
Clustering Spatial Data in the Presence of Obstacles

Xin Wang and Howard J. Hamilton
Department of Computer Science

University of Regina, Regina, Sask, Canada S4S 0A2
{wangx, hamilton}@cs.uregina.ca

Abstract.
Clustering is a form of unsupervised machine learning. In this
paper, we proposed the DBRS_O method to identify clusters
in the presence of intersected obstacles. Without doing any
preprocessing, DBRS_O processes the constraints during
clustering. DBRS_O can also avoid unnecessary
computations when obstacles do not affect the clustering
result. As well, DBRS_O can find clusters with arbitrary
shapes, varying densities, and significant non-spatial
attributes in large datasets.

Introduction

Clustering spatial data in large 2-dimensional spaces to
find hidden patterns or meaningful sub-groups has many
applications, such as resource planning, marketing, image
processing, animal population migration analysis and
disease diffusion analysis. Dealing with constraints due to
obstacles is an important topic in constraint-based spatial
clustering. Handling these constraints can lead to effective
and fruitful data mining by capturing application semantics
(Han, Lakshmanan, and Ng 1999, Tung et al. 2001).

Typically, a clustering task consists of separating a set of
objects into different groups according to a measure of
goodness, which may vary according to application. A
common measure of goodness is Euclidean distance (i.e.,
straight-line distance). However, in many applications, the
use of Euclidean distance has a weakness, as illustrated by
the following example.

Suppose a bank planner is to identify optimal bank
machine placements for the area shown in the map in
Figure 1. In the map, a small oval represents a residence.
Each highway acts as an obstacle that separates nearby
residences into two groups corresponding to the two sides
of the highway. The highways intersect with each other.
Since obstacles exist in the area and they should not be
ignored, the simple Euclidean distances among the objects
are not appropriate to measure user convenience when
planning bank machine placements.

In this paper, we are interested in constraint clustering in
spatial datasets with the following features. First,
obstacles, such as highways, fences, and rivers, may exist
in the data. Obstacles are modeled as polygons, and do not
occur densely. Second, obstacles may intersect with each
other. For example, highways or rivers often cross each
other. Third, the clusters may be of widely varying shapes
and densities. For example, services are clustered along
major streets or highways leading into cities. Fourth, the
points, i.e., two- or three-dimensional locations, may have
significant non-spatial attributes. For example, an attribute

may tell whether a location is on land or on water and we
may not want to create clusters with a measurable
percentage of water points regardless of the density of the

land points. Finally, the dataset may be very large.

Legend

residence

highway

Figure 1. Map for ATM placements

We extend the density-based clustering method DBRS
(Wang and Hamilton 2003) to handle obstacles and call the
extended method DBRS_O. In the presence of obstacles,
DBRS_O first randomly picks one of the points from the
dataset and retrieves its neighborhood without considering
obstacles. Then it determines whether any obstacles in the
neighborhood should be considered. An obstacle may
occur within a neighborhood, without affecting the
reachability of points from the center point of
neighborhood. If so, DBRS_O ignores the obstacle.
However, if an obstacle separates the neighborhood into
multiple connected regions, DBRS_O removes all points
that are not in the same region as the central point from the
neighborhood. If the remaining neighborhood is dense
enough or intersects an existing cluster, the neighborhood
is clustered. Otherwise, the center point is classified as
noise. These steps are iterated until all points are clustered.

The remainder of this paper is organized as follows. In
Section 2, we discuss two related approaches. Then in
Section 3, the DBRS_O algorithm is introduced and its
complexity analysis is given. Experimental results are
analyzed in Section 4. Conclusions are given in Section 5.

Related Work

In this section, we briefly survey previous research on the
problem of spatial clustering in the presence of obstacles.

COD_CLARANS (Tung, Hou, and Han 2001) is the first
obstacle constraint partitioning clustering method. It is a
modified version of the CLARANS partitioning algorithm
(Ng and Han 1994) for clustering in the presence of
obstacles. The main idea is to replace the Euclidean
distance function between two points with the "obstructed
distance," which is the length of the shortest Euclidean

path between two points that does not intersect any
obstacles. The calculation of obstructed distance is
implemented with the help of several steps of
preprocessing, including building a visibility graph, micro-
clustering, and materializing spatial join indexes. The
preprocessing makes the approach appear to perform and
scale well since it is ignored in the performance evaluation.
After preprocessing, COD_CLARANS works efficiently
on a large number of obstacles. But, for the types of
datasets we described in Section 1, the algorithm may not
be suitable. First, if the dataset has varying densities,
COD_CLARANS's micro-clustering approach may not be
suitable for the sparse clusters. Secondly, as given,
COD_CLARANS was not designed to handle intersecting
obstacles, such as are present in our datasets.

AUTOCLUST+ (Estivill-Castro and Lee 2000a) is an
enhanced version of AUTOCLUST (Estivill-Castro and
Lee 2000b) that handles obstacles. With AUTOCLUST+,
the user does not need supply parameter values. First,
AUTOCLUST+ constructs a Delaunay diagram. Then, a
global variation indicator, the average of the standard
deviations in the length of incident edges for all points, is
calculated to obtain global information before considering
any obstacles. Thirdly, all edges that intersect with any
obstacles are deleted. Fourthly, AUTOCLUST is applied to
the planar graph resulting from the previous steps. When a
Delaunay edge traverses an obstacle, the length of the
distance between the two end-points of the edge is
approximated by a detour path between the two points.
However, the distance is not defined if no detour path
exists between the obstructed points.

DBRS in the Presence of Obstacles
In this section, we describe a density-based clustering
approach that considers obstacle constraints. The method is
based on DBRS, but it can be extended to other density-
based methods, such as DBSCAN, as well.

Density-Based Spatial Clustering with Random
Sampling (DBRS)
DBRS is a density-based clustering method with three
parameters, Eps, MinPts and MinPur (Wang and Hamilton
2003). DBRS repeatedly picks an unclassified point at
random and examines its neighborhood, i.e., all points
within a radius Eps of the chosen point. The purity of the
neighborhood is defined as the percentage of the neighbor
points with same property as central point. If the
neighborhood is sparsely populated (≤MinPts) or the purity
of the points in the neighborhood is too low (≤MinPur), the
point is classified as noise. Otherwise, if any point in the
neighborhood is part of a known cluster, this neighborhood
is joined to that cluster, i.e., all points in the neighborhood
are classified as being part of the known cluster. If neither
of these two possibilities applies, a new cluster is begun
with this neighborhood.

The time complexity of DBRS is O(nlogn) if an SR-tree
(Katayama and Satoh 1997) is used to store and retrieve all
points in a neighborhood. More details of DBRS are given
in (Wang and Hamilton 2003).

In the following discussion, we assume all points have
the same property to simplify the discussion. For simplicity
of presentation, only 2D examples are shown.

q5
q1

p q4

q3 q2

Figure 2. q1 and q2 are p’s proper neighbors, q3 and q4
are p's possible neighbors, and q5 is p's false neighbor

The Distance Function in the Presence of Obstacles
Clustering should be affected by the presence of obstacles.
In Figure 2, p is the central point and q1, q2, q3, q4 and q5
are five points in its neighborhood. However, as shown in
Figure 2, part of an obstacle intersects the neighborhood.
Since dist(p, q1) and dist(p, q2) are less than the radius with
or without the obstacle, we call them proper neighbors.
Although the Euclidean distances from q3 and q4 to p are
less than radius, they are obstructed by the obstacle.
However, if we connect p to q3 and q4 via one of the
vertices of the obstacle, q3 can still reach to p in a distance
less than radius while the unobstructed distance from q4 to
p may be little more than the radius. We call them possible
neighbors of p. For q5, the obstacle ensures that it is not
reachable without leaving the circle, so it cannot be p's
neighbor. We call it a false neighbor of p.

The unobstructed distance between a possible
neighbor (or a false neighbor) and the central point consists
of the distance between itself and the first connection
point, the distance between consecutive connection points
in the path, and the distance between the last connection
point and the central point. All connection points are
vertices of obstacles. There may be more than one path
between the neighbor and the central point. Therefore, the
distance from a possible neighbor (or false neighbor) to the
central point depends on different paths. Thus the problem
is transformed to find the shortest path between the central
point and the neighbor through those connections points.
An algorithm for finding the shortest path can be found at
(Cormen et al.2001); its complexity is O(|v|2), where |v| is
the total number of vertices in all obstacles. If the obstacles
intersect with each other, the visibility among those
vertices needs to be determined. The complexity of
determining the visibility is O(|v|2) as well.

In this paper, we approximate the distance:

 dist

∞
=

otherwise
neighbor

 sibleproper/pos sp' a is q),(
),('

qpdist
qpob

The distance between a proper neighbor and the central
point is the Euclidean distance dist(p, q) which is less than
or equal to Eps. Possible neighbors are treated as proper
neighbors for practical reasons. First, in density-based
clustering methods, the radius Eps is usually set as a very
small value to guarantee the accuracy and significance of
the result. Thus it is reasonable to approximate the internal
distance within the neighborhood. Secondly, as mentioned
before, to find the distance between a possible neighbor
and the center requires O(|v2|) time, where v is the set of
total vertices of obstacles. However, to distinguish the
possible neighbors and proper neighbor only takes
O(log|v|). So approximation decreases the complexity from
O(log|v|+|v|2) to O(log|v|), where |v| is the number of the
vertices of all obstacles. We sacrifice some accuracy but
reduce the complexity significantly. However, if
neighborhood is separated into several connected regions,
false neighbors must be removed. So the distance from
false neighbors to central point is defined as ∞.

Given a dataset D, a symmetric distance function dist, the
unobstructed distance function distob, parameters Eps and
MinPts, and a property prop defined with respect to one or
more non-spatial attributes, the definitions of a matching
neighbor and reachability in the presence of obstacles are
as follows.
Definition 1: The unobstructed matching neighborhood
of a point p, denoted by N'Eps_ob(p), is defined as N'Eps_ob(p)
= { q∈D | distob(p, q)≤ Eps and p.prop = q.prop}, and its
size is denoted as |N'Eps_ob(p)|.
Definition 2: A point p and a point q are directly purity-
density-reachable in the presence of obstacles if (1) p∈
N'Eps-ob(q), |N'Eps-ob(q)| ≥ MinPts and |N'Eps-ob(q)| / |NEps(q)|
≥ MinPur or (2) q∈ N'Eps-ob(p), |N'Eps-ob(p)| ≥ MinPts and
|N'Eps-ob(p)| / |NEps(p)| ≥ MinPur. NEps(p) is the matching
neighborhood of point p without considering obstacles.
Definition 3: A point p and a point q are purity-density-
reachable (PD-reachable) in the presence of obstacles,
denoted by PDob(p, q), if there is a chain of points p1,…,pn,
p1=q, pn=p such that pi+1 is directly purity-density-
reachable from pi in the presence of obstacles.

To determine reachability in the presence of obstacles,
we must first determine whether false neighbors may exist
within the neighborhood, i.e., whether or not the region is
connected. Secondly, we must identify the false neighbors,
i.e., we must find which points are separated from the
central point.

Connectedness of the Neighborhood
We determine whether or not a neighborhood is connected
by an analysis of obstacles and the neighborhood. Given an
obstacle and a neighborhood, nine possible cases are
shown in Figure 3. For each case, the polygon represents
an obstacle, the circle represents the neighborhood, and the
black dots represent the points being clustered. False

neighbors only appear when the neighborhood region is
separated into two or more parts.

The following lemma addresses this problem.
Lemma 1: Let |v| be the number of vertices of the obstacle
inside the neighborhood (i.e., strictly less than Eps from
the central point) and let |e| be the number of the edges
inside or intersecting with the neighborhood. If |e| ≤ |v| + 1
holds, then the neighborhood is connected.
Proof: We use induction to prove the lemma.
1) Step 1: When |v| = 0, |e| = 0, as shown in Figure 3 (a),
(b) and (c), the neighborhoods are connected. When |v| = 0,
|e| = 1, as shown in Figure 3(d) and (e), the neighborhoods
are connected.
2) Step 2: Now assume that for some integer k ≥ 0, the
lemma holds, i.e., |v| = k, |e| ≤ k + 1, the neighborhood is
connected. Then for |v| = k + 1, assume that the new
vertex q is inserted between two vertices pm and pm+1. We
need to connect two edges (+2) to q from pm and pm+1,
respectively and we need to delete the old edge between pm
and pm+1. So |e| ≤ k + 1 + 2 - 1= (k + 1) + 1. Since the new
vertex is inside the neighborhood, the new edges cannot
cut the neighborhood into separate connected regions. So
the lemma holds for |v| = k + 1.♦

The lemma implies when there are multiple sequences of
line segments intersecting with the neighborhood, the
neighborhood may be separated into multiple connected
regions. It gives a sufficient but not necessary condition.
Using this lemma avoids many unnecessary calculations.

False Neighbor Detection
After determining the connectedness, we can identify the
false neighbors by using another property of
neighborhoods. If we imagine that one of the sequences of
line segments is part of the virtual polygon represented by
the thick lines, as shown in Figure 4, the false neighbor is
inside the polygon while the central point is outside the
polygon. A virtual polygon for an obstacle and a
neighborhood is a polygon that (1) includes one sequence
of line segments generated by intersecting the obstacle
with the neighborhood and (2) connects the two ending
vertices of the sequence of line segments without
intersecting the neighborhood.

Therefore, the problem of judging whether a point is
separated from the central point is transformed into the
problem of determining whether the point is inside the
virtual polygon (i.e., in a different region from the central
point) or outside (i.e., in the same region).
Several methods are known to test whether a point is inside
a polygon (Arvo 1991). We use the grid method, which is a
relatively faster but more memory intensive method. The
idea is to connect a ray from the testing point to central
point. Then we count the number of times the ray crosses a
line segment. If the number of crossings is odd, then the
point is inside the polygon. If the number of crossings is
even, then the point is outside the polygon.

 (a) (b) (c) (d) (e) (f) (g) (h) (i)

Since the two ends of the ray, i.e., the neighbor and the
central point, are both inside the neighborhood, the line
segments being crossed can only be the edges of the
obstacle. Therefore, we do not generate a real polygon for
counting the crossings. Instead, we only find the sequences
of line segments intersecting the neighborhood.
Multiple Obstacles in a Neighborhood
When multiple obstacles appear in a neighborhood, we
first determine one by one whether they are crossing
obstacles, i.e., they affect the neighborhood connectedness
by using Lemma 1. If any of them affect the result, we
remove the false neighbors obstructed by the obstacle by
counting the corresponding crossings. For the case in
Figure 5(a), we can remove every false neighbor generated
by different obstacles.

For noncrossing obstacles, combinations with other
obstacles may affect the connectedness, as shown by the
dark obstacle polygons in Figure 5(b) and (c). To detect
these cases, we first determine whether a noncrossing
obstacle appears in the neighborhood and intersects with
other obstacles. Since each such obstacle has one sequence
of line segments, we can determine whether they intersect
by checking the line segments one by one.

To simplify processing, in all cases where a noncrossing
obstacle intersects another obstacle, we remove all
neighbors whose connection with the center point
intersects with the noncrossing obstacle. Since a
neighborhood is a small area, if a noncrossing obstacle
intersects with others in the neighborhood, it is likely that
the neighborhood is separated by a combination of
obstacles. Even if the neighborhood is not separating, the
distance from some possible neighbors to center may be
longer than the radius. Since the number of the noncrossing
obstacles intersecting in the neighborhood is very small,
the additional computation required will be small.
Algorithm and Complexity
In Figure 6, we present the DBRS_O algorithm. D is the
dataset. Eps, MinPts and MinPur are global parameters. O

is the set of obstacles present in the dataset. DBRS_O
starts with an arbitrary point q and finds its matching
neighborhood in the presence of obstacles, which is called
qseeds, through the function
D.matchingProperNeighbors(q,Eps,O) in line 4.

 (a) (b) (c)
 Figure 5. Multiple Intersecting Obstacles

Algorithm DBRS_O (D, Eps, MinPts, MinPur, O)
1 ClusterList = Empty;
2 while (!D.isClassified()) {
3 Select one unclassified point q from D;
4 qseeds = D.matchingProperNeighbors(q, Eps, O);
5 if ((|qseeds| < MinPts) or (qseed.pur < MinPur))
6 q.clusterID = -1; /*q is noise or a border point */
7 else {
8 isFirstMerge = True;
9 Ci = ClusterList. firstCluster;

 /* compare qseeds to all existing clusters */
10 while (Ci != Empty) {
11 if (Ci.hasIntersection(qseeds))

False neighbor

Central point

Figure 3. Possible Topologies for a Neighborhood and an Obstacle

12 if (isFirstMerge) { Figure 4. Virtual Polygon 13 newCi = Ci.merge(qseeds);
14 isFirstMerge = False; }
15 else {
16 newCi = newCi.merge(Ci);
17 ClusterList.deleteCluster(Ci);}
18 Ci = ClusterList. nextCluster; }
 /*No intersection with any existing cluster */
19 if (isFirstMerge) {
20 Create a new cluster Cj from qseeds;
21 ClusterList = ClusterList.addCluster(Cj); }
 } //else
 } // while !D.isClassified

Figure 6. The DBRS_O Algorithm

SetOfPoint::matchingProperNeighbours(q, Eps, O)
1 SequencesOfLineSegments *solsOfAffectOb, solsOfAllOb;
2 int intersections;
3 qseeds= matchingNeighbours(q, Eps);
4 O.IntersectWithCircle(q,Eps, solsOfAffectOb, solsOfAllOb);
5 for every point seed in qseeds
6 for every sequence of line segments sls in solsOfAffectOb
7 { intersection = sls.IntersectWithLine(seed,q);
8 if (intersection % 2 != 0)
9 { delete seed from qseeds;
10 break; }
11 for every obstacle o which does not affect connectedness
12 if(o.IntersectionWithOthers(solsOfAllOb))
13 for every point seed in qseeds

 14 if (o.isPossibleNeighbor(q, seed))

15 delete seed from qseeds;
16 return(qseeds);
Figure 7. The matchingProperNeighbors Function

The function for finding the matching proper and

possible neighbors is presented in Figure 7. The
matchingNeighbours(q,Eps) function in line 3 retrieves
all matching neighbors without considering the obstacles
(Wang and Hamilton 2003). In line 4, according to Lemma
1, O.IntersectWithCircle(q,Eps, solsOfAffectOb,
solsOfAllOb) records all sequences of line segments into
solsOfAffectOb if they separate the neighborhood. For
each neighbor seed in qseeds and every sequence of line
segments sls in solsOfAffectOb,
sls.IntersectWithLine(seed, q) in line 7 counts the
intersections of sls and the line segment connecting seed
and q. If the intersections is odd, seed is a false neighbor.
It is deleted from qseeds in line 9. In line 12,
o.IntersectionWithOthers(solsOfAllOb) determines
whether an obstacle o that does not affect neighborhood
connectedness intersects with any other obstacles. From
line13 to 15, all possible neighbors intersecting with o are
removed by connecting every seed with the center point
and checking the intersection.

The region query D.matchingNeighbors(q,Eps) in line
3 of Figure 7 is the most time-consuming part of the
algorithm. A region query can be answered in O(log n)
time using SR-trees. Similarly, the method of checking the
intersection of every obstacle with neighborhood region
O.IntersectWithCircle(q,Eps) requires O(log|v|) time,
where |v| is the number of all vertices of obstacles. In the
worst case, where all n points in a dataset are noise,
DBRS_O needs to perform exactly n region queries and n
neighborhood intersection queries. Therefore, the worst
case time complexity of DBRS_O in the presence of
obstacles is O(n log n+ nlog|v|). However, if any clusters
are found, it will perform fewer region queries and fewer
neighborhood intersection queries.

Experimental Results

This section presents our experimental results on synthetic
datasets. All experiments were run on a 500MHz PC with
256M memory. To improve the efficiency of neighborhood

query, an SR-tree was implemented as the spatial index.
Each record includes x and y coordinators and one non-
spatial property. For all experiments described, Eps is 4,
MinPts is 10, and MinPur is set to 0.75; extensive previous
experiments with DBRS showed that these values give
representative behaviors for the algorithm (Wang and
Hamilton 2003). Each numeric value represents the
average value from 10 runs.

Figure 8 shows a 150k dataset with 10% noise and the
clusters found by DBRS_O and DBRS. The original data is
with various shapes and different densities. Obstacles
analogous to 7 highways or rivers and 2 triangle-like lakes
split every cluster. Figure 8(a) shows the results of 8
clusters found by DBRS without considering the presence
of obstacles. Figure 8(b) shows 28 clusters found by
DBRS_O in the presence of obstacles.

 (a) (b)

Figure 8. Clustering Results with and without Obstacles

In Figure 9, the number of clusters discovered by DBRS
ranges from 7 (in the 75k dataset) to 21 (in the 200k
dataset) while the number of clusters discovered by
DBRS_O ranges from 27 (in the 75k dataset) to 54 (in the
200k dataset), which indicates that when obstacles are
present, DBRS is less accurate than DBRS_O, as expected.

Table 1 shows the scalability results experiments of
DBRS_O, DBRS and AUTOCLUST+. Since authors of
COD_CLARANS lost their code, AUTOCLUST+ is the
only implemented system available for comparison. The
size of datasets is varied from 25k to 200k and the number
of the obstacles in these datasets is varied from 5 to 20.
Each obstacle has 10 vertices, so the number of obstacle
vertices varies from 50 to 200. The second column of
Table 1 gives the run time of DBRS. The rest columns list
the run time result applying DBRS_O and AUTOCLUST+
in the presence of obstacles.

For DBRS_O, the run time slightly increases with the
0

Obstacle
5 Obstacles

(50 Vertices)
10 Obstacles

(100 Vertices)
15 Obstacles

(150 Vertices)
20 Obstacles

(200 Vertices)

DBRS
Time
(secs)

DBRS_O
Time
(secs)

AUTOCLUST+
Time
(secs)

DBRS_O
Time
(secs)

AUTOCLUST+
Time
(secs)

DBRS_O
Time
(secs)

AUTOCLUST+
Time
(secs)

DBRS_O
Time
(secs)

AUTOCLUST+
Time
(secs)

25k 18.51 20.21 165.05 20.93 179.82 21.36 189.60 21.91 211.13
50k 40.43 44.00 496.81 44.44 538.32 45.09 572.27 45.59 613.30
75k 54.04 60.53 950.32 61.79 1007.44 62.12 1067.53 62.62 1130.26
100k 85.3 95.08 1720.87 96.39 1778.55 97.88 1845.50 99.09 1926.40
125k 96.34 107.82 2461.98 108.42 2588.36 109.52 2754.56 111.11 2905.01
150k 117.43 130.06 3663.20 125.34 3740.53 126.77 3814.25 129.29 3931.57
175k 136.71 150.99 5008.76 152.75 5220.33 154.62 5435.32 157.14 5667.16
200k 272.37 302.86 9659.19 291.55 9715.72 293.58 9919.98 295.88 10326.38

Table 1 Run Time Comparisons between DBRS, DBRS_O and AUTOCLUST+

number of obstacles for most datasets. However, for the
datasets with 150k and 200k points and 5 obstacles, the run
time is more than for the same datasets with 10 to 20
obstacles. The run time is affected by several factors: the
size of the dataset, the number of region queries, the
densities of the neighborhoods that are examined, and the
number and location of obstacle vertices. For the above
two cases, since other factors are fixed or slightly changed,
the density of neighborhoods may be the major factor
increasing the run time. If more points from denser clusters
are examined, then more time is required to find the
intersections with existing clusters, to merge their
neighborhoods into the existing clusters and to remove the
false neighbors.

The run times for DBRS are slightly less than those for
DBRS_O. AUTOCLUST+, as implemented by its authors,
is slower than DBRS_O. Since AUTOCLUST+ has a
graphical user interface, the communication time between
the GUI and algorithm modules may increase the run time
to a certain degree.

Figure 9 Number of Clusters Discovered
 Another series of experiments assessed the effectiveness

of using Lemma 1. Lemma 1 eliminates region queries for
neighborhoods that have no crossing obstacles. Table 2
lists the number of separated neighborhoods and the
number of obstructed neighborhoods with respect to
varying dataset sizes and numbers of obstacle vertices. An
obstructed neighborhood is a neighborhood that intersects
at least one obstacle. A separated neighborhood is an
obstructed neighborhood that is separated into two or more
connected regions by obstacles. Table 2 shows that fewer

than half of the obstructed neighborhoods are separated in
our datasets. This fraction decreases as the number of
obstacles increases. Thus, applying Lemma 1 avoids at
least half of the effort and more than half for large numbers
of obstacles.

Conclusion
In this paper, we proposed a new constrained spatial
clustering method called DBRS_O, which clusters spatial
data in the presence of obstacle constraints. Without doing
any preprocessing, DBRS_O processes the constraints
during the clustering. For obstacles with many short edges,
these features make DBRS_O more suitable than other
algorithms. Additionally, DBRS_O can find clusters with
arbitrary shapes and varying densities.
References:
Arvo, J. (ed.). 1991. Graphics Gems II. Academic Press,

Boston.
Cormen, T.H., Leiseron, C.E., Rivest, R.L., and Stein, C.

2001. Introduction to Algorithms, The MIT Press.
Ester, M., Kriegel, H., Sander, J., and Xu, X. 1996. A

Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise. In Proc. of 2nd lntl.
Conf. on Knowledge Discovery and Data Mining, 226-
231.

0

10

20

30

40

50

60

25000 50000 75000 100000 125000 150000 175000 200000

of

 C
lu

st
er

s
D

is
co

ve
re

d

DBRS

DBRS_O
Estivill-Castro, V. and Lee, I. J. 2000a. AUTOCLUST+:

Automatic Clustering of Point-Data Sets in the Presence
of Obstacles. In Proc. of Intl. Workshop on Temporal,
Spatial and Spatio-Temporal Data Mining, 133-146.

Estivill-Castro, V. and Lee, I. J. 2000b. AUTOCLUST:
Automatic Clustering via Boundary Extraction for
Mining Massive Point-Data Sets. In Proc. of the 5th Intl.
Conf. On Geocomputation, 23-25.

Han, J., Lakshmanan, L. V. S., and Ng, R. T. 1999.
Constraint-Based Multidimensional Data Mining.
Computer 32(8): 46-50.

Katayama, N. and Satoh, S. 1997. The SR-tree: An Index
Structure for High-Dimensional Nearest Neighbor
Queries. In Proc. of ACM SIGMOD, 369-380.

Ng, R. and Han, J. 1994. Efficient and Effective Clustering
Method for Spatial Data Mining. In Proc. of 1994 Intl.
Conf. on Very Large Data Bases, 144-155.

Tung, A.K.H., Hou, J., and Han, J. 2001. Spatial
Clustering in the Presence of Obstacles. In Proc. 2001
Intl. Conf. On Data Engineering, 359-367.

5 Obstacles
(50 Vertices)

10 Obstacles
(100 Vertices)

15 Obstacles
(150 Vertices)

20 Obstacles
(200 Vertices)

 Sep Obstr Sep Obstr Sep Obstr Sep Obstr

25k 125 298 139 445 154 577 162 632

50k 148 504 165 813 174 1002 185 1121

75k 195 527 247 874 257 1068 262 1205

100k 174 643 198 1013 245 1392 257 1531

125k 252 711 307 1157 351 1540 369 1690

150k 224 599 275 978 319 1361 326 1479

175k 271 724 330 1155 358 1546 364 1708

200k 491 1771 569 2743 621 3296 629 3597

Tung, A. K. H., Han, J., Lakshmanan, L. V. S., and Ng, R.
T. 2001. Constraint-Based Clustering in Large
Databases. In Proc. 2001 Intl. Conf. on Database Theory,
405-419.

Wang, X., and Hamilton, H. J. 2003. DBRS: A Density-
Based Spatial Clustering Method with Random
Sampling. In Proc. of the 7th PAKDD, 563-575.

Acknowledgements
We thank Vladimir Estivill-Castro, Ickjai Lee for lending
us their implementation of AUTOCLUST+.

Table 2. Number of Separated and Obstructed Neighborhoods

	DBRS in the Presence of Obstacles
	Connectedness of the Neighborhood

	Experimental Results
	Conclusion
	Estivill-Castro, V. and Lee, I. J. 2000b. AUTOCLUST: Automatic Clustering via Boundary Extraction for Mining Massive Point-Data Sets. In Proc. of the 5th Intl. Conf. On Geocomputation, 23-25.

