
Interactive refinement of a knowledge base

R. Djelouah1, 2, B. Duval1, S. Loiseau1

1LERIA, Université d’Angers, 2 bd Lavoisier, 49045 ANGERS Cedex 01 France
{djelouah, bd, loiseau}@info.univ-angers.fr

2ISAIP-ESAIP, 18 rue du 8 Mai 45, 49180 St Barthélémy France

Abstract
This paper presents a new method of interactive refinement of
a knowledge base. The first step of our method is a validation
stage which checks the consistency and the completeness of the
knowledge base. Then, the second step is a refinement stage
which aims to eliminate the anomalies (inconsistencies or
incompleteness) that have been detected. The refinement stage
is an iterative process performed in close interaction with the
expert; the main step of this process consists of submitting to
the expert a rule that must be repaired with a list of possible
modifications for this rule. Our originality is that the expert has
to take decisions about relevant modifications of a rule, which
is an easy task for him because the rule represents an element
of knowledge that he understands well. After each decision of
the expert, our method updates the set of anomalies in order to
apply criteria to select the following rule that needs to be
repaired.

I. Introduction
A lot of research has been devoted to the subject of quality
in the development of knowledge base systems (Preece
1997). A first type of work (Grogono et al. 1992) (O’Keefe
and O’Leary 1993) (Preece 97) deals with the definition of
criteria that can measure the quality of a knowledge base.
For this purpose, two criteria have often been studied:
consistency and completeness (Rousset 1988)(Bouali and
Loiseau 1995) (Ayel and Bendou, 1996). Studying
consistency means checking whether the knowledge base
(KB) infers contradictory results and this test leads to the
computation of sets of facts and knowledge that can
produce a contradiction. Studying completeness means
checking whether the KB covers the whole domain of
study, and so finding an incompleteness consists of finding
an example which is not covered by the base. Several
formal characterisations of inconsistency and
incompleteness have been proposed (Bouali and Loiseau
1998) (Buekenoogen et al. 2000).
A second type of works concerns the refinement of a KB
(Craw and Sleeman, 1990)(Bouali and Loiseau, 1998)
(Boswell and Craw. 2000). The refinement process relies
on characterisations of inconsistency and incompleteness
to propose modifications that suppress the problems that
have been identified. The major problem with this kind of
approach is that several possible refinements are computed
to correct the KB and the choice between alternative
modifications generally relies on heuristics without

interacting efficiently with the expert (Boswell et al. 1996)
(Bouali and Loiseau, 1998). Moreover, refinement often
deals with inconsistency and incompleteness in
independent ways. In fact, inconsistency is corrected by
reducing the deductions that can be obtained from the KB,
even though incompleteness is corrected by increasing the
possible deductions.
This paper presents a new method that deals
simultaneously with inconsistency and incompleteness and
constructs a refinement of a rule base in a close interaction
with the domain expert.
To have a fruitful interaction, we think that the system
must question the user about understandable modifications
of knowledge. So in our system, an interaction has the
following form: we present to the user a rule that is
involved in several anomalies (inconsistencies or
incompleteness) and a set of elementary modifications of
the rule that contribute to solve one or several anomalies.
The user makes a choice between the different possible
revision actions, i.e. modifications on the rule; then the set
of anomalies and of possible refinements is updated
according to this choice and the process is iterated until all
the anomalies have been treated or until all the possible
refinements have been considered.
So, the contributions of this paper are two fold: first, we
treat inconsistency simultaneously with incompleteness,
which avoids suggesting solutions that are good from only
one point of view (consistency or completeness) but bad
for another; second, the user directly controls the
construction of refinement that guarantees the best solution
to be achieved.

This paper is organized as follows. The first part presents
our assumptions, how to compute characterizations of
inconsistency and incompleteness, how to obtain revision
actions, and finally a solution to compute local revision
plans that make an anomaly disappear. The second part
presents our approach to refine by interaction. It uses the
local revision plans to suggest a rule to the user and to
suggest modifications on it. This process is done
iteratively.

II. Characterization of anomalies and local
refinement

II.1 Assumptions
This work uses a formalism based on propositional logic.
We consider that a KB is a rule base, noted RB made up of
a set of revisable rules rb and a set of constraints RC that
are considered as valid, non revisable knowledge. Our KB
may contain negations. The KB designer also defines the
set of input literals; these literals are the only literals that
can occur in a input fact base, and they do not appear in the
rule conclusions.
We also suppose that the KB designer provides a set of test
cases, noted Ttest. A test case, noted <If Ftest Then O>
describes a situation for which the designer surely knows
the output O associated to the input fact base Ftest . In fact,
we suppose that a set of identified situations are available
and can be used to define this valid knowledge. This is
very often the case for example in medicine where the
patients files provide data which allow the area of
expertise to be described.

Example: this example will be followed all through this
paper. We suppose that RB is composed of five revisable
rules r1, r2, r3, r4, r5 and one constraint Cons1. The set of
input literals is {Shareholder, Bachelor, NoChild, Student,
NoGrant, NoWage, Owner}. We consider also that Ttest
contains T1, … T5.

r1 : If Shareholder and NoCharge Then Taxable
r2 : If Shareholder and Bachelor and NoChild Then
NoCharge
r3 : If Student and NoGrant Then Helped
r4 : If NoWage Then Helped
r5 : If NoCharge Then ¬Helped
r6 : If Owner Then ¬Helped
Cons1 : If NoWage and Owner and NoChild Then ⊥ (⊥
means contradiction)
T1 : <If Shareholder and NoChild Then Taxable>
T2 : <If NoChild Then NoCharge>
T3 :<If Student Then Helped>
T4 :< If Owner and NoChild Then ¬Helped>
T5 :<If Shareholder and NoChild Then ¬Helped>

II.2 Characterization of inconsistency and
incompleteness
The validation stage of our method consists of studying the
inconsistency and the incompleteness of the rule base. In
our previous works (Djelouah 2002), we have proposed
formal definitions of consistency and completeness of a
rule base. Our definition of consistency extends the
definitions that have been previously proposed (Rousset
1988) (Cordier and Loiseau 1996) and uses the test cases
to better determine all the possible inconsistent situations.

We have also proposed precise characterizations of
inconsistency and incompleteness of a rule base. These
characterizations are called conflicts and deficiencies and
we recall below their definitions.

Definitions.
- A conflict is a couple <Fc, brc>, composed of an input
fact base Fc that satisfies the constraints, and of a set of
revisable rules brc, such that Fc ∪ brc ∪ Ttest ∪ RC enables
to infer a contradiction.
- A deficiency is a test case <If Ftest Then O> such that the
output O cannot be deduced from RB and Ftest.

The computation of conflicts and deficiencies is made with
an adaptation of the algorithm ATMS (DeKleer 1986). The
idea is to compute for each literal L all the input fact bases
that enable to deduce L (our algorithm also provides the set
of rules that is used to produce L from an input fact base).
The conflicts correspond to the conditions of deduction of
the contradiction, and following the principle of
parsimony, we consider only the minimal conflicts.
Deficiencies are obtained by comparing the conditions
computed for the output literal O of a test case and the
input fact base of the test.

Example. the rule base RB, together with Ttest, gives five
conflicts.
C1 :<{Student, Owner}, {r6}>. C1 is a conflict because
the facts {Student , Owner}, with the rule r6 and the test
T3 lead to the deduction of Helped et ¬Helped
C2 :<{Student, NoChild}, {r5}>
C3 :<{NoWage, NoChild}, {r4,r5}>.
C4 :<{NoWage, NoChild, Shareholder}, {r4}>,
C5 : <{NoWage, Owner}, {r6,r4}>
Four elements of Ttest are deficiencies.
D1 = T1. In fact, with the facts {Shareholder and NoChild}
from T1 and the rule base, it is impossible to deduce the
output of the test, Taxable.
The other deficiencies are D2 = T2, D3 = T3, D4 = T5.
On the contrary, T4 is a test proven by the rule base
because the facts {Owner, NoChild} and the rule r6 enable
to deduce ¬Helped.

II.3 Local refinement of conflicts and deficiencies
The refinement task consists in modifying the rule base in
order to make it consistent and complete. This task begins
by a local refinement which searches the possible solutions
to repair each detected anomaly, conflict or deficiency. To
achieve this, we consider a set of refinement operators,
which are elementary modifications of the rule base; these
modifications are called here revision actions. For each
conflict and each deficiency, we compute the different
ways of repairing this anomaly by combining revision
actions.

Definition. A local refinement plan for a conflict, as well
as for a deficiency, is a set of revision actions which
removes the conflict or the deficiency.

To remove a conflict, we can either forbid the input fact
base of the conflict by adding a new constraint to the base,
or specialize the rule base by removing rules or adding one
or several premises to some rules. Our refinement method
uses the following revision actions:
- add_cons(FB), means adding the integrity constraint (If
FB Then ⊥) to the constraints RC (FB is an input fact base
of a conflict),
 supp_rule(r), means removing the rule r from the rule
base RB,
add_prem(r,L) means specializing the revisable rule r by
adding the literal L to its premises.
So, for a conflict C = <Fc, brc>, we propose the following
local refinement plans:
- P = {add_cons(FC)}, if the fact base of the conflict FC is
not included in the input fact base of a test (which would
prove it valid),
P = {supp_rule(r)} with r belonging to brc
P = {add_prem(r1, L1) +...+ add_prem(rk, Lk)}

Actually, we consider only plans which contain at most
two revision actions. This assumption is justified because
we suppose that the KB needs only minor repairs and so a
close variant of it must be correct.
The refinement plans for the conflicts do not generate new
conflicts because they specialize the rule base and reduce
the set of possible deductions. Moreover, we retain only
the plans that do not introduce new deficiencies. For that,
we have proposed in our previous works conditions
allowing to construct such plans (for example, a rule is not
suppressed if it contributes to prove a test).

To remove a deficiency, we must generalize the rule base
and for that, we use the following revision actions:
add_rule(r), consists in adding the rule r to rb

- supp_prem(r, L), consists in suppressing the
literal L from the premises of r,
So, for a deficiency D = T, we propose the following
refinement plans:

- P = {add_rule(T)}, consists in adding to the
expert rules a rule equal to the test T,

- P =
{supp_prem(r1,p1)+...+supp_prem(rk,pk)}, consists in
deleting the premises P1,..,Pk from the rules r1,...,rk
respectively, in order to make the test T proved by the
modified base. Here also, we consider only the plans
which contain at most two revision actions.
The refinement plans for the deficiencies do not generate
new deficiencies because they generalize the rule base; the
first type of plans which consists in adding a rule
corresponding to a test cannot introduce new conflicts
because the tests are taken into account to compute the
conflicts. To verify if the second type of plans
({supp_prem(r1,p1)+ ...+supp_prem(rk,pk)} does not
introduce new conflicts, we must update some
informations of ATMS.

III. Interaction and global refinement

III.1. Global refinement
Once we have computed a set of local refinement plans
which are the different possibilities for removing the
conflicts and the deficiencies, our objective is to
simultaneously refine all the conflicts and all the
deficiencies by suggesting a global refinement plan.

Definition. A global refinement plan is a set of revision
actions that applied to the rule base removes all conflicts
and all deficiencies.

The work presented in (Bouali and Loiseau 1995) suggests
a method to refine a KB when only inconsistencies are
taken into account. The authors first calculate for each
conflict a set of local refinement plans, then they calculate
the possible global refinements, which are fusions of local
refinement plans. Such global refinements can be
calculated with an algorithm inspired by the diagnostic
method of a physical system proposed by Reiter (Reiter
1987).
In our approach, the computation of a global refinement
plan cannot be undertaken directly by union of local plans
because we have to restore both consistency and
completeness. The local refinement plans for conflicts and
for deficiencies may contain actions which cannot be
combined.
So our proposition is to build a global refinement plan by a
close interaction with the user.
The interactive tool, proposed in (Cordier and Loiseau
1996) to refine a KB, computes global refinement plans to
refine all the inconsistencies of a rule base and then
presents these plans to the user. The major difficulty with
this method is that it is difficult for the user to choose
between alternative global plans because it is difficult for
the user to apprehend the signification of a global plan.
So our proposition is that the user decisions must concern
elements that are easily understandable, and that is why the
interaction in our method involves only rules and
elementary actions on rules.

III.2. Interactive refinement of the base
The first step of our refinement system is to deal with the
constraints of the domain. We have seen that some
conflicts can be resolved if some integrity constraints are
added to the KB. Deciding whether a constraint is relevant
or not for the domain is generally a task that the user
performs easily. That is why our search for a global
refinement plan first submits to the user the set of integrity
constraints that could contribute to solve the conflicts. For
each constraint, the user decides if it must be added or not
to the set of constraints RC.

Example. The five conflicts of our example bring up the
following constraints as suggestions to the user
add-cons(student, Owner), add_cons(student, NoChild),
add_cons(NoWage, NoChild), add_cons(NoWage,
NoChild, Shareholder), add_cons(NoWage,Owner)

After this first interaction, a certain number of conflicts
could have been resolved by the addition of constraints and
therefore we continue the process of refinement by
considering the unsolved conflicts and all the deficiencies
as well as the associated plans that we have computed .
The set of conflicts, deficiencies and local refinement plans
are represented by a three level graph. The first level of the
graph is composed of vertices, that represent the conflicts
and deficiencies that must be repaired. The second level
contains all the local refinement plans that have been
computed for these conflicts and deficiencies, and the third
level contains revisable rules that occur in the local plans.
A conflict or a deficiency is connected to the local plans
that solve it and a local plan is connected to the rules that it
contains (see Fig 1).
A global refinement plan of the rule base thus consists of a
set S of local plans (level 2 nodes), which contains only
compatible actions and such that each conflict and each
deficiency is connected to an element of S.
The basis of our method is to interact with the user on
rules. We want to present to the user a rule, considered as
incorrect, as well as the revision actions that we suggest
for that rule. So, according to the information contained in
the graph, we have to determine which rule is a good
candidate for modification.
To examine this graph, we proceed in two stages: A
‘descending’ stage and an ‘ascending’ stage. (see Fig 1). In
the first stage, we sort the local refinement plans; and from
this classification, we determine a rule which is an
interesting candidate for presentation to the user.
Intuitively, the order on the plans favours those plans that
resolve the greatest number of anomalies and that only
require slight modifications of the KB. We then choose a
rule that often occurs in the preferred plans. The second
stage, that we could qualify as ascending, takes into
account the modifications chosen by the user and therefore
updates the graph (set of local refinement plans as well as
the conflict and deficiency sets). We now describe these
two phases in more details.

 Conflict set Deficiency set
 C1 ... Cn D1 ... Dm

 (1)

PC11 ... PC1k PC1n ... PCnk PD11 ... PD1k PDm1... PDmk

r1 ... rj ... rk …

rules in the plan PC1k

Fig.1

Determination of the element of interaction. The main
idea of this phase of examination of the graph is to localise
the most interesting plans so as to define the rule that we
will suggest to the user. For that, we sort the refinement
plans according to several criteria.
In our approach, we define three criteria of classification
that we combine to give each plan a value called plan
interest that determines the final classification. Our
objective is to eliminate the greatest number of conflicts
and deficiencies and also to modify the base as little as
possible. The first two criteria estimate a plan from a
quantitative point of view: cr1 is equal to the number of
inconsistencies and deficiencies resolved by the plan; cr2
depends on the number of revision actions in the plan, it is
set to 1 if the plan contains only one action and to 0
otherwise. The third criterion is a qualitative evaluation of
the modification proposed by this plan; in fact, to stay as
close as possible to the original knowledge, it is preferable
to modify the rules rather than to add or subtract rules from
the base; so cr3 is equal to 1 if the plan contains only
modifications of rule and to 0 if it contains additions or
suppressions of rule.
We define, as well, an order of importance (Vincke 1992)
of criteria cr1, cr2, and cr3 by giving a weight to each
criterion. Sorting the different plans is made by calculating
the interest of each plan, which corresponds to a weighted
sum of the values of the criteria.
The weights of the criteria can be given by the user. In our
system, we have defined default weights, which
correspond to a lexicographic order on cr1 first, then cr2
and finally cr3.

Definition. The interest of a plan P is defined by :
 Interest(P) = ∑i=1..3 Ki cri(P)
where Ki represents the weight of the criterion and cri(P)
the value of criterion cri for the plan P.

Example. For the conflicts C1, C2, C3, C4 and C5 we
have the following sets of refinement plans :
C1 : {{add_prem(NoChild, r6)},
C2 :{{supp_rule(r5)}, {add_prem(Owner,r5)}},
C3 : {{supp_rule(r5)}, {supp_rule(r4)},
{add_prem(Owner, r5)}, {add_prem(Owner, r4}} ,
C4 :{ {supp_rule(r4)} }, pour C5 :{{supp_rule(r4)},
{add_prem(NoChild, r6}, {add_prem(NoChild, r4}}
For the deficiencies D1, D2, D3 et D4 we have the
following sets of refinement plans :
D1 : {{supp_prem(Bachelor, r2)}, {add_rule(T1)}},
D2 :{{add_rule(T2)},{supp_prem(Bachelor,r2)+
supp_prem(Shareholder, r2)}},
D3 :{ {add_rule(T3)}, {supp_prem(NoGrant, r3)}},
D4 :{{add_rule(T5), {supp_prem(Bachelor, r2)}}
The plan P = {supp_rule(r4)} has the greatest value of the
interest ; in fact, P has the greatest value for the criteria
cr1 because P refines three conflicts.
Sorting the refinement plans allows the definition of a set
called maximum interest class, which contains all the plans
having the maximal value of interest. From this set, we
determine which rule will be presented to the user (if

several rules have the same number of maximal
occurrences in this class, we choose arbitrarily one of
them). The idea of this heuristic is that if a rule has
multiple occurrences in the interesting plans, it is natural to
think that a modification of the knowledge contained in
this rule is pertinent. Once the rule is determined, the
interaction with the user consists of presenting this rule as
well as the set of revision actions appearing in the different
previously calculated plans.

Example. The maximum interest class contains only the
plan P = {{supp_rule(r4)}}; the candidate rule is therefore
the rule r4. We present to the user this rule and the revision
actions for this rule that occur in the different local plans.

Updating the graph after an interaction. When we
submit a candidate rule and a set of possible revision
actions for this rule, the user must choose between apply a
proposed action or reject a proposed action. Then our
system must take into account the user’s choices to update
the set of conflicts and deficiencies remaining and
therefore the set of refinement plans to be considered.

If the user applies a revision action RevAction to a rule ,
two cases are possible:
- If a plan contains only this revision action, the conflict,
respectively the deficiency, associated to this plan is
repaired and the other refinement plans for this conflict can
now be ignored.
- If a plan contains two revision actions one of which is the
action RevAction, we suggest immediately to the user this
associated action in order to apply the plan and to resolve
the conflict or the deficiency.

Example. If the user applies the action supp_rule(r4), the
conflicts C3, C4, C4, C5 are solved and consequently they
are removed from our graph as well as the refinement
plans connected to them.

If a user rejects a revision action on a rule, all the plans
containing this action are removed from the set of possible
local plans.

At the end of this ascending phase that updates the graph,
if all the conflicts and deficiencies have not yet been
treated and if there are still refinement plans for these
anomalies, we re-evaluate the three criteria for these plans
and establish a new classification which allows us to
determine which candidate rule will be proposed to the
user in the following iteration.
This iterative refinement goes on until all the conflicts and
deficiencies are resolved or until the set of remaining local
refinement plans is empty.

III.3 The tool ICC
We implement our interactive method of refinement with a
Java program called ICC (Interaction for Consistency and
Completeness). In ICC, first a user interface presents the

different constraints that can be added to the rule base.
Each constraint is associated with a justification presenting
the different conflicts that one can treat using this action. A
second menu then proposes to modify the expert rules of
the base. Each candidate rule is presented with a set of
revision actions. To guide the user in his choices, every
action can be linked to a window giving details of the
conflicts or deficiencies treated by this action.

The ICC system was tested on a rule base available on the
Irvine site (Black and Merz 1998). This example called
Moral Reasoner Domain consists of a Horn clause theory
simulating the reasoning of a person with guilt feelings,
and a set of positive and negative examples of the concept
« guilty ». We transformed this Horn theory by using real
negations. The rule base thus obtained has 32 rules and a
depth of deduction of 7. The number of rules is not high,
but still gives 218 different ways of proving the output
« guilty ». We had voluntarily introduced several errors in
order to make the base incomplete and inconsistent and we
had selected amongst the positive examples 8 examples
that we used as a test-set. The refinement of the rule base
thus produced allowed us to verify that with an example
that we did not know, the interactive method effectively
guides the user in his choices. Now we have to supply a
KB user to see how he evaluates the interface we are
proposing.

IV. Related work
One of the major systems of refinement that uses a set of
tests is SEEK2 (Ginsberg 1988). This system deals with
inconsistency and incompleteness and uses statistical data
to suggest a set of refinements. The major limits of this
system are the particular formalism of the rule
representation, and the partial characterisation of
inconsistency and incompleteness. Its advantage is that it
offers two types of refinement: one is automatic and the
other interactive. The interactive mode proposes
refinements of rules, that the user can accept or not.

More recently, (Cordier and Loiseau, 1996) proposed the
system XGT that has common points with ICC. XGT only
deals with inconsistencies; for each inconsistency, a set of
local refinements are proposed and these local
modifications are then combined to construct a global
refinement of the KB. These different global solutions are
suggested to the user. The problem is that this method
proposes to the user a large number of plans, among which
it is difficult to choose the most relevant.

KRUST (Craw and Sleeman 1990)(Craw and Sleeman
1995) refines propositional KB systems, where the
inference engine uses rule ordering as the conflict
resolution strategy. Negation is not allowed in this
representation. KRUST refinement operators consists of
the usual generalization and specialization operators on
rules (nearly the sames as in ICC) and in addition KRUST

also uses operators that change the rule priorities for the
inference engine (by modifying the rule position in the
KB). For each misclassified example, KRUST determines
the possible causes of this problem and then construct a list
of possible refinements. After a filtering step that eliminate
some of these refinements (for example, conflicting
modifications of the same rule are not possible), KRUST
implements all the remaining refinements, which leads to a
set of possible refined KBs. All these alternative refined
KB are tested over the entire set of tests and the KB with
the best performance is finally proposed to the user. This
phase of choice consumes a lot of processing time. More
recently, KRUST has been extended in a generic toolkit
(Boswell and Craw 2000) that can deal with different
shells by using generic representation for the rules and for
the reasoning process.
(Carbonara and Sleeman 1999) presents the system
STALKER that is very simlar to KRUST because it
proposes many alternative refinements for each
misclassified example. The differences between the two
systems are that STALKER uses induction to propose new
refinements and it uses a Truth Maintenance System for
the testing phase, which makes it more efficient.
It must be noted that, in these two systems that do not use
negation, the faults in the KB are revealed by the set of
tests, but the notion of global consistency of the rules,
which is central in ICC, is not considered.

V. Conclusion
This paper presents a new method which detects and
repairs the inconsistency and the incompleteness of a rule
base. The inconsistency and the incompleteness are
respectively revealed by the conflicts and the deficiencies.
First, our method computes all the conflicts and all the
deficiencies of the rule base; then, for each conflict or
deficiency, it computes a set of revision actions. The
application of a revision action to the rule base contributes
to eliminating a conflict or a deficiency. Secondly, our
method proposes an interactive and iterative solution to
restore consistency and completeness. At each iteration,
our refinement method offers to the user a rule for a repair
and a set of possible revision actions on this rule. To
localize the rule to be refined, the sets of revision actions
are classified by using heuristics criteria. These criteria
express two priorities: to eliminate the greatest number of
conflicts and deficiencies, and to modify the initial base as
little as possible. The iterative process of our method ends
when all conflicts and deficiencies are resolved or when all
revision actions are proposed to the user.
Our method presents two major advantages on preceding
approaches: first, we treat inconsistency simultaneously
with incompleteness which avoids proposing some bad
solutions, second, the user controls directly the
construction of the refined KB.

References
Ayel, M. and Bendou, A. 1996. Validation of rule bases
containing constraints. ECAI 96, Workshop on Validation,
Verification and Refinement of KBS, p. 96-101.
Black, C.L. Merz, CJ. 1998. UCI Repository of machine
learning databases Irvine, CA: University of California,
Departement of Information and Computer Science,
[http://www.ics.uci.edu/~mlearn/MLRepository.html].
Bouali, F. and Loiseau, S. 1995. Rule base diagnosis for
debugging : the KB-DIAGO2 system. EUROVAV 95,
p.225-239.
Bouali, F. and Loiseau, S. 1998 Révision d’une base de
règles. RFIA 98, p. 225-232.
Boswell, R. and Craw, S. 2000. Experiences with generic
refinement toolkit. EKAW 2000, p 249-256.
Boswell, R. and Craw, S. 1996. Refinement of a product
formulation expert system. In Proceedings of the ECAI 96,
p 74-79.
Carbonara, L. and Sleeman, D. 1999. Effective and
Efficient Knowledge Base Refinement. Machine
Learning, Vol 37, p143-181.
Cordier, M.O. and Loiseau, S. 1996. Validation of first-
order rule base systems. Computational Intelligence
System vol.12(4), p.520-540.
Craw, S. and Sleeman, D. 1990. Automating the
refinement of knowledge-based systems. ECAI 90, p. 167-
172.
De Kleer, J. 1986. An assumption-based truth maintenance
system. AI 28, p. 127-224.
Djelouah, R. and Duval, B. and Loiseau, S. 2002.
Validation and reparation of knowledge bases. ISMIS 02,
Lectures Notes in Artificial Intelligence. Vol. 2366.
Springer. p. 312-320.
Buekenoogen, M. and Gerrits, R. and Spreeuwenberg, S.
2000. VALENS : A knowledge based tool to validate and
verify on aion knowledge base. ECAI 2000, p731-735.
Ginsberg, A. Automatic refinement of expert system
knowledge bases. 1988. London.. Pitmann Publishing.
Grogono, P., Batarekh, A., Preece, A., Shinghal, R. and
Suen C. 1992. Expert System Evaluation Techniques: A
selected Bibliography. Expert Systems, p.227-239.
O’Keefe, R.M. and O’Leary, D.E. 1993. Expert system
verification and validation: a survey and tutorial. Artificial
Intelligence Review vol 7, p. 3-42.
Preece, A. 1997. Evaluation of verification tools for
knowledge-based systems. International Journal Human-
Computer Studies 47, p. 629-658.
Reiter, R. 1987. A theory of diagnosis from first principles.
AI vol 32, p. 57-95.
Rousset, M.C. 1988. On the consistency of knowledge
bases: the Covadis System. ECAI 88, p. 79-84.
Vincke, P. 1992. Multicriteria decision aid. Wiley and sons
New York 92.

	Conflict set Deficiency set

