Visibly the ordering of values
in this list may influence the number of SAC checks. On
the other hand, the choice of the data structure does not
influence the result of the algorithm, i.e., at the end, the

same values will be removed from the domains
independently of the data structure used for listSAC.
 Let us first summarise what operations over listSAC
are required by the SAC-2 algorithm. It must be possible to
add a new value to the list. In this case the list should
behave as a set, i.e., each value can be placed at most once
in the list. We also need to select and delete a value from
the list and to check whether the list is empty. All these
operations should be performed in a constant time, if
possible. The space complexity of listSAC should be
O(nd), where n is a number of variables and d is a
maximum size of the domains. Note that this is the smallest
possible space complexity because the listSAC may
contain all the values for all the variables in the problem.
 We have explored the standard implementations of lists
using stack (LIFO) and queue (LILO) combined with a
binary array modelling the set features of the list. The
practical efficiency of the stack was not very good, the
queue behaved well but it is hard to compare this data
structure with SAC-1. Therefore we proposed a new data
structure called a cyclic list. The cyclic list is basically a
binary array indicating which elements are currently in the
list. There is a pointer to this array indicating which
element was explored last. The elements are explored in a
lexicographic order, i.e. all values for a single variable are
explored first before going to the next variable. The
exploration always starts at the position of the last selected
value. We call the structure a cyclic list because when the
last value of the last variable is explored then the first value
of the first variable is tested. Naturally, only the values
marked as being in the list are checked for SAC (see Figure
3). To simplify checking emptiness of the list, there is also
a counter indicating the number of elements in the list.
Note that in some sense the cyclic list implements a priority
queue where the elements closer (in lexicographic
ordering) to the current element are preferred.
 Visibly, inserting a new element to this list as well as
checking emptiness requires a constant time. However,
time complexity of selecting and deleting the next element
from the list is O(nd), where n is a number of variables and
d is a maximum size of the domains. Nevertheless, this is a
hypothetical complexity of the worst case which does not
influence the complexity analysis of the algorithm SAC-2
in the previous section. The space complexity is O(nd) as
we requested.

 0->0->0->0->0->0
 0->1 0 0 0 0
 0 0 0 0 1 0
 1 0 0 0 0 0
 0 1 0 0 1 1
 0 0 0->0->0->0
 0->0->0->0->0->0

Figure 3. Values in the cyclic list are explored in a lexicographic
order defined by the variables and ordering of values in the
variable domain. Each row corresponds to domain of a variable.

The empirical study showed that real efficiency of the
cyclic list is similar to a standard queue. However, thanks
to nature of the cyclic list we can now formally prove that
SAC-2 with the cyclic list does not perform more SAC tests
than the SAC-1 algorithm.

Proposition 4: If the queue listSAC is implemented
using the data structure cyclic list in the algorithm SAC-2,
then SAC-2 does not perform more SAC tests than the
SAC-1 algorithm.

Proof: During the first pass of the repeat-until loop, the
SAC-1 algorithm checks all the variables’ values for SAC,
the same is done by SAC-2 during the procedure
initializeSAC(). If no SAC inconsistency is detected then
both algorithms terminate: SAC-1 because the flag of
variable change remains false, SAC-2 because the
listSAC remains empty. If some value is removed due to
SAC inconsistency then SAC-1 repeats the tests for all the
variables’ values again starting from the first value of the
first variable. SAC-2 explores the same set of variables’
values in the procedure pruneSAC() but only the values that
are possibly affected by the deletion are tested (these
values are in the listSAC). Moreover, the values are
explored in the same order as in SAC-1 thanks to the nature
of the cyclic list. Thus during the second pass of the loop,
SAC-2 will probably test a smaller number of values but
definitely it does not test a larger number of values. Again,
if some value is deleted then SAC-1 repeats the loop
completely while SAC-2 tests only the affected values.
Moreover, if the affected values are in listSAC before
the “turnover” then these values will be tested in the same
loop while SAC-1 requires one more run of the loop.
Together, SAC-2 performs a smaller or equal number of
loops than SAC-1 and in each loop SAC-2 tests a smaller
or equal number of values. Thus the proposition holds.

q

Experimental Results
To confirm our expectations about better practical
efficiency of SAC-2 in comparison to SAC-1 we have
implemented both algorithms in Java and we compared
them using random constraint satisfaction problems. The
experiments run on 1.7 GHz Pentium 4 and 512 MB RAM.

Random CSP

Random constraint satisfaction problems became a de facto
standard for testing constraint satisfaction algorithms (Gent
et al., 1998). Random CSP is a binary constraint
satisfaction problem specified by four parameters:

• n - a number of variables,
• d - a size of domains,
• density - defines how many constraints appear in the

problem,
• tightness - defines how many pairs of values are

inconsistent in a constraint.

We have implemented a generator of Random CSP that
works as follows. First, n variables are introduced together
with the domains of size d. A random path of constraints
between all the variables is generated to ensure that the
constraint network is continuous. Then additional
constraints between the random pairs of variables are
added until the number of constraints is
density*n*(n –1)/2. A complete domain is defined for
each constraint and tightness*d*d random pairs of values
are removed from this domain.
 Three different areas can be identified in Random CSP:

• the under-constrained problems, where almost every
value is singleton arc consistent so SAC is run just
once for each value (small tightness),

• the over-constrained problems, where arc consistency
already discovered the clashes so SAC is not run at all
(large tightness),

• a phase transition area where the hard problems settle.

Comparison

We compare both the number of SAC tests performed by
both algorithms and the total running time. Usually, the
number of variables (n) and the size of domains (d) is
fixed, while density and tightness is variable to get a set of
different problems. We present the results for n=50 and
d=20, the results for other pairs n/d are quite similar – we
have performed the experiments for all combinations of
n∈{10,20,30} and d∈{10,20,30}. We have generated a
hundred instances of each problem and for every instance
both algorithms were run.
 When comparing the number of SAC tests performed by
SAC-1 and SAC-2 (Figure 4), we can see that in the under-
constrained and over-constrained areas, the number of tests
is identical for both algorithms. This is not surprising
because both algorithms finish in the first stage either with
a failure for the over-constrained problems or with a
success for the under-constrained problems. However, in
the phase transition area SAC-2 performs a visibly smaller
number of tests. Actually, SAC-2 performs as 40% less
SAC tests than SAC-1. The reason is that SAC-2 checks
only the values that are possibly affected by some domain
reduction and it may do the test earlier than SAC-1, if the
affected value is already in the listSAC. Moreover as we
showed in Proposition 4, SAC-2 never performs more tests
than SAC-1, if we use the proposed data structure for
listSAC.
 When comparing the running times (Figure 5), in the
area of over-constrained problems both algorithms run at
the same speed simply because the SAC part is not invoked
at all – the clash is already detected during establishing arc
consistency. In the area of under-constrained problems,
SAC-2 is slightly handicapped because of the overhead
with the initialisation of the data structures. Still the
running time is comparable to SAC-1. In the area of phase
transition, SAC-2 again significantly outperforms SAC-1.

Figure 4. A comparison of the number of SAC tests performed by
SAC-1 and SAC-2. The big graph (left) shows a relative
comparison (100*(SAC1 - SAC2)/SAC1), the small graph (right)
shows an absolute number of SAC tests performed by SAC-2.

Figure 5. A comparison of running times for SAC-1 and SAC-2.
The big graph (left) shows a time difference (SAC1 - SAC2)
while the small graph (right) shows an absolute time of SAC2.
Time is measured in milliseconds.

Conclusions
The paper presents a new algorithm for achieving singleton
arc consistency called SAC-2. The algorithm is based on
the ideas of AC-4 and it uses AC-4 as the underlying
consistency algorithm. We formally proved that the new
algorithm does not invoke the AC procedure to test the
SAC condition (“P|Di={a} leads to wipe out”) more times
than the original SAC-1 algorithm. In fact the empirical
study shows that it invokes the AC procedure a
significantly smaller number of times. Due to maintaining
internal data structures, the SAC-2 algorithm has larger
overhead than the SAC-1 algorithm but the empirical
results show that SAC-2 still achieves better running times
than SAC-1 in the area of phase transition where the hard
problems settle. Still the time and space complexity of
SAC-2 is not neglecting so SAC should be applied with

caution. We believe that SAC can help to prune the search
space before the labelling procedure starts or when variable
domains are small, for example binary.
 SAC-2 is useful especially when AC-4 is applied in the
solving procedure as the long initialisation stage of AC-4
pays of there. Other improvements of AC-4 like AC-6
might or might not help; we have no evidence about it yet.
 SAC-2 has the same time complexity as SAC-1 and this
complexity is not optimal (personal communication to
Christian Bessière). Nevertheless, SAC-2 can be further
improved by updating the data structure SSAC during the
SAC tests and by using it to update the domains before
doing the SAC tests. This improvement might lead to the
optimal SAC algorithm but the question is whether the
additional overhead pays-off.
 Note finally that the ideas of SAC-2 can be extended to
n-ary constraints as well as to other consistency levels like
path consistency as showed in (Erben, 2002).

Acknowledgements
The research is supported by the Czech Science Foundation
under the contract no. 201/01/0947. We would like to
thank the reviewers for useful comments and for pointing
our attention to the study of the optimal SAC complexity.

References

Barták R., 2001. Theory and Practice of Constraint
Propagation. In Proceedings of the Third Workshop on
Constraint Programming in Decision and Control
(CPDC), 7-14. Silesian University.

Bessière C., 1994. Arc-consistency and arc-consistency
again. Artificial Intelligence 65: 179-190.

Debruyne R. and Bessière C., 1997. Some Practicable
Filtering Techniques for the Constraint Satisfaction
Problem. In Proceedings of the Fifteenth International
Joint Conference on Artificial Intelligence (IJCAI), 412-
417. Morgan Kaufmann.

Erben R., 2002. Consistency Techniques for Constraint
Satisfaction, Master Thesis, Charles University in Prague.

Gent I.P., MacIntyre E., Prosser P., Smith B.M., and Walsh
T., 1998. Random constraint satisfaction: Flaws and
structure. Technical Report APES-08-1998, APES
Research Group.

Mackworth A.K., 1977. Consistency in networks of
relations. Artificial Intelligence 8:99-118.

Mohr R., Henderson T.C., 1986. Arc and Path Consistency
Revisited. Artificial Intelligence 28:225-233.

Prosser P., Stergiou K., Walsh T., 2000. Singleton
Consistencies. In Principles and Practice of Constraint
Programming (CP), 353-368. Springer Verlag.

0,
05

0,
2

0,
35

0,
5

0,
65

0,
8

0,
95 0,
1 0,

2 0,
3 0,

4 0,
5 0,

6 0,
7 0,

8 0,
9

0

5

10

15

20

25

30

35

40

45

tightness

density
0,

05

0,
2

0,
35

0,
5

0,
65

0,
8

0,
95

0,
05

0,
2 0,
35

0,
5 0,
65

0,
8 0,
95

0

500

1000

1500

2000

2500

3000

tightness density

0,
05

0,
2

0,
35

0,
5

0,
65

0,
8

0,
95 0,
1 0,

2 0,
3 0,

4 0,
5 0,

6 0,
7 0,

8 0,
9

-2000

0

2000

4000

6000

8000

10000

12000

14000

tightness
density

0,
05

0,
2

0,
35

0,
5

0,
65

0,
8

0,
95

0,
05 0,

15 0,
25 0,

35 0,
45 0,

55 0,
65 0,

75 0,
85 0,

95

0

10000

20000

30000

40000

50000

60000

70000

80000

tightness density

