
Intermediate Consistencies by Delaying Expensive Propagators

Andreı̈ Legtchenko, Arnaud Lallouet, AbdelAli Ed-Dbali
Université d’Orléans – LIFO

BP 6759 – F-45067 Orléans – France

Abstract
What makes a good consistency ? Depending on the
constraint, it may be a good pruning power or a low
computational cost. By “weakening” arc-consistency,
we propose to define new automatically generated
solvers which form a sequence of consistencies weaker
than arc-consistency. The method presented in this pa-
per exploits a form of regularity in the cloud of con-
straint solutions: the density of solution orthogonal to
a projection. This approach is illustrated on the sparse
constraints “to be a n-letters english word” and cross-
word CSPs, where interesting speed-ups are obtained.

Introduction
Since their introduction (Mackworth 1977), CSP consisten-
cies have been recognized as one of the most powerful tool
to strengthen search mechanisms. Since then, their consid-
erable pruning power has motivated a lot of efforts to find
new consistencies and to improve the algorithms to compute
them.

Consistencies can be partially ordered according to their
pruning power. However, this pruning power should be put
into balance with the complexity of enforcing them. For
example, path-consistency is often not worth it: its pruning
power is great, but the price to pay is high. Maintaining path-
consistency during search is thus often beaten in practice
by weaker consistencies. Similarly, on many useful CSPs,
bound-consistency is faster than arc-consistency even if it
does not remove values inside the variables’ domains: this
is left to the search mechanism ensuring the completeness of
constraint solving. Moreover, the overall performance of a
solver is also determined by the interaction between the con-
sistency and the search strategy. Powerful consistencies are
not always the best choice. It is sometimes more interesting
to find the optimal ratio between the advantage of pruning
and the computational cost needed to enforce it. The ab-
sence of prediction of the potential power of a consistency
comes from two sources: consistencies exploit subtle prop-
erties which are often incomparable and they do not always
use the same data-structures.

Recently, there has been a great interest in the auto-
matic building of consistency operators and in finding ad-

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

hoc efficient constraint representations. First (Apt & Mon-
froy 2001) and (Abdennadher & Rigotti 2003) use CHRs
(Frühwirth 1998) as a target language to build a solver. Pow-
erful propagators may be discovered in this framework but
at the price of a high complexity which limits the method
to constraints of modest arities and rather small domains.
In (Dao et al. 2002) has been introduced an approximation
framework we also use in this paper to approximate bound-
consistency. This work has been extended in (Lallouet et al.
2003) for arc-consistency: a constraint is approximated by
a set of covering blocks obtained by a clustering algorithm
and only these blocks are used in the reduction process. But
unfortunately, not all constraints are suitable for clustering.
It is needed that the constraint has locally dense areas which
can be agglomerated meaningfully. Finding new represen-
tations to compute a consistency has also been tackled in
(Barták & Mecl 2003) and (Cheng, Lee, & Stuckey 2003):
they use clustering techniques to find an exact representa-
tion of the constraint. Hence the resulting consistency is
the full arc-consistency and speed-ups are difficult to obtain
while competing with highly optimized implementations. In
(Monfroy 1999), the idea of using weaker functions has been
proposed as a preprocessing to speed-up the computation of
a classical consistency (in this case, box-consistency). From
the search mechanism point of view, this is an internal recipe
to compute the consistency. In contrast, our operators de-
fine on purpose a weaker consistency which is used during
search.

In this paper, we contribute to this line of work by provid-
ing a range of custom consistencies intermediate between
bound- and arc-consistency for sparse constraints which
have no dense areas. First, these constraints exist: we take as
example the n-ary constraint “to be a n-letter english word”.
There is absolutely no block regularity and the words are
sparsely distributed in the solution space. For example, by
using the 4176 five-letters words of /usr/dict/words,
we get a density of 0,035%. A clustering algorithm would
either consider a large number of clusters, limiting the in-
terest of the representation, or filter a too few number of
non-solution out of the search space, yielding a very weak
consistency.

Our method is as follows. For a given constraint, we ex-
press the arc-consistency as a set of particular elementary
reduction functions. Each elementary function is only con-

cerned in the withdrawal of one value in a variable’s do-
main. Depending on the number of supports for the target
value, these functions do not have the same computational
cost. Our technique consists in applying the computation-
ally cheap operators as a consistency during the reduction
phase and delaying the expensive ones until instantiation
of all variables. For this we split the set of functions in
two: functions smaller than a given threshold are iterated
and longer ones are delayed. The closure of all the operators
defines a new consistency for a given constraint, weaker and
sometimes quicker than arc-consistency.

Intuitively, the cost of an elementary reduction is directly
related to the number of supports present in the hyperplane
orthogonal to the target value. For example, in figure 1 rep-
resenting cuts in the solution space of a constraint, the value
a for the variable X is supported by a large number of tu-
ples: in order to eliminate a from X’s domain, we have to
check all these tuples. On the other side, the value b in fig-
ure 2 is only supported by a few tuples. But since a is well
supported, it is more likely part of a solution than b. Hence
we spend a large work trying to eliminate a value which is
likely part of a solution. We propose to postpone the eval-

X

Y

Z

a

Figure 1: Dense hyperplane in solution space

X

Y

Z

b

Figure 2: Sparse hyperplane in solution space

uation of a’s function until instanciation of all variables (i.e.
on satisfiability test) while actively trying to eliminate b by
consistency. It could be argued that algorithms like AC6
which compute lazily the set of supports could be faster, but
since the resulting consistency is weaker than AC, the tech-

nique could apply to any AC algorithm. The main difficulty
rely in determining the best threshold.
The paper is structured as follows:

• A framework to express consistencies. Consistencies are
usually built as global CSP properties. But it is now rather
common to express them modularly by the greatest fix-
point of a set of operators associated to the constraints,
which is computed using a chaotic iteration (Apt 1999).
We present a framework which allows, starting from arbi-
trary operators, to progressively add properties in order to
build a consistency.

• A consistency construction method. For a given con-
straint, we express the arc-consistency as a set of partic-
ular reduction operators. These operators do not have the
same computational cost. Expensive ones are delayed un-
til instantiation of all variables. The closure of all the op-
erators defines a new consistency for a given constraint,
weaker but quicker than arc-consistency.

• An example. The interest of these consistencies is shown
by the ”word” constraints and the crossword CPSs.

An approximation framework
In this section, we present a general approximation scheme
for consistencies. Let V be a set of variables and D =
(DX)X∈V their (finite) domains. For W ⊆ V , we denote by
DW the set of tuples on W , namely ΠX∈W DX . Projection
of a tuple or a set of tuples on a variable or a set of variables
is denoted by |, natural join of two sets of tuples is denoted
by on. If A is a set, then P(A) denotes its powerset and |A|
its cardinal.

Definition 1 (Constraint) A constraint c is a pair (W, T)
where:

• W ⊆ V is the arity of the constraint c and is denoted by
var(c).

• T ⊆ DW is the set of solutions of c and is denoted by
sol(c).

The join of two constraints is defined as a natural extension
of the join of tuples: c on c′ = (var(c) ∪ var(c′), sol(c) on

sol(c′)).
A CSP is a set of constraints. Join is naturally extended

to CSPs and the solutions of a CSP C are sol(on C). A di-
rect computation of this join is too expensive to be tractable,
especially when considering that it needs to represent tuples
of the CSP’s arity. This is why a framework based on ap-
proximations is preferred, the most successful of them be-
ing the domain reduction scheme where variable domains
are the only reduced constraints. So, for W ⊆ V , a search
state consists in a set of yet possible values for each variable:
sW = (sX)X∈W such that sX ⊆ DX . The search space is
SW = ΠX∈WP(DX). The set SW , ordered by pointwise
inclusion ⊆, is a complete lattice. Likewise, union and in-
tersection on search states are defined pointwise. The whole
search space SV is simply denoted by S.

Some search states we call singletonic play a special role
in our framework. A singletonic search state comprises a
single value for each variable, and hence represents a single

tuple. A tuple is promoted to a singletonic search state by
the operator d e: for t ∈ DW , let dte = ({tX})X∈W ∈ SW .
This notation is extended to a set of tuples: for E ⊆ DW ,
let dEe = {dte | t ∈ E} ⊆ SW . Conversely, a search state
is converted into the set of tuples it represents by taking its
cartesian product Π : for s ∈ SW , Πs = ΠX∈W sX ⊆ DW .
We denote by SingW the set dDW e of singletonic search
states. By definition, dDW e ⊆ SW .

A consistency is generally described by a property
Cons ⊆ S which holds for certain search states and is clas-
sically modeled by the common greatest fixpoint of a set of
operators associated to the constraints. By extension, in this
paper, we call consistency for a constraint c an operator on
SW having some properties which are introduced in the rest
of this section. Let f be an operator on SW . We denote
by Fix(f) the set of fixpoints of f which define the set of
consistent states according to f .

For W ⊆ W ′ ⊆ V , an operator f on SW can be extended
to f ′ on SW ′ by taking: ∀s ∈ SW ′ , f ′(s) = s′ with ∀X ∈
W ′\W, s′X = sX and ∀X ∈ W, s′X = f(s|W)X . Then
s ∈ Fix(f ′) ⇔ s|W ∈ Fix(f). This extension is useful
for the operator to be combined with others at the level of a
CSP.

In order for an operator to be related to a constraint, we
need to ensure that it is contracting and that no solution tuple
could be rejected anywhere in the search space. An operator
having such property is called a preconsistency:

Definition 2 (Preconsistency) An operator f : SW → SW

is a preconsistency for c = (W, T) if:

• f is monotonic, i.e. ∀s, s′ ∈ SW , s ⊆ s′ ⇒ f(s) ⊆ f(s′).
• f is contracting, i.e. ∀s ∈ SW , f(s) ⊆ s.
• f is correct, i.e. ∀s ∈ SW , Πs∩sol(c) ⊆ Πf(s)∩sol(c).

In the last property, the second inclusion is also called cor-
rectness of the operator with respect to the constraint; it
means that if a state contains a solution tuple, this one will
not be eliminated by consistency. Since a preconsistency is
also contracting, this inclusion is actually also an equality.

An operator on SW is associated to a constraint c =
(W, T) if its singletonic fixpoints represent the constraint’s
solution tuples T :

Definition 3 (Associated Operator) An operator f :
SW → SW is associated to a constraint c if Fix(f) ∩
SingW = dsol(c)e

However, nothing is said about its behavior on non-
singletonic states. This property is also called singleton
completeness. Note that a preconsistency is not automati-
cally associated to its constraint since the set of its single-
tonic fixpoints may be larger. When it coincides, we call
such an operator a consistency:

Definition 4 (Consistency) An operator f is a consistency
for c if it is associated to c and it is a preconsistency for c.

Note that a consistency can be viewed as an extension to SW

of the satisfiability test made on singletonic states. Consis-
tency operators can be easily scheduled by a chaotic iteration
algorithm (Apt 1999). By the singleton completeness prop-
erty, the consistency check for a candidate tuple can be done

by the propagation mechanism itself. Let C = {c1, . . . , cn}
be a CSP and F = {f1, . . . , fn} be a set of consistencies on
S associated respectively to {c1, . . . , cn}. If all constraints
are not defined on the same set of variables, it is always pos-
sible to use the extension of the operators on the union of
all variables which appear in the constraints. The common
closure of the operators of F can be computed by a chaotic
iteration (Apt 1999). It follows from the main confluence
theorem of chaotic iterations that a consistency can be con-
stituted by combining the mutual strengths of several oper-
ators. Since we have Fix(F) =

⋂

f∈F Fix(f) and since
each consistency does preserve the tuples of its associated
constraint, the computed closure of all operators associated
to the CSP C does not reject a tuple of c1 on . . . on cn for
any search state s ∈ S because of an operator of F .
Proposition 5 (Composition) The composition of two pre-
consistencies for a constraint c via chaotic iteration is still a
preconsistency for c.
The proof is straightforward by (Apt 1999). We call � the
composition of two operators via chaotic iteration. The same
property holds for consistencies instead of preconsistencies.

Figure 3: Preconsistency for Y = X ± 2

Exemple 6 Consider the constraint c given by Y = X ± 2 and
depicted by the white dots in figure 3. The following operators:
X in min(Y)-2 .. max(Y)+2
Y in min(X)-2 .. max(X)+2

define a preconsistency for c since they are correct with respect
to c: they do not reject a tuple which belongs to the constraint.
For example, the dark grey area shows the evaluation of the first
operator for X when Y ∈ [3..6]. However, the operators are not
associated to c since they accept more tuples than necessary, like
for example (4, 4) indicated by the black square. Actually, they
accept the light grey area in figure 3 and are a consistency for the
constraint X − 2 ≤ Y ≤ X + 2.

Let us now define two consistencies associated to a con-
straint c:
• IDc is a family of contracting operators such that any idc ∈

IDc verify: ∀s ∈ SW \SingW , idc(s) = s and ∀s ∈
SingW , s ∈ dsol(c)e ⇔ idc(s) = s. In particular, on non-
solution singletonic states, idc reduces at least one variable’s
domain to ∅. The non-uniqueness of idc comes from the fact
that all search states s such that Πs = ∅ represent the empty set
of solution for a constraint. In the following, we denote by idc

any member of IDc.
• acc is the well-known arc-consistency operator defined by ∀s ∈

SW , acc(s) = ((sol(c) ∩ Πs)|X)X∈W .

The goal of an automatic construction procedure is to
build for a constraint a set of operators which can ensure
a desired level of consistency when included in a chaotic it-
eration. We can compare two operators f1 and f2 by their
reductions over the search space:
Definition 7 An operator f1 is stronger than f2, denoted by
f1 ⊆ f2 if ∀s ∈ S, f1(s) ⊆ f2(s).
For example, it is well-known that arc-consistency is
stronger than bound-consistency which in turn is stronger
than idc. The notion of preconsistency is interesting in the
context of CSP resolution because preconsistency operators
have the desired properties to be included in a chaotic it-
eration. Since they are weaker than consistencies, they are
easier to construct automatically. But since they may accept
some non-solution singletonic states, it is needed to find a
technique to ensure completeness. The framework we pro-
pose is to build a fast but incomplete preconsistency and to
add reparation operators which are delayed until the satisfi-
ability test.

Delaying “long” operators
In order to build operators for an intermediate consistency,
we start by giving the expression of arc-consistency with a
set of special function we call elementary reduction func-
tions. Then we weaken the arc-consistency by delaying a set
of functions which are supposed to be too expensive until in-
stantiation of all variables. We use as a mesure of expensive-
ness the length of the syntactic expression of the function.
Hence the reduction power decreases, but the computation
becomes quicker. When the choice of the length threshold
vary, it defines a sequence of comparable consistencies.

Definition 8 (Support) Let c = (W, T) be a constraint,
X ∈ W and a ∈ DX . We call support of “X = a” a
tuple t ∈ sol(c) such that tX = a.
Exemple 9 Let c(X,Y,Z) be a constraint. DX = DY = {0, 1}
and DZ = {0, 1, 2}.

c :

X Y Z

0 0 0
0 1 0
1 0 0
1 1 1
1 1 2
0 1 2

The sets of supports for Z are:
TZ=0 = {(0, 0, 0), (0, 1, 0), (1, 0, 0)}
TZ=1 = {(1, 1, 1)}
TZ=2 = {(1, 1, 2), (0, 1, 2)}

We call TX=a ⊆ sol(c) the set of all supports of X = a. A
value a has to be maintained in the current domain of X only
if we have at least one t ∈ TX=a such that all projections on
Y ∈ W\{X} are included in sY .
Definition 10 (Supp property) Let c = (W, T) be a con-
straint, X ∈ W and a ∈ DX . We call SuppX=a(s) the
following property:

∨

t∈TX=a

(
∧

Y ∈W\{X}

tY ∈ sY)

The value X = a is supported if SuppX=a(s) = true.

Exemple 11 (Example 9 running) For all s ∈ S{X,Y,Z}, we
have:
SuppZ=0

(s) = (0 ∈ sX ∧ 0 ∈ sY) ∨ (0 ∈ sX ∧ 1 ∈ sY)∨
(1 ∈ sX ∧ 0 ∈ sY)
SuppZ=1

(s) = 1 ∈ sX ∧ 1 ∈ sY

SuppZ=2
(s) = (1 ∈ sX ∧ 1 ∈ sY) ∨ (0 ∈ sX ∧ 1 ∈ sY).

If X = a is not supported, then a does not participate to any
solution of the CSP and therefore can be eliminated. With
this notion, we define a function called elementary reduction
function which concerns only one value in the variable’s do-
main. Each value in the initial domain of each variable has
its own elementary reduction function. If a value must be
eliminated, its function returns this value as a singleton, and
the empty set otherwise.

Definition 12 (Elementary reduction function) For all
X ∈ W and for all a ∈ DX , the elementary reduction
function associated to X = a is rX=a : SW −→ P(DX)
given by

∀s ∈ SW , rX=a(s) =

{

{a}, if ¬SuppX=a(s)
∅, otherwise

We call s-size (support size) of the elementary reduction
function rX=a the cardinality of TX=a. Arc-consistency can
be defined using elementary reduction functions as follows:
∀s ∈ SW , acc(s) =(sX\

⋃

a∈DX
rX=a(s))X∈W .

We want a consistency quicker then arc-consistency, even
if it is less powerful. For this, we choose a threshold and
split arc-consistency into two operators. The first one, called
Short, is composed of all elementary reduction functions
having their s-size less than the chosen threshold:

Definition 13 (Operator Short) Let c be a constraint, and
n an integer. The operator Shortc(n) : SW −→ SW is
given by: ∀s ∈ SW ,
Shortc(n)(s) =(sX\

⋃

a∈DX , |TX=a|≤n rX=a(s))X∈W .

The second operator, called Long, is composed of all other
elementary reduction functions, which are fired only on sin-
gletonic states for completeness:

Definition 14 (Operator Long) Let c be a constraint and n
an integer. The operator Longc(n) : SW −→ SW is given
by: ∀s ∈ SW ,

Longc(n)(s) =

(sX\
⋃

a∈DX , |TX=a|>n rX=a(s))X∈W ,

if s ∈ SingW

s, otherwise

This operator is used only to reject non-solution tuples.
Exemple 15 (Example 11 running) For the variable Z, we can
make two operators following the definition of Shortc and Longc.
Let set the threshold to 2. The operators for Z are:

Shortc(2)Z: sZ −→ sZ\(rZ=1(s) ∪ rZ=2(s))
Longc(2)Z: sZ −→ sZ\rZ=0(s)

The operator Longc(2)Z is delayed because its reduction power is
small (only one value can be eliminated), and the effort to com-
pute rZ=0(s) is judged too high. This operator is fired only if
s ∈ Sing{X,Y,Z}.

Figure 4: Projections of word3(X, Y, Z) on the planes XY , Y Z, XZ

Proposition 16 For all integer n, Shortc(n) is a precon-
sistency for c.

Proof First, we show that Shortc(n) is monotonic. Let s
and s′ in SW such that s ⊆ s′. Then, ∀X ∈ W , ∀a ∈ DX ,
SuppX=a(s) ⇒ SuppX=a(s′). From which it follows that
∀X ∈ W , ∀a ∈ DX , ¬SuppX=a(s′) ⇒ ¬SuppX=a(s). In
the case of s′, there are less values to eliminate than in the
case of s. So Shortc(n)(s) ⊆ Shortc(n)(s′). The operator
Shortc(n) is monotonic.
Shortc(n) is contracting by construction. It it also

correct by construction: it eliminates less values than
arc-consistency. Hence Shortc(n) is a preconsistency. �

The operator Longc(n) is also a preconsistency, the proof
is similar to Shortc(n). When both operators are in a
chaotic iteration, we get a consistency:
Proposition 17 Let c = (W, T) a constraint and n an in-
teger. The composition Shortc(n) � Longc(n) is a consis-
tency for c .
Proof According to the proposition 5,
Shortc(n) � Longc(n) is a preconsistency. But
∀s ∈ SingW , Shortc(n) � Longc(n)(s) = acc(s),
so Shortc(n) � Longc(n) is associated to c. Therefore
Shortc(n) � Longc(n) is a consistency for c. �

Elementary reduction functions of Longc(n) are not fired
on non-singletonic states. If the threshold n is not too big,
the set of elementary reduction functions of Longc(n) is not
empty. In that case, the consistency Shortc(n) � Longc(n)
is weaker than arc-consistency, but it can be computed faster,
since that we have less functions to evaluate. If n is large
enough, all elementary reduction functions are in Shortc(n)
and we get the same reduction power and computational cost
as arc-consistency.

Implementation and Example
Implementation. A system generating the operators
Shortc(n) and Longc(n) has been implemented. The lan-
guage used to express the operators is the indexical language
(van Hentenryck, Saraswat, & Deville 1991) of GNU-Prolog
(Diaz & Codognet 2001). An indexical operator is written
“X in r” where X is the name of a variable, and r is a
range of possible values for X and which may depend on
other variables’ current domains. If we call x the current do-
main of X , the indexical X in r can be read declaratively

X1,1 X1,2 � X1,4 X1,5 X1,6 X1,7

X2,1 � X2,3 X2,4 X2,5 � X2,7

X3,1 X3,2 X3,3 � X3,5 X3,6 X3,7

X4,1 X4,2 X4,3 � � X4,6 �

� X5,2 X5,3 X5,4 X5,5 � X5,7

X6,1 X6,2 X6,3 � X6,5 X6,6 X6,7

X7,1 X7,2 � X7,4 X7,5 X7,6 X7,7

Table 1: A model for 7x7 grid

as the second-order constraint x ⊆ r or operationally as the
operator x 7→ x ∩ r. For a given constraint and a threshold,
our system returns two sets of |W | indexical operators, i.e.
one for each variable. The first set defines the Longc(n) op-
erator, and the second Shortc(n). In total, we have 2 ∗ |W |
indexical operators for a constraint c = (W, T). The closure
by chaotic iteration of all 2 ∗ |W | operators is equivalent to
the consistency Shortc(n) � Longc(n). The indexical op-
erators for Longc(n) are delayed with a special trigger val
in the indexical language which delays the operator until a
given variable is instantiated. This is how we get that these
operators are not iterated on non-singletonic search states.
This delay is obtained at no cost because Gnu-Prolog uses
separate queues. In all cases, the generation time is about
one second.

Example. The sparse distribution described in fig-
ure 1 and 2 occurs, for example, in the case of the con-
straints wordn(X1, X2, . . . , Xn). For n = 3, the con-
straint word3(X, Y, Z) means that XY Z is a 3-letters en-
glish word. We consider that domains are ordered by lexico-
graphic ordering. In figure 4 is presented the projections of
word3(X, Y, Z) on different planes. When using UNIX dic-
tionary /usr/dict/words, this constraint has 576 solu-
tions. The constraints word4(X, Y, Z, U) (with 2236 solu-
tions) and word5(X, Y, Z, U, V) (with 4176 solutions) have
the same regularity.

The CSP we use consists in finding a solution for cross-
word grids of different sizes. The CSP is composed only by
a set of constraints wordn. The domain of all variables is
{a, .., z}. An example of a 7x7 grid and its model are pre-
sented table 1.

Only the first solution is computed. Some benchmarks
are presented in the tables 2, 3, 4. The full reduction power
of arc-consistency is obtained for the following thresholds:

Threshold for Time
word2 word3 word4 word5

8 30 50 10 280ms
3 70 240 510 45ms
1 5 300 10 11ms
3 6 400 10 16ms
1 5 200 10 120ms

fd relation 53ms

Table 2: Some results for 7x7 grid

Threshold for Time
word2 word3 word4 word5

3 70 240 310 380ms
3 30 80 200 >15min
3 70 240 410 58ms
3 70 260 410 76ms
3 65 240 410 78ms

fd relation 102ms

Table 3: Some results for 10x10 grid

8 for word2 , 130 for word3, 500 for word4, 1200 for
word5. It means that with these thresholds (and higher),
the Longc(n) operator is empty. The fd relation time
is the computation time with the built-in GNU-Prolog predi-
cate implementing arc-consistency for a constraint given by
the table of its solutions. These new consistencies show in-
teresting speed-ups, from 1.68 to 4.8. It appears that the best
threshold to use depends on the CSP in which the constraint
is put. We did compute static thresholds giving the best aver-
age ration between pruning and computational cost, but this
method did not extend to CSPs and results were not foresee-
able. Depending on the CSP, a constraint can be used in dif-
ferent part of its solution space, thus requiring a different tu-
nig of the threshold. The main contribution of this approach
so far is to show the interest of using constraint regularities
to construct efficient operators. We are currently investigat-
ing how to help the user to determine the best threshold.

Conclusion

In this paper, we propose a new method which allows to
build a full range of consistencies weaker but quicker than
arc-consistency. In this approach, we exploit a form of reg-
ularity in the constraint solutions to construct a set of opera-
tors. The operators which are too expensive to compute are
delayed, so the closure of the remaining ones by a chaotic
iteration defines a new consistency, weaker but quicker than
arc-consistency. The interest of this method is illustrated on
crossword CSPs.

Further work can be to consider other representations for
other regularities. For every representation, there should ex-
ists suitable constraints and other for which it is unadequate.
It also includes a way to determine dynamically the parame-
ters at run-time in order to exploit all parts of the constraint
optimaly.

Threshold for Time
word2 word3 word4 word5

1 5 50 310 1h
3 130 500 600 193ms
3 50 240 510 6490ms
3 5 240 310 5490ms
3 70 260 510 160ms
3 100 240 510 160ms
3 130 300 510 170ms
1 70 240 510 150ms

fd relation 252ms

Table 4: Some results for 15x15 grid

References
Abdennadher, S., and Rigotti, C. 2003. Automatic generation of
rule-based constraint solvers over finite domains. Transaction on
Computational Logic. accepted for publication.
Apt, K., and Monfroy, E. 2001. Constraint programming viewed
as rule-based programming. Theory and Practice of Logic Pro-
gramming 1(6):713 – 750.
Apt, K. 1999. The essence of constraint propagation. Theoretical
Computer Science 221(1-2):179–210.
Barták, R., and Mecl, R. 2003. Implementing propagators for tab-
ular constraints. In Krzysztof R. Apt, Francois Fages, F. R. P. S.,
and Váncza, J., eds., Joint Annual Workshop of the ERCIM Work-
ing Group on Constraints and the CoLogNET area on Constraint
and Logic Programming, 69–83.
Cheng, K. C.; Lee, J. H.; and Stuckey, P. J. 2003. Box constraint
collections for adhoc constraints. In Rossi, F., ed., International
Conference on Principles and Practice of Constraint Program-
ming, volume 2833 of LNCS, 214–228. Kinsale, County Cork,
IE: Springer.
Dao, T.-B.-H.; Lallouet, A.; Legtchenko, A.; and Martin, L. 2002.
Indexical-based solver learning. In van Hentenryck, P., ed., In-
ternational Conference on Principles and Practice of Constraint
Programming, volume 2470 of LNCS, 541–555. Ithaca, NY,
USA: Springer.
Diaz, D., and Codognet, P. 2001. Design and implementation
of the Gnu-Prolog system. Journal of Functional and Logic Pro-
gramming 2001(6).
Frühwirth, T. 1998. Theory and practice of Constraint Handling
Rules. Journal of Logic Programming 37(1-3):95–138.
Lallouet, A.; Legtchenko, A.; Dao, T.-B.-H.; and Ed-Dbali, A.
2003. Intermediate (learned) consistencies. In Rossi, F., ed., In-
ternational Conference on Principles and Practice of Constraint
Programming, number 2833 in LNCS, 889–893. Kinsale, County
Cork, Ireland: Springer. Poster.
Mackworth, A. K. 1977. Consistency in networks of relations.
Artificial Intelligence 8(1):99–118.
Monfroy, E. 1999. Using weaker functions for constraint propa-
gation over real numbers. In Symposium on Applied Computing.
van Hentenryck, P.; Saraswat, V.; and Deville, Y. 1991. Constraint
processing in cc(fd). draft.

