
A Local Search/Constraint Propagation Hybrid for a Network Routing
Problem

Jonathan Lever

IC-Parc
Imperial College

London, UK
SW7 2AZ

j.lever@imperial.ac.uk

Abstract
This paper presents a hybrid algorithm that combines local
search and constraint programming techniques to solve a
network routing problem. The problem considered is that of
routing traffic demands from a set of requests over a
network with limited capacity so as to minimise the cost of
any unrouted demands. The hybridisation is twofold: pure
local search is used to find a good cost bound for a
subsequent branch-and-bound optimisation phase, with
local search again applied at the nodes of the branch-and-
bound search tree. Constraint propagation occurs in the
search tree to reduce the domains of the decision variables,
using a set of constraints that are independent of the action
of local search at the nodes. In contrast to previous
constraint programming/local search hybridisations, here
local search is used to satisfy the hard problem constraints,
while optimisation is handled in the framework of
constraint programming. The resulting algorithm is
incomplete, but is shown to be compare favourably with a
complete approach to this problem.

Introduction
This paper presents a novel hybridisation of local search

and constraint programming techniques that was developed
while studying traffic placement problems in network
routing. The specific optimisation problem we consider has
the following form: assuming a network containing already
routed traffic demands (a demand being a requirement for
a connection of some specified bandwidth from a source to
a destination), and a set of new demands to be routed, find
routes for the new demands such that the “cost” of the new
demands which cannot be admitted onto the network is
minimised. In particular, we are interested in tightly-
constrained or over-constrained problems, where it is
difficult or impossible to route all the requested demands
without exceeding link capacities. If a solution is found
which routes all demands without exceeding link
capacities, the algorithm does not perform any additional

Copyright © 2004, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

optimisation on, for example worst-case or average case
link utilisation.

Apart from its application to the specific problem
considered here, the algorithm is interesting in that it
proposes a new way to hybridise local search and
constraint propagation techniques. Previously, the relative
strengths of local search in the area of optimisation with
few hard constraints, and constraint-based techniques for
problems in which hard constraints can provide significant
reductions of the search-space through propagation, has
suggested hybrid algorithms in which local search handles
the optimisation component, while constraint propagation
provides pruning using the hard problem constraints.
Examples can be found in (Casseau and Laburthe, 1999),
(Genreau and Pesant, 1999), (Jussien and Lhomme, 2000),
(Kamarainen and El-Sakkout, 2002), (Schaerf, 1997),
(Shaw, 1998) and (Zhang and Zhang, 1996).

In the hybrid form presented here, satisfaction of the
hard constraints – the capacity of links for traffic being
routed – is addressed by the local search component, while
constraint propagation is applied in a branch-and-bound
search tree that aims to minimise the cost of unrouted
demands. The local search component is, by its nature, not
a complete algorithm for solving the hard constraints, and
this incompleteness is inherited by the hybrid algorithm.
However, the complex nature of the application itself
precludes the development of a complete algorithm that is
effective for problems of significant scale.

The paper is organised as follows: after introducing the
problem, discussing possible approaches and motivating
the strategy adopted here, we outline the three phases of
the algorithm, and the local search procedure for
restoration of consistency. Before concluding, we report
experimental results on data derived from a large-scale real
network.

The Demand Admission Problem
The demand admission problem considered in this paper

can be stated as follows: given a network made up of
nodes and links, each link having an available capacity,

and a set of point-to-point traffic demands, each with a
bandwidth requirement and a cost incurred if that demand
is not placed on the network, find routes for demands that
satisfy the link capacities, while minimising the cost of any
unrouted demands.

For the purposes of this presentation, we assume that
demands already routed on the network have their paths
fixed, and their bandwidth requirements have been taken
into account when specifying the available link capacities.
In principle, there is no problem in allowing existing
demands to be re-routable and/or “droppable” i.e.
removable from the network in favour of new demands. In
practice, this increases the problem scale, which is
essentially determined by two factors: the number of
demands whose paths are moveable, and the number of
demands that need not be routed. Also, we assume that a
single path is required for each demand.

The algorithm we present is also able to solve problems
in which demands have a maximum propagation delay,
which the sum of the propagation delays of the links a path
for that demand must not exceed. However, the
implementation of this feature is not core to the algorithm
and to simplify the presentation we will not discuss it
further in this paper.

Solution Strategies
At the simplest level, heuristic algorithms based on the

use of the constrained shortest path first (CSPF) algorithm
(Lee, Hluchyi, and Humblet 1995) can be applied.
Demands are considered in a certain order, and an attempt
is made to route each one, given the current available link
capacities. If this is successful, the demand is placed on the
network and its bandwidth requirement subtracted from the
available capacity of the links on its path. If not, the
demand is rejected. Some improvements may be gained by
considering various different orderings of the demands, but
the approach remains a heuristic one and does not perform
search in any deep way.

There have been a number of papers presenting
algorithms for a related problem - that of optimising
network utilisation under the assumption that all demands
are placed. Methods proposed for this problem often apply
mathematical programming techniques based on multi-
commodity flow formulations, and include (Barnhart,
Hane and Vance, 2000) and (Wang and Wang, 1999).
When moving to over-constrained demand admission
problems, another level of choices is added to the demand
routing problem, namely, which demands are placed and
which are not. Introducing choices at this level presents
challenges for mathematical programming models from the
point of view of scalability. An alternative strategy in
which it is first assumed that all demands are placed
(allowing capacity violations), then one algorithm is
applied to reduce capacity violations and a second applied
to remove demands so as to satisfy the capacity
constraints, would scale better. However, this imposes a

separation between routing and demand selection which
can lead to solutions that are significantly sub-optimal.

In (Liatsos, Novello, and El-Sakkout, 2003), a technique
is presented in which a search tree is constructed, using
Mixed Integer Programming to reroute a single demand at
the nodes of the tree. Finite domain constraints based on
minimal cuts for subsets of demands are used to propagate
information concerning the routing of demands over links.
It is assumed that all demands are placed, and the
optimisation component is on the maximum utilised link in
the network. An unpublished variant of their technique that
is able to make choices about which demands are placed in
over-constrained problems has been developed, and is used
for comparison in the experimental results section of this
paper.

The strategy adopted in the algorithm we propose here is
as follows:

1) obtain an initial solution, using CSPF methods
2) improve the initial solution incrementally by

adding in demands not yet placed and using local
search to restore consistency with respect to the
link capacity constraints

3) execute a hybrid branch-and-bound tree search in
which alternative combinations of placed and
unplaced demands are considered, with local
search again used to restore consistency

While investigating the problem, local search proved to
be an effective technique for restoring consistency in a
“slightly” inconsistent network by re-routing demands.
The degree of inconsistency introduced by adding a single
demand is generally small, and a short run of local search
can often restore consistency when this is possible.
Capacity violations are handled through the optimisation
function. Although penalisation of hard constraint
violations in this way can be problematic when it mixes
constraint violation penalties with “real” optimisation
criteria, here, the hard constraint violations completely
determine the solution cost.

The scope of decisions handled by local search is
restricted to routing decisions - while inclusion of the
potential to remove, as well as reroute, placed demands in
the neighbourhood operator of local search is a possibility,
it did not appear a promising direction. However, as the
local search procedure is applied many times within the
context of the incremental improvement and tree search
phases – which address the selection of placed demands -
the two levels of decision-making remain closely
integrated in the algorithm.

The Initial CSPF Solution
The initial solution is constructed using the CSPF

method, applied to each demand in turn, after ordering
them in order of cost, highest first. The path must satisfy
the bandwidth requirement of the demand without
violating available link capacities. The metric used is
“inverse free capacity” i.e. the reciprocal of the free
capacity remaining on the link if the demand were routed

over it. The metric value of a path defined as the sum of
the metrics of its links. This metric was chosen as it tends
to give good average-case link utilisation, which benefits
later phases of the algorithm.

If a valid path is found for a demand, it is placed on the
network i.e. its required bandwidth is subtracted from the
free capacity of the links in its path. If no valid path is
found, the demand remains unplaced and will be passed
into later phases of the algorithm for routing.

The Incremental Improvement Phase
The incremental improvement phase seeks to extend the

set of demands placed in the initial solution by means of a
loop which proceeds as follows:

1) choose an unplaced demand
2) place it on the network, allowing violations of the

link capacity constraints
3) call a local search procedure that attempts to

restore consistency by rerouting demands
If the local search procedure is successful in restoring

consistency, the demand has been successfully placed, and
will remain placed for the remainder of the incremental
improvement phase – though its route may change. In this
way, the local search procedure does not need to consider
dropping previously placed demands as a possible means
of restoring consistency. However, the price to pay for this
is relatively high, as the order in which demands are
considered strongly determines the solutions that can be
found. It is for this reason that the tree search phase that
follows, in which all combinations of placed/unplaced
demands are potentially considered, was introduced.

The unplaced demands are considered in order of cost,
highest first. When an unplaced demand is initially placed
on the network, its path is computed using the CSPF
algorithm, with link capacity violation as metric. The local
search procedure used to restore consistency is also used in
the tree search phase of the algorithm, and will be
described in detail later.

As there is a random element in the local search
procedure, and as the routing of demands changes as
demands are placed, it can be beneficial to make a number
of passes through the set of unplaced demands: demands
that at first failed to be placed may be successfully placed
when reconsidered. This helps to establish a stronger
bound for the tree search phase that follows.

Hybrid Tree Search
The Hybrid Tree Search phase of the algorithm

constructs a branch-and-bound search tree with the aim of
optimising the total cost of the unplaced demands. Each
demand Di is associated with a boolean variable Bi, which
has the value 1 if-and-only-if the associated demand is
routed. The total cost is thus given by

Starting from a network in which none of the demands

are placed, finite domain constraints on the demand
booleans are generated (described in more detail below),
and a search tree is constructed as follows:

i) select the next demand for labelling
ii) label the demand boolean to 1, leaving a

choice point. On backtracking to this choice
point, the boolean will be labelled to 0

iii) if the boolean was labelled to 1, then it is
placed on the network, allowing link capacity
violations. If there are violations, local search
is called with the objective of restoring
consistency: if consistency is restored, search
continues on that branch, otherwise,
backtracking follows

The overall structure is therefore a binary tree with the

demand booleans as decision variables. Local search is
called at the nodes of the tree that follow a boolean being
labelled to 1. Two factors may cause backtracking:
constraint propagation following the labelling of a demand
boolean, or failure of local search to restore consistency.
Note that as the local search procedure executed at the
nodes is incomplete, so is the overall search.

The demands are ordered by cost, largest first, prior to
tree search, but there is a dynamic aspect to the order in
which demands are labelled: constraint propagation may
instantiate demand booleans to 1 before the corresponding
demand has been selected for labelling, indicating that the
must be placed, and such demands are labelled before the
remaining demands, again in order of cost, largest first.

When a demand is to be routed, its initial route is
calculated using CSPF, with link capacity violation as
metric. The local search phase that follows is the same as
that applied during the preceding incremental improvement
phase, and is described in the next section. In particular, it
has the freedom to reroute any routed demands in order to
restore consistency of the network with respect to the link
capacity constraints. The number of moves that can be
made by local search is kept fairly small: as in the
incremental improvement phase, the hope is that routing a
single demand on a consistent network can create
relatively few capacity violations, and if consistency can in
theory be restored, the local search algorithm should be
effective enough to do so within a reasonably small
number of moves.

The hybrid tree search is executed in the context of
finite domain constraints. These constraints can act
through propagation to instantiate the demand booleans,
which can influence the order in which demands are
labelled, or can cause a branch to fail early. In the design
of the algorithm, the routing of demands is achieved using
methods other than constraint programming, and in
particular, in contrast to network flow models there are no
boolean variables that reflect the presence of a particular
demand on a particular link. The routes of placed demands
are changed freely by the local search algorithm at the

∑ −
i

ii DB1)(cost*)(∑ −
i

ii DB1)(cost*)(

nodes of the search tree without affecting the values of any
variables. It is in general possible to derive constraints that
relate demand booleans and link capacities from
information about the necessary presence of demands on
links, regardless of the specific routes taken by the
demands. For example, a link is a necessary link for a
demand if whenever that demand is routed, it must pass
over that link. This may happen because of topological or
capacity considerations, or because of a maximum
propagation delay constraint on the path of the demand.
More generally, it is possible to compute cut-sets for a
demand - sets of links such that, if the demand is placed, it
must pass through one member of the cut-set.

Necessary links can be computed easily – by, for
example, finding a path using CSPF, then prohibiting the
individual links of that path and calling CSPF a second
time: if a path cannot then be found, the prohibited link is
necessary. Certain other cut-sets are also easy to derive:
the outgoing links from the source of the demand is a cut-
set, as is the set of outgoing links from the destination of a
necessary link, and similarly for incoming links to the
demand’s destination, and to the source of a necessary
link. While these are the means used in the current
implementation, it could be fruitful to explore work in
graph and network theory to add further forms of cuts.

For each link in a cut-set, a boolean variable is created
that represents the presence of the demand on that link.
The sum of these variables is constrained to be equal to the
demand boolean. After generating cut-set booleans and
recording them on their links, a constraint is asserted for
each link that the weighted sum of the cut-set booleans for
that link – the weights being the bandwidths of the
associated demands – is within the link capacity.

Since the tree is constructed in the context of branch-
and-bound optimisation, there is a cost-bound constraint
on the total cost of unrouted demands, which is initially
bounded to be less than the cost of the best solution found
prior to tree search, and is updated as the branch-and-
bound search proceeds in the usual way. If the incremental
search phase that precedes tree search was restricted to one
pass through the unplaced demands of the initial CSPF
solution, it could be seen as the left-most branch of the
tree, rather than as a search phase in its own right.
However, multiple passes have proved effective in
providing a better bound for tree search. Also, it is possible
for the incremental search phase to solve the problem
completely (i.e. place all demands) prior to tree search,
without requiring generation of cut-set constraints (or
constraint propagation).

The Local Search Procedure for Restoring
Consistency

The local search procedure for restoring consistency in
an inconsistent demand placement is a key component of
both the Incremental Improvement and Hybrid Tree Search
phases of the algorithm. Essentially, local search
algorithms maintain a current search state, and proceed by

moving from one state to another by computing a
“neighbourhood” of a state, and selecting a neighbouring
state to move to. In the present context, a state is defined
by the routes of all routed demands. The state may have a
number of links in which the capacity is exceeded – if
there are no such links, consistency has been restored and
search terminates with success.

The neighbourhood of a state is defined as all states that
can result from rerouting a demand whose route includes
the link whose capacity is exceeded maximally so that the
demand’s route no longer includes that link. This
neighbourhood is typically rather large, and is certainly
expensive to compute in full due to the routing calculations
involved. Consequently, a ‘lazy’ approach is taken: a
subset of demands on the maximally violated link are
passed forward for rerouting, and a single reroute is
generated for each such demand, using CSPF with link
capacity violation as metric. Each such reroute is given a
rating, based on a function of the violations it improves or
introduces and those it worsens or removes, and one of the
better reroutes is chosen – with a degree of randomness to
discourage the search from falling into repetitive loops.

Associated with a state is a cost, i.e. the value of an
objective function that the search is aiming to minimise.
Here, the aim of search is to remove link capacity
violations and the cost of a state is defined by a term
whose arguments are the number of links whose capacity
is exceeded in the current state, and the sum of the
bandwidth violations, respectively. One cost term is better
than another if it is lexicographically smaller.

Within local search techniques there are a number of
attitudes towards neighbours that worsen the objective
function. In hill-climbing, such neighbours are prohibited,
while in simulated annealing (Kirkpatrick, Gelatt Jr. and
Vecchi 1983), they may be accepted with a probability that
diminishes as search proceeds. The approach taken here is
to allow moves to such neighbours, within a hard bound on
the degree of worsening. This bound can mean that no
demands on the link whose capacity is exceeded that were
passed forward into rerouting produce an acceptable
neighbour, in which case an alternative subset of demands
routed on that link will be selected, until all such demands
have been tried. If this point is reached, the “least-bad”
neighbour will be chosen in order to allow search to
proceed. The hard bound on worsening is set quite
generously, and functions as a filter for very bad moves.
This technique was chosen as it proved important to allow
moves that worsen the objective function in order to
escape from local optima, while the fact that the local
search procedure is run repeatedly through the incremental
improvement and hybrid tree search phases of the
algorithm precluded application of simulated annealing,
which typically needs fairly long runs to converge to good
solutions.

Having allowed moves to worsen the objective function,
it was necessary to introduce a mechanism to discourage
search from going “too far in the wrong direction” from a
promising state. This is implemented through a “fallback
bound”: the best state found so far is recorded, along with

its cost, and if a state with better cost is not found within
the number of moves specified by the fallback bound, the
best found state is recalled, and search proceeds from it
again. At the same time, the fallback bound is increased to
give search greater freedom. The fallback bound is reset to
its initial value each time a new best state is found. Given
the large size of the neighbourhood, and the randomised
nature of the selection of reroutes, search will typically go
in different directions each time a fallback occurs.

Experimental Results
In this section we give experimental results for a variety

of problems on a large scale, real-world network. Due to
commercial sensitivities, exact details of the network
cannot be provided, however, it has roughly 100 routers
and 350 (directed) links. Demands were derived from
actual demand data for the network, with scaling
procedures applied to make the problems hard or over-
constrained. The cost of not placing a demand is taken to
be the bandwidth of the demand.

All components of the hybrid algorithm were
implemented in the ECLiPSe constraint logic
programming language, and experiments were run on a
2GHz Pentium 4 processor under Linux. Memory
requirements are modest, with the largest problems
requiring about 120mb RAM.

First we consider a set of 200 problems, which have
between 12 and 324 demands to be routed on an already
loaded network. The average number of new demands per
problem was 118. The original demand profile was used to
load the network, while the choice of new demands to be
routed was governed by possible use-case scenarios, such
as adding a new set of services to the network. Two
loading factors were used to multiply demand bandwidths,
in order to generate different degrees of overconstrained
problems – there were 100 problems at each loading factor.
The percentage of requested bandwidth unplaced in the
CSPF solution was 3.27% for the lower loading factor and
7.47% for the higher. In order to understand the relative
contributions of the different phases of the hybrid
algorithm, we give results for the initial CSPF solution, the
solution achieved after incremental improvement, and
solution found by the algorithm as a whole, i.e. after
running tree search. Results are given in Figures 1 & 2,
where Total Cost is the sum of costs of all problems, while
Percentage Cost Reduction is relative to the initial CSPF
solution.

Algorithm Total Cost % Cost Reduction
CSPF 7837755 -
CSPF + Incremental
Improvement

7745647 1.18

Full LS/CP Hybrid 7554663 3.61

Figure 1: Demand Admission, lower loading

Algorithm Total Cost % Cost Reduction
CSPF 19987968 -
CSPF + Incremental
Improvement

19420280 2.84

Full LS/CP Hybrid 18685141 6.52

Figure 2: Demand Admission, higher loading

In order to get some measure of the incompleteness
inherent in the LS/CP Hybrid, for the above demand
admission problems we compare the deficiency cases
between this algorithm and Probe Backtrack Search
algorithm presented in (Liatsos, Novello, and El-Sakkout,
2003), extended by the authors of that paper to cover over-
constrained problems. A problem instance counts as a
deficiency for an algorithm if the alternate algorithm finds
a better solution on that problem. Both algorithms were run
with a timeout of 600 cpu-seconds.

Algorithm Deficiency Cases
(lower loading)

Deficiency Cases
(higher loading)

LS/CP
Hybrid

11 23

PBT Search 18 24

Figure 3: Demand Admission deficiency cases

This comparison indicates that the problems are indeed
hard for both algorithms, as each beats the other in a
significant number of cases. However, the local
search/constraint programming hybrid achieves better
results than the complete algorithm within the allowed
cpu-time. The relative improvement for PBT in the higher
loading case can perhaps be explained by the fact that it
uses a more extensive set of constraints for propagation
than the LS/CP hybrid, and in the higher loading case
demand bandwidths are greater with respect to available
capacities, giving more opportunity for pruning.

We continue by reporting some results on a large scale
problem, in which all demands of the actual demand data
were considered as new demands, and their bandwidths
scaled in order to generate a tightly-constrained but
solvable problem with approximately 1900 demands to be
routed. The aim was to increase the scale factor as far as
possible while still placing all demands. The results do not
include the hybrid tree search phase, which did not
succeed in placing all demands when the incremental
improvement phase had failed to do so. These results
appear in Figure 4, and show that the incremental
improvement phase produced an increase of 2.92% over
the bandwidth placed in the initial solution, within a
relatively short run-time.

Algorithm Scale Factor CPU time
CSPF Initial Solution 2.74 4.05 seconds
CSPF + Incremental
Improvement

2.82 109.42 seconds

Figure 4: Scaled Actual Demands

There are two further points to mention. First, the scale
of demand admission problems is related to two aspects:
the number of demands that may have their routes
changed, and the numbers of demands that need not be
routed i.e. may be rejected or dropped. The former
influences that scale of the reroute problem, while the
latter determines the potential scale of the branch-and-
bound search tree. In situations when demands already on
the network may be rerouted but not dropped, the scale of
the reroute problem is increased independently of that of
tree search. The performance on the large scale problem
above demonstrates the effectiveness of local search
procedures for the routing aspect of demand admission
problems.

Secondly, for large scale problems, or problems in
which there remain many unrouted demands following the
incremental improvement phase, the search tree is
potentially very large. In such cases, initial experiments
indicate that it can be interesting to apply Limited
Discrepancy Search (Harvey and Ginsberg 1995) to bound
the degree to which solutions may differ from the best
solution found by the earlier search phases. This keeps
search within the vicinity of a good solution, while
exploring changes to all assignments of that solution.

Conclusions and Further Work
We have presented a hybrid algorithm combining

constraint propagation and local search in a novel way,
with local search used to satisfy the hard problem
constraints in the context of branch-and-bound
optimisation in which constraint propagation also occurs.
The algorithm was developed with the aim of solving
complex, large scale demand admission problems, and has
been shown to be effective for such problems. A potential
contribution from Limited Discrepancy Search has been
identified, and will be investigated further.

Acknowledgements
Thanks to my colleagues at IC-Parc and PARC

Technologies Ltd: Farid Ajili, Vassilis Liatsos, Stefano
Novello, Hani El-Sakkout and Josh Singer. This research
has been supported by Parc-Technologies Ltd.

References
Barnhart, C., Hane, C. A., and Vance, P. H. 2000. Using
branch-and-price-and cut to solve origin-destination
integer multicommodity flow problems. Operations
Research 48(2):318-326.

Casseau, Y., and Laburthe, F. 1999. Heuristics for large
constrained vehicle routing problems. Journal of
Heuristics, 5(3):281-303. Kluwer.

Genreau, M., and Pesant, G. 1999. A constraint
programming framework for local search methods. Journal
of Heuristics, 5(3):255-279. Kluwer.

Harvey, W. D. and Ginsberg, M. L. 1995. Limited
discrepancy search. In Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence,
607-615. Los Angeles.: Morgan Kaufmann.

Jussien, N., and Lhomme, O. 2000. Local search with
constraint propagation and conflict-based heuristics. In
Proceedings of the Seventeenth National Conference on
Artificial Intelligence and Twelfth Conference on
Innovative Applications of Artificial Intelligence,
2000:169-174. AAAI Press.

Kamarainen, O., and El-Sakkout, H. 2002. Local probing
applied to scheduling. In Proceedings of the Eighth
International Conference on the Principles and Practice of
Constraint Programming, 155-171. Springer-Verlag.

Kirkpatrick, S., Gelatt Jr., C, and Vecchi, M. 1983.
Optimization by simulated annealing. Science 220:671-
680.

Lee, W., Hluchyi, M., and Humblet, P. 1995. Routing
subject to quality of service constraints in integrated
communication networks. IEEE Network, July 1995: 46-
55.

Liatsos, V., Novello, S., and El-Sakkout, H. 2003. A probe
backtrack search algorithm for network routing. In
Proceedings of the CP2003 Third Workshop on
Cooperating Solvers in Constraint Programming,
Springer Verlag.

Schaerf, A. 1997. Combining local search and look-ahead
for scheduling and constraint satisfaction problems. In
Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, 1254-1259. Los
Angeles.: Morgan Kaufmann.

Shaw, P. 1998. Using constraint programming and local
search methods to solve vehicle routing problems. In
Proceedings of the Fourth International Conference on the
Principles and Practice of Constraint Programming, 417-
431. Springer-Verlag.

Wang, Y., and Wang, Z. 1999. Explicit routing algorithms
for internet traffic engineering. In Proceedings of IEEE
ICCCN’99.

Zhang, J., and Zhang, H. 1996. Combining local search
and backtracking techniques for constraint satisfaction. In
Proceedings of the American Association for Artificial
Intelligence, 1996:369-374. AAAI Press.

