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Abstract. 
Clustering is a form of unsupervised machine learning. In this 
paper, we proposed the DBRS_O method to identify clusters 
in the presence of intersected obstacles. Without doing any 
preprocessing, DBRS_O processes the constraints during 
clustering. DBRS_O can also avoid unnecessary 
computations when obstacles do not affect the clustering 
result. As well, DBRS_O can find clusters with arbitrary 
shapes, varying densities, and significant non-spatial 
attributes in large datasets.  

 
Introduction 

 
Clustering spatial data in large 2-dimensional spaces to 
find hidden patterns or meaningful sub-groups has many 
applications, such as resource planning, marketing, image 
processing, animal population migration analysis and 
disease diffusion analysis. Dealing with constraints due to 
obstacles is an important topic in constraint-based spatial 
clustering. Handling these constraints can lead to effective 
and fruitful data mining by capturing application semantics 
(Han, Lakshmanan, and Ng 1999, Tung et al. 2001). 

Typically, a clustering task consists of separating a set of 
objects into different groups according to a measure of 
goodness, which may vary according to application. A 
common measure of goodness is Euclidean distance (i.e., 
straight-line distance). However, in many applications, the 
use of Euclidean distance has a weakness, as illustrated by 
the following example. 

Suppose a bank planner is to identify optimal bank 
machine placements for the area shown in the map in 
Figure 1. In the map, a small oval represents a residence. 
Each highway acts as an obstacle that separates nearby 
residences into two groups corresponding to the two sides 
of the highway. The highways intersect with each other. 
Since obstacles exist in the area and they should not be 
ignored, the simple Euclidean distances among the objects 
are not appropriate to measure user convenience when 
planning bank machine placements.  

In this paper, we are interested in constraint clustering in 
spatial datasets with the following features.  First, 
obstacles, such as highways, fences, and rivers, may exist 
in the data. Obstacles are modeled as polygons, and do not 
occur densely. Second, obstacles may intersect with each 
other. For example, highways or rivers often cross each 
other. Third, the clusters may be of widely varying shapes 
and densities. For example, services are clustered along 
major streets or highways leading into cities. Fourth, the 
points, i.e., two- or three-dimensional locations, may have 
significant non-spatial attributes. For example, an attribute 

may tell whether a location is on land or on water and we 
may not want to create clusters with a measurable 
percentage of water points regardless of the density of the 

land points. Finally, the dataset may be very large.  
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Figure 1. Map for ATM placements 

We extend the density-based clustering method DBRS 
(Wang and Hamilton 2003) to handle obstacles and call the 
extended method DBRS_O. In the presence of obstacles, 
DBRS_O first randomly picks one of the points from the 
dataset and retrieves its neighborhood without considering 
obstacles. Then it determines whether any obstacles in the 
neighborhood should be considered. An obstacle may 
occur within a neighborhood, without affecting the 
reachability of points from the center point of 
neighborhood. If so, DBRS_O ignores the obstacle. 
However, if an obstacle separates the neighborhood into 
multiple connected regions, DBRS_O removes all points 
that are not in the same region as the central point from the 
neighborhood. If the remaining neighborhood is dense 
enough or intersects an existing cluster, the neighborhood 
is clustered. Otherwise, the center point is classified as 
noise. These steps are iterated until all points are clustered. 

The remainder of this paper is organized as follows. In 
Section 2, we discuss two related approaches. Then in 
Section 3, the DBRS_O algorithm is introduced and its 
complexity analysis is given. Experimental results are 
analyzed in Section 4. Conclusions are given in Section 5. 

 
Related Work 

In this section, we briefly survey previous research on the 
problem of spatial clustering in the presence of obstacles.  

COD_CLARANS (Tung, Hou, and Han 2001) is the first 
obstacle constraint partitioning clustering method. It is a 
modified version of the CLARANS partitioning algorithm 
(Ng and Han 1994) for clustering in the presence of 
obstacles. The main idea is to replace the Euclidean 
distance function between two points with the "obstructed 
distance," which is the length of the shortest Euclidean 

  



path between two points that does not intersect any 
obstacles. The calculation of obstructed distance is 
implemented with the help of several steps of 
preprocessing, including building a visibility graph, micro-
clustering, and materializing spatial join indexes.  The 
preprocessing makes the approach appear to perform and 
scale well since it is ignored in the performance evaluation. 
After preprocessing, COD_CLARANS works efficiently 
on a large number of obstacles. But, for the types of 
datasets we described in Section 1, the algorithm may not 
be suitable. First, if the dataset has varying densities, 
COD_CLARANS's micro-clustering approach may not be 
suitable for the sparse clusters. Secondly, as given, 
COD_CLARANS was not designed to handle intersecting 
obstacles, such as are present in our datasets.  

AUTOCLUST+ (Estivill-Castro and Lee 2000a) is an 
enhanced version of AUTOCLUST (Estivill-Castro and 
Lee 2000b) that handles obstacles. With AUTOCLUST+, 
the user does not need supply parameter values. First, 
AUTOCLUST+ constructs a Delaunay diagram. Then, a 
global variation indicator, the average of the standard 
deviations in the length of incident edges for all points, is 
calculated to obtain global information before considering 
any obstacles. Thirdly, all edges that intersect with any 
obstacles are deleted. Fourthly, AUTOCLUST is applied to 
the planar graph resulting from the previous steps. When a 
Delaunay edge traverses an obstacle, the length of the 
distance between the two end-points of the edge is 
approximated by a detour path between the two points. 
However, the distance is not defined if no detour path 
exists between the obstructed points.  

 
DBRS in the Presence of Obstacles 
In this section, we describe a density-based clustering 
approach that considers obstacle constraints. The method is 
based on DBRS, but it can be extended to other density-
based methods, such as DBSCAN, as well.   
 
Density-Based Spatial Clustering with Random 
Sampling (DBRS) 
DBRS is a density-based clustering method with three 
parameters, Eps, MinPts and MinPur (Wang and Hamilton 
2003). DBRS repeatedly picks an unclassified point at 
random and examines its neighborhood, i.e., all points 
within a radius Eps of the chosen point.  The purity of the 
neighborhood is defined as the percentage of the neighbor 
points with same property as central point. If the 
neighborhood is sparsely populated (≤MinPts) or the purity 
of the points in the neighborhood is too low (≤MinPur), the 
point is classified as noise.  Otherwise, if any point in the 
neighborhood is part of a known cluster, this neighborhood 
is joined to that cluster, i.e., all points in the neighborhood 
are classified as being part of the known cluster.  If neither 
of these two possibilities applies, a new cluster is begun 
with this neighborhood.   

The time complexity of DBRS is O(nlogn) if an SR-tree 
(Katayama and Satoh 1997) is used to store and retrieve all 
points in a neighborhood. More details of DBRS are given 
in (Wang and Hamilton 2003). 

In the following discussion, we assume all points have 
the same property to simplify the discussion. For simplicity 
of presentation, only 2D examples are shown. 
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Figure 2.  q1 and q2 are p’s proper neighbors, q3 and q4 
are p's possible neighbors, and q5 is p's false neighbor 

The Distance Function in the Presence of Obstacles 
Clustering should be affected by the presence of obstacles. 
In Figure 2, p is the central point and q1, q2, q3, q4 and q5 
are five points in its neighborhood. However, as shown in 
Figure 2, part of an obstacle intersects the neighborhood. 
Since dist(p, q1) and dist(p, q2) are less than the radius with 
or without the obstacle, we call them proper neighbors. 
Although the Euclidean distances from q3 and q4 to p are 
less than radius, they are obstructed by the obstacle. 
However, if we connect p to q3 and q4 via one of the 
vertices of the obstacle, q3 can still reach to p in a distance 
less than radius while the unobstructed distance from q4 to 
p may be little more than the radius.  We call them possible 
neighbors of p. For q5, the obstacle ensures that it is not 
reachable without leaving the circle, so it cannot be p's 
neighbor. We call it a false neighbor of p. 

The unobstructed distance between a possible 
neighbor (or a false neighbor) and the central point consists 
of the distance between itself and the first connection 
point, the distance between consecutive connection points 
in the path, and the distance between the last connection 
point and the central point. All connection points are 
vertices of obstacles. There may be more than one path 
between the neighbor and the central point. Therefore, the 
distance from a possible neighbor (or false neighbor) to the 
central point depends on different paths. Thus the problem 
is transformed to find the shortest path between the central 
point and the neighbor through those connections points. 
An algorithm for finding the shortest path can be found at 
(Cormen et al.2001); its complexity is O(|v|2), where |v| is 
the total number of vertices in all obstacles. If the obstacles 
intersect with each other, the visibility among those 
vertices needs to be determined. The complexity of 
determining the visibility is O(|v|2) as well.  

In this paper, we approximate the distance:  

   dist  








∞
=

otherwise             
neighbor                   

 sibleproper/pos sp' a is q   ),(
),('

 

qpdist
qpob

  



The distance between a proper neighbor and the central 
point is the Euclidean distance dist(p, q) which is less than 
or equal to Eps. Possible neighbors are treated as proper 
neighbors for practical reasons. First, in density-based 
clustering methods, the radius Eps is usually set as a very 
small value to guarantee the accuracy and significance of 
the result. Thus it is reasonable to approximate the internal 
distance within the neighborhood. Secondly, as mentioned 
before, to find the distance between a possible neighbor 
and the center requires O(|v2|) time, where v is the set of 
total vertices of obstacles. However, to distinguish the 
possible neighbors and proper neighbor only takes 
O(log|v|). So approximation decreases the complexity from 
O(log|v|+|v|2) to O(log|v|), where |v| is the number of the 
vertices of all obstacles. We sacrifice some accuracy but 
reduce the complexity significantly. However, if 
neighborhood is separated into several connected regions, 
false neighbors must be removed. So the distance from 
false neighbors to central point is defined as ∞. 

Given a dataset D, a symmetric distance function dist, the 
unobstructed distance function distob, parameters Eps and 
MinPts, and a property prop defined with respect to one or 
more non-spatial attributes, the definitions of a matching 
neighbor and reachability in the presence of obstacles are 
as follows.  
Definition 1: The unobstructed matching neighborhood 
of a point p, denoted by N'Eps_ob(p), is defined as N'Eps_ob(p) 
= { q∈D | distob(p, q)≤ Eps and p.prop = q.prop}, and its 
size is denoted as |N'Eps_ob(p)|. 
Definition 2: A point p and a point q are directly purity-
density-reachable in the presence of obstacles if (1) p∈ 
N'Eps-ob(q), |N'Eps-ob(q)| ≥ MinPts and |N'Eps-ob(q)| / |NEps(q)|  
≥ MinPur or (2) q∈ N'Eps-ob(p), |N'Eps-ob(p)| ≥ MinPts and 
|N'Eps-ob(p)| / |NEps(p)| ≥ MinPur. NEps(p) is the matching 
neighborhood of point p without considering obstacles. 
Definition 3: A point p and a point q are purity-density-
reachable (PD-reachable) in the presence of obstacles, 
denoted by PDob(p, q), if there is a chain of points p1,…,pn, 
p1=q, pn=p such that pi+1 is directly purity-density-
reachable from pi in the presence of obstacles.  

To determine reachability in the presence of obstacles, 
we must first determine whether false neighbors may exist 
within the neighborhood, i.e., whether or not the region is 
connected. Secondly, we must identify the false neighbors, 
i.e., we must find which points are separated from the 
central point. 

 
Connectedness of the Neighborhood 
We determine whether or not a neighborhood is connected 
by an analysis of obstacles and the neighborhood. Given an 
obstacle and a neighborhood, nine possible cases are 
shown in Figure 3. For each case, the polygon represents 
an obstacle, the circle represents the neighborhood, and the 
black dots represent the points being clustered. False 

neighbors only appear when the neighborhood region is 
separated into two or more parts. 

The following lemma addresses this problem. 
Lemma 1: Let |v| be the number of vertices of the obstacle 
inside the neighborhood (i.e., strictly less than Eps from 
the central point) and let |e| be the number of the edges 
inside or intersecting with the neighborhood.  If |e| ≤ |v| + 1 
holds, then the neighborhood is connected. 
Proof: We use induction to prove the lemma. 
1) Step 1: When |v| = 0, |e| = 0, as shown in Figure 3 (a), 
(b) and (c), the neighborhoods are connected. When |v| = 0, 
|e| = 1, as shown in Figure 3(d) and (e), the neighborhoods 
are connected. 
2) Step 2: Now assume that for some integer k ≥ 0, the 
lemma holds, i.e.,  |v| = k, |e| ≤ k + 1, the neighborhood is 
connected.   Then for |v| = k + 1, assume that the new 
vertex q is inserted between two vertices pm and pm+1. We 
need to connect two edges (+2) to q from pm and pm+1, 
respectively and we need to delete the old edge between pm 
and pm+1. So |e| ≤ k + 1 + 2 - 1= (k + 1) + 1.  Since the new 
vertex is inside the neighborhood, the new edges cannot 
cut the neighborhood into separate connected regions. So 
the lemma holds for |v| = k + 1.♦ 

The lemma implies when there are multiple sequences of 
line segments intersecting with the neighborhood, the 
neighborhood may be separated into multiple connected 
regions. It gives a sufficient but not necessary condition. 
Using this lemma avoids many unnecessary calculations. 
 
False Neighbor Detection 
After determining the connectedness, we can identify the 
false neighbors by using another property of 
neighborhoods. If we imagine that one of the sequences of 
line segments is part of the virtual polygon represented by 
the thick lines, as shown in Figure 4, the false neighbor is 
inside the polygon while the central point is outside the 
polygon. A virtual polygon for an obstacle and a 
neighborhood is a polygon that (1) includes one sequence 
of line segments generated by intersecting the obstacle 
with the neighborhood and (2) connects the two ending 
vertices of the sequence of line segments without 
intersecting the neighborhood. 

Therefore, the problem of judging whether a point is 
separated from the central point is transformed into the 
problem of determining whether the point is inside the 
virtual polygon (i.e., in a different region from the central 
point) or outside (i.e., in the same region). 
Several methods are known to test whether a point is inside 
a polygon (Arvo 1991). We use the grid method, which is a 
relatively faster but more memory intensive method. The 
idea is to connect a ray from the testing point to central 
point. Then we count the number of times the ray crosses a 
line segment. If the number of crossings is odd, then the 
point is inside the polygon. If the number of crossings is 
even, then the point is outside the polygon. 
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Since the two ends of the ray, i.e., the neighbor and the 
central point, are both inside the neighborhood, the line 
segments being crossed can only be the edges of the 
obstacle. Therefore, we do not generate a real polygon for 
counting the crossings. Instead, we only find the sequences 
of line segments intersecting the neighborhood. 
Multiple Obstacles in a Neighborhood 
When multiple obstacles appear in a neighborhood, we 
first determine one by one whether they are crossing 
obstacles, i.e., they affect the neighborhood connectedness 
by using Lemma 1. If any of them affect the result, we 
remove the false neighbors obstructed by the obstacle by 
counting the corresponding crossings. For the case in 
Figure 5(a), we can remove every false neighbor generated 
by different obstacles.  

For noncrossing obstacles, combinations with other 
obstacles may affect the connectedness, as shown by the 
dark obstacle polygons in Figure 5(b) and (c). To detect 
these cases, we first determine whether a noncrossing 
obstacle appears in the neighborhood and intersects with 
other obstacles. Since each such obstacle has one sequence 
of line segments, we can determine whether they intersect 
by checking the line segments one by one.   

To simplify processing, in all cases where a noncrossing 
obstacle intersects another obstacle, we remove all 
neighbors whose connection with the center point 
intersects with the noncrossing obstacle. Since a 
neighborhood is a small area, if a noncrossing obstacle 
intersects with others in the neighborhood, it is likely that 
the neighborhood is separated by a combination of 
obstacles.  Even if the neighborhood is not separating, the 
distance from some possible neighbors to center may be 
longer than the radius. Since the number of the noncrossing 
obstacles intersecting in the neighborhood is very small, 
the additional computation required will be small.  
Algorithm and Complexity 
In Figure 6, we present the DBRS_O algorithm. D is the 
dataset. Eps, MinPts and MinPur are global parameters. O 

is the set of obstacles present in the dataset. DBRS_O 
starts with an arbitrary point q and finds its matching 
neighborhood in the presence of obstacles, which is called 
qseeds, through the function 
D.matchingProperNeighbors(q,Eps,O) in line 4.  
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    Figure 5. Multiple Intersecting Obstacles 
 

Algorithm DBRS_O (D, Eps, MinPts, MinPur, O) 
1  ClusterList = Empty; 
2  while (!D.isClassified( ))  { 
3   Select one unclassified point q from D; 
4 qseeds = D.matchingProperNeighbors(q, Eps, O); 
5 if ((|qseeds| < MinPts) or (qseed.pur < MinPur)) 
6       q.clusterID = -1; /*q is noise or a border point */ 
7 else  { 
8     isFirstMerge = True; 
9     Ci = ClusterList. firstCluster;  

    /* compare qseeds to all existing clusters */ 
10     while (Ci != Empty)  { 
11          if ( Ci.hasIntersection(qseeds) ) 

False neighbor 

Central point 

Figure 3. Possible Topologies for a Neighborhood and an Obstacle 

12   if (isFirstMerge)  { Figure 4. Virtual Polygon 13          newCi = Ci.merge(qseeds); 
14          isFirstMerge = False;    } 
15   else  { 
16          newCi = newCi.merge(Ci); 
17         ClusterList.deleteCluster(Ci);} 
18          Ci = ClusterList. nextCluster;  } 
            /*No intersection with any existing cluster */ 
19     if (isFirstMerge)  { 
20         Create a new cluster Cj from qseeds; 
21         ClusterList = ClusterList.addCluster(Cj); } 
         }  //else 
    }  // while !D.isClassified 

Figure 6. The DBRS_O Algorithm 
 

SetOfPoint::matchingProperNeighbours(q, Eps, O)  
1   SequencesOfLineSegments *solsOfAffectOb, solsOfAllOb; 
2   int intersections; 
3 qseeds= matchingNeighbours(q, Eps); 
4 O.IntersectWithCircle(q,Eps, solsOfAffectOb, solsOfAllOb); 
5   for every point seed in qseeds  
6     for every sequence of line segments sls in solsOfAffectOb 
7   { intersection = sls.IntersectWithLine(seed,q); 
8 if (intersection % 2 != 0) 
9 { delete seed from qseeds; 
10 break; } 
11 for every obstacle o which does not affect connectedness  
12     if(o.IntersectionWithOthers(solsOfAllOb))  
13      for every point seed in qseeds 

          14       if ( o.isPossibleNeighbor(q, seed)) 

  



15    delete seed from qseeds; 
16  return(qseeds); 
Figure 7.  The matchingProperNeighbors Function 

 
The function for finding the matching proper and 

possible neighbors is presented in Figure 7. The 
matchingNeighbours(q,Eps) function in line 3 retrieves 
all matching neighbors without considering the obstacles 
(Wang and Hamilton 2003). In line 4, according to Lemma 
1, O.IntersectWithCircle(q,Eps, solsOfAffectOb, 
solsOfAllOb) records all sequences of line segments into 
solsOfAffectOb if they separate the neighborhood. For 
each neighbor seed in qseeds and every sequence of line 
segments sls in solsOfAffectOb, 
sls.IntersectWithLine(seed, q) in line 7 counts the 
intersections of sls and the line segment connecting seed 
and q. If the intersections is odd, seed is a false neighbor. 
It is deleted from qseeds in line 9.  In line 12, 
o.IntersectionWithOthers(solsOfAllOb) determines 
whether an obstacle o that does not affect neighborhood 
connectedness intersects with any other obstacles. From 
line13 to 15, all possible neighbors intersecting with o are 
removed by connecting every seed with the center point 
and checking the intersection. 

The region query D.matchingNeighbors(q,Eps) in line 
3 of Figure 7 is the most time-consuming part of the 
algorithm. A region query can be answered in O(log n) 
time using SR-trees. Similarly, the method of checking the 
intersection of every obstacle with neighborhood region 
O.IntersectWithCircle(q,Eps) requires O(log|v|) time, 
where |v| is the number of all vertices of obstacles. In the 
worst case, where all n points in a dataset are noise, 
DBRS_O needs to perform exactly n region queries and n 
neighborhood intersection queries. Therefore, the worst 
case time complexity of DBRS_O in the presence of 
obstacles is O(n log n+ nlog|v|). However, if any clusters 
are found, it will perform fewer region queries and fewer 
neighborhood intersection queries.  

 
Experimental Results 

This section presents our experimental results on synthetic 
datasets. All experiments were run on a 500MHz PC with 
256M memory. To improve the efficiency of neighborhood 

query, an SR-tree was implemented as the spatial index. 
Each record includes x and y coordinators and one non-
spatial property. For all experiments described, Eps is 4, 
MinPts is 10, and MinPur is set to 0.75; extensive previous 
experiments with DBRS showed that these values give 
representative behaviors for the algorithm (Wang and 
Hamilton 2003). Each numeric value represents the 
average value from 10 runs. 

Figure 8 shows a 150k dataset with 10% noise and the 
clusters found by DBRS_O and DBRS. The original data is 
with various shapes and different densities. Obstacles 
analogous to 7 highways or rivers and 2 triangle-like lakes 
split every cluster. Figure 8(a) shows the results of 8 
clusters found by DBRS without considering the presence 
of obstacles. Figure 8(b) shows 28 clusters found by 
DBRS_O in the presence of obstacles.  

    
          (a)          (b) 

Figure 8. Clustering Results with and without Obstacles 
 

In Figure 9, the number of clusters discovered by DBRS 
ranges from 7 (in the 75k dataset) to 21 (in the 200k 
dataset) while the number of clusters discovered by 
DBRS_O ranges from 27 (in the 75k dataset) to 54 (in the 
200k dataset), which indicates that when obstacles are 
present, DBRS is less accurate than DBRS_O, as expected. 

Table 1 shows the scalability results experiments of 
DBRS_O, DBRS and AUTOCLUST+. Since authors of 
COD_CLARANS lost their code, AUTOCLUST+ is the 
only implemented system available for comparison. The 
size of datasets is varied from 25k to 200k and the number 
of the obstacles in these datasets is varied from 5 to 20. 
Each obstacle has 10 vertices, so the number of obstacle 
vertices varies from 50 to 200. The second column of 
Table 1 gives the run time of DBRS. The rest columns list 
the run time result applying DBRS_O and AUTOCLUST+ 
in the presence of obstacles.  

For DBRS_O, the run time slightly increases with the 
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Time 
(secs) 

AUTOCLUST+ 
Time 
(secs) 

DBRS_O 
Time 
(secs) 

AUTOCLUST+ 
Time 
(secs) 

25k 18.51 20.21 165.05 20.93 179.82 21.36 189.60 21.91 211.13 
50k 40.43 44.00 496.81 44.44 538.32 45.09 572.27 45.59 613.30 
75k 54.04 60.53 950.32 61.79 1007.44 62.12 1067.53 62.62 1130.26 
100k 85.3 95.08 1720.87 96.39 1778.55 97.88 1845.50 99.09 1926.40 
125k 96.34 107.82 2461.98 108.42 2588.36 109.52 2754.56 111.11 2905.01 
150k 117.43 130.06 3663.20 125.34 3740.53 126.77 3814.25 129.29 3931.57 
175k 136.71 150.99 5008.76 152.75 5220.33 154.62 5435.32 157.14 5667.16 
200k 272.37 302.86 9659.19 291.55 9715.72 293.58 9919.98 295.88 10326.38 

Table 1 Run Time Comparisons between DBRS, DBRS_O and AUTOCLUST+ 

  



number of obstacles for most datasets. However, for the 
datasets with 150k and 200k points and 5 obstacles, the run 
time is more than for the same datasets with 10 to 20 
obstacles. The run time is affected by several factors: the 
size of the dataset, the number of region queries, the 
densities of the neighborhoods that are examined, and the 
number and location of obstacle vertices. For the above 
two cases, since other factors are fixed or slightly changed, 
the density of neighborhoods may be the major factor 
increasing the run time. If more points from denser clusters 
are examined, then more time is required to find the 
intersections with existing clusters, to merge their 
neighborhoods into the existing clusters and to remove the 
false neighbors.  

The run times for DBRS are slightly less than those for 
DBRS_O. AUTOCLUST+, as implemented by its authors, 
is slower than DBRS_O. Since AUTOCLUST+ has a 
graphical user interface, the communication time between 
the GUI and algorithm modules may increase the run time 
to a certain degree. 

Figure 9 Number of Clusters Discovered 
 Another series of experiments assessed the effectiveness 

of using Lemma 1. Lemma 1 eliminates region queries for 
neighborhoods that have no crossing obstacles. Table 2 
lists the number of separated neighborhoods and the 
number of obstructed neighborhoods with respect to 
varying dataset sizes and numbers of obstacle vertices. An 
obstructed neighborhood is a neighborhood that intersects 
at least one obstacle. A separated neighborhood is an 
obstructed neighborhood that is separated into two or more 
connected regions by obstacles. Table 2 shows that fewer 

than half of the obstructed neighborhoods are separated in 
our datasets. This fraction decreases as the number of 
obstacles increases. Thus, applying Lemma 1 avoids at 
least half of the effort and more than half for large numbers 
of obstacles. 

Conclusion 
In this paper, we proposed a new constrained spatial 
clustering method called DBRS_O, which clusters spatial 
data in the presence of obstacle constraints. Without doing 
any preprocessing, DBRS_O processes the constraints 
during the clustering. For obstacles with many short edges, 
these features make DBRS_O more suitable than other 
algorithms. Additionally, DBRS_O can find clusters with 
arbitrary shapes and varying densities.  
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