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Abstract

One author developed a validation technology for rule bases
that aims at several validity statements and a refined rule base.
Two other authors are experienced developers of rule bases
for commercial and administrative applications and engaged
in the Business Rule (BR) research community. To ensure
the requested performance ofBR, they developed a verifica-
tion tool forBR. To reach this objective completely, one gap
needs to be bridged: The application of validation technolo-
gies toBR.
The application of the validation technology‘s first step, the
test case generation, revealed basic insights about the differ-
ent viewpoints and terminologies of foundation– and logic
oriented AI research and application oriented knowledge–
and software engineering.
The experiences gained during the realization of the test case
generation for aBR language are reported. In particular, (1)
the trade–offs between logic approaches, commercial needs,
and the desired involvement of other (non–AI) software tech-
nologies as well as (2) the derived refinements of the theoret-
ical approach are one subject of the present paper.

Introduction
Business Rules(BR) are a common knowledge represen-
tation in commercial environments. They describe and au-
tomate the business function in a declarative manner (Van-
thienen 2001). Their purpose is the support of decision mak-
ing in commercial and administrative environments (Rosca
et al. 1997). Regarding their semantic, two basic classes of
BR are distinguished (Vanthienen 2001):

• Rules that describeconstraints, i.e. (a) stimulus–response
causality, (b) operation constraints, which state pre– and
post–conditions on object operations, and (c) structure
constraints, which state class invariants, and

• rules that describederivations, i.e. (a) computation rules,
which state how something is calculated and inference
rules, which fit the association to rules in Knowledge
Based Systems.

Formal BR are if–then – statements with a conjunctive
and/or disjunctive statements about an attribute’s value in
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their condition part and an assignment of such a value to an
attribute in their conclusion part.

On the one hand, they provide a ”sub–language” that is
simply enough to handle for domain (but not Computer Sci-
ence) experts; on the other hand, they provide additionally
a great variety of opportunities to express even complicated
matters by including modern software engineering methods
additionally. Their main purpose is to control courses of
business.

The range of current application domains shows their
usefulness in commercial and administrative environments:
administration, legislation, regulation, advertising, bank-
ing (credit decisions), product sales, budgeting and oth-
ers. In these application fields (as in the most interest-
ing ones), gathering correct and complete knowledge is one
of the greatest difficulty. Usually, the acquired rules are
contradictory and/or insufficient. Their maintenance is a
non–trivial challenge, because it often introduces unnoticed
inconsistencies, contradictions and other anomalies (Van-
thienen 2001). Therefore,BR need to be verified and vali-
dated after their specification for a certain application envi-
ronment.

The verification issue is well developed. Based on long
term experience of developing verification techniques and
tools, the authors of (Spreeuwenberg and Gerrits 2002) list
up requirements derived from practice. Interestingly, this is-
sue causes a change in the interaction between developers
and analysts or experts a soon as a verification tool is in-
volved in the development process (Gerrits 2003). In fact,
the verification contributes to the support of quality man-
agement forBR(Spreeuwenberg 2003).

For the validation of rules in Knowledge Based Sys-
tems, promising methodologies and techniques are devel-
oped (Knauf 2000; Knauf, Gonzalez, and Abel 2002) and
currently refined (Kurbad 2003), but unfortunately not ap-
plied to BR so far. To gap this bridge, the authors started
the adaption of the technology introduced in (Knauf 2000)
to BR environments by implementing its first step, thetest
case generation. Interestingly, this attempt revealed that ap-
proaches developed in an ”Ivory Tower” are often based on
assumptions that do not occur in the commercial practice.
Experiences and insights gained in this process are the sub-
ject of the present paper.



A Closer Look at Business Rules
The original objective of theBR concept is the description
and control of business courses. According to this claim,
they occur in different forms, which do not all meet what AI
researchers would call a ”rule” and even not meet what they
would associate with the respective term:

• Definition of Business TerminologiesIt is usually de-
scribed with glossaries or entities of an Entity Relation-
ship Model (ERM ). A business terminology can be more
formally described with description logics which are com-
monly used in the Ontology community.

• FactsHere, they express relationships between terminolo-
gies. They are represented either as natural language
statements or by some graphical model.

• instructions and restrictionsThey control the access to
business data. In fact, they meet our imagination of a
”rule”, since they are represented byIF–THEN – construc-
tions.

• derivationsThey define ways to conclude knowledge (a
fact, e.g.) from the given knowledge base (rules and
facts). From an AI viewpoint, they perform the inference
calculus.

Obviously, BR provides a large variety of formal, semi–
formal and informal knowledge representations and do not
provide an inference technology. Consequently, theBR
community developed a commonly accepted modelBR
(represented as anERM in UML notation) along with
a definition of the involved terms (Business Rules Group
2000).

To apply AI technologies toBR, Production Rules are
derived and languages for their processing have been devel-
oped. One exemplary language that is the subject of fur-
ther considerations, isCleverPath Aion Business Rules Ex-
pert (A IONBRE) (Computer Associates 2003).

The Representation Aspect
Rules inA IONBRE follow the association from the point of
AI. Formally, they fall into the class ofHORN clauses of the
propositional calculus, but their expressivity is much more
powerful than this, because their premises and conclusions
are not limited to logical statements. Three kinds of rules
are distinguished:

• Production RulesThey infer about object within a class
hierarchy. From the viewpoint of frame technology, the
premises check slot contents (attribute values) for decid-
ing, whether or not a rule fires. The conclusion consists
in setting attribute values. From the AI perspective, the
single expressions are first order statements about a hier-
archically structured world of objects.

• Pattern Matching RulesThese are second order state-
ments which serve the manipulation of the class hierar-
chy. Before their use, so called variables needs to be
bound to classes. They are excluded from processing in
a Backward–Chaining manner. Their premise is check-
ing attribute values of a class indicated by a given vari-
able. Since this check includes the consideration of all

instances, these rules are named pattern matching rules.
Their conclusion part is an instruction to bound a class to
one or more classes.

• Event RulesFortunately, they are not relevant in prac-
tice. In fact, they are out of the inference engine’s con-
trol. Their premises are checked permanently and they
fire with a higher priority then any rule of the first two
kinds. From an AI perspective, their effects can’t be de-
scribed by any (non–temporal) formal logic.

The Processing Aspect
The processing of these rules is very flexible.A IONBRE
provides a Forward– and backward–Chaining rule process-
ing with or without the control of rules’ priorities. Further-
more, an implicit inference is performed by the inheritance
within the class hierarchy. Finally, a kind of ”experimental”
preliminary and retractable inference is provided by Truth
Maintenance Assignments.

The Scenario to Perform Validation
Since verification is a pre–condition for the usefulness to
apply validation technologies, the implemented first step
of the validation technology is embedded in an existing
and successfully applied verification tool calledVALENS,
a commercial product of the Dutch companyL IBRT (see
www.librt.com and click onVALENS). It is a verification en-
gine than can be used (1) as an integrated tool withinA ION-
BRE, (2) as a stand alon version to verifyA IONBRE rules,
and (3) a component version that can be adapted to other
rule base development environments that are based on the
L IBRT’s rule baseXML schema.

VALENS provides a large variety of consistency –, redun-
dancy –, and completeness checks as well as some elemen-
tary validity checks regarding ”dead ends” of inference, i.e.
unused conclusions and unreachable goals. The functional-
ity of VALENS is highly motivated and influenced by long
term practical experiences with the application ofBR.

SinceVALENS’ analysis is based on the logical structure,
it can not decide, up to which grade a given rule base re-
ally models reality. This motivated the supplementation of
VALENS by a validation technology.

The first step of the validation technology to be integrated
is the test case generation(Knauf, Gonzalez, and Abel
2002). In a very first sub–step the rules are analyzed with
the objective to compute a so called Quasi Exhaustive Set of
Test cases (QuEST ). Consequently, the tool to perform the
computation ofQuEST has been namedQUESTER.

QUESTER generates a test case set that meets the follow-
ing requirements:

• For each of the system’s possible final output there is at
least one test datatj ∈ QuEST .

• The test data are able to reflect the boundary conditions
between different system outputs, i.e. they ”frame” each
boundary with so–called ”scanning distance” to it.

• The cardinality ofQuEST is as small as possible.

The process is based upon the following ideas:
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Figure 1: Regions of Influence for a 2 Input Problem
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Figure 2: The Architecture of incorporatingQUESTER into VALENS

1. Break down the range of an input into subranges where
its values are considered to be equivalent in terms of its
effects on the outputs.
All values within such a range are within the same ”region
of influence” formed by the intersection of the projection
of the values of the inputs that have a direct effect on a
particular output. Thus, all cases within such a region are
mapped to the same output by the rule base. See figure 1
for illustration.

2. Compute an initial set of potential test dataP based upon
combinations of values within these subranges.

3. Sort these datatj into several setsPi of data according to
the outputoi that the system infers for the inputTj .

4. Filter all Pi by eliminating those that are subsumed by
others.

Via a well–defined interfaceQUESTER accesses the rule

base (represented as an XML schema) and delivers the com-
puted test data along with their expected test case solutions
as illustrated in figure 2 by following the approach in (Knauf
2000) as sketched in figure 3.

Ivory Tower Ideas vs. Practice
Dependencies of Outputs
By analyzing the rule baseR = {r1, . . . , rn} the depen-
dency of each particular system outputoi ∈ O from the
input variables inS = {s1, . . . , sm} and the rulesR is de-
termined.

During the very first step, the computation of the out-
puts’ dependencies on inputs and applicable rules revealed a
first general misunderstanding about the conclusion’s inher-
ent logic: The developer of the validation approach assumed
that an output is just a propositional statement that can be
true or false.
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Figure 3: Computation ofQuEST

The practice ofA IONBRE and VALENS taught, that a
written attributeis considered an output. By associating a
particular value, it becomes a logic statement and thus, an
output in the eye of the validation approach developer.

This didn’t rise a difficulty in the computation of the
above mentioned dependencies. Therefore, this issue was
not solved at this point, but kept in mind.

Later we came to the insight, that this issue dramatically
influences the number of computed test data and thus, the
costs of executing the entire validation approach. Since a
written attribute can have many values, an output in the
sense ofVALENS conforms many outputs in the sense of
the validation technology. Since the number of values oc-
curring at rules’ conclusion parts is usually a very tiny sub-
set of all possible attribute values, the number of test data
is very much limited by underlying the validation approach
assumption of an output’s nature.

Another big issue is the assumption that a rule is a com-
pletely logic item. This sounds quite naturally, but is far
away from practice. Difficulties occurred with elements like
function– or method calls in the rules. This could be solved
by ”normalizing” the rule base to a one that is free of such
calls.

A similar solution could be found for rules which don’t
follow the pureHORN–Logic because of having multiple
(conjunctive) conclusions, i.e. rules like

n∧

i=1

Bi ←
m∧

i=1

Ai

These rules where simple decomposed into several rules

B1 ← A . . . Bn ← A

Since inferring a hypothesisH from a set of such (facts and)
rules means considering the conjunction of the elements of
the rule base this decomposition leads to a rule base that is
logically equivalent:

(
n∧

i=1

Bi) ← A ≡
n∧

i=1

(Bi ← A)

Critical Values and their Scanning Distance
In this step,

• the values, which mark a difference in the effect of an
input’s value on one of its dependent final outputs (critical
values) and



• the scanning distances, at which test data should be lo-
cated from these critical values

are determined.
Particular (rule) languages support particular data types

for the inputs and outputs of the rule base. The adaption
and extension of the data structure that has been considered
in the validation approach to the data structure supported in
A IONBRE could be performed quite easily.

One issue that needed to be solved is the handling of type
conflicts when data is relayed through the inference chain.
In case the types are not compatible (an integer and a string
that doesn’t represent a number, e.g.), this indicates an error
in the rules’ semantic. In case it is compatible, a policy to
translate the data has been developed. This policy consists
of rules like this:

Upper borders of a real number’s rage have to be
rounded down when translated to an integer value

If two input values (of different, but compatible data
types) are compared, it happened, that the computedcriti-
cal values(see figure 3 and (Knauf 2000)) are not allowed
for the associated data type, for example that they are out
of its defined value range. To handle these cases, we de-
veloped a policy of replacing such values by some ”nearest
valid values”.

The approach to compute the scanning distances needed
also to be adapted to the circumstances of practice. Origi-
nally, it did not consider the case that an input has several
valid ranges with no intersection with each other. In this
case, the smallest of the computed scanning distances for
each range is adopted to the entire input attribute.

Furthermore, a ”smallest possible step” for integer and
real values needed to be introduced. For integers, it is quite
clear (=1), but for real values, we had to made a very arbi-
trary decision with respect toA IONBRE’s handling of frac-
tional numbers and to the further use of this step width.

Some additional difficulties revealed with the handling of
function calls and arithmetic expressions. In case they use
attributes and their values need an analysis of intermediate
conclusions, additional rules (besides the ones in theoi–
associated rule dependency setRi) need to be included in
the rule analysis. For such cases, the rule base needs to be
normalized before the execution ofQUESTER.

Finally, we had to state another limitation of applicability:
It is limited to rules that infer a static output, i.e. an output
that doesn’t refer to input values. The conversion ofA ION-
BRE – output attributes to the output definition underlaying
the validation approach before the execution ofQUESTER
– which is desirable anyway: see above – will solve this
problem, but we didn’t do this yet.1

Computing Potential Test Case Values

The approach to compute test case values is based on an
analysis of expressions about inputs in the rules’ condition
parts. Here the outputs are considered separately and a set

1The procedure to do so is quite similar to the procedure which
converts aMEALY automaton into aMOOREautomaton.

of potential test case valuesVij for a considered inputsj in
the test case (sub–) set for an outputoi are computed.

Originally, three cases have been distinguished: (1) the in-
put does’t influence the outputoi, (2) the input is compared
with a fixed value in a rule’s condition part, and (3) the in-
put is compared with another input in a rule’s condition part.
Since every input attribute has to have any value (even if this
value doesn’t matter), the approach simply stated a ”normal
value”.

While practicing this idea, we came to the insight, that
such an arbitrary value should be chosen in a manner that
supports minimality. This could be performed by not using
a ”normal value”, but any value of this input that has been
computed as a potential test case value for another output.
This way we could arrange that some test data could serve
for several inputs. In fact, the cardinality ofQuEST (i.e.
the number of computed test data) could be decreased sig-
nificantly by this measure.

Additionally, we had to perform some other slight adap-
tion of the approach with respect to the introduce data types
of A IONBRE that are of a larger number than the ones as-
sumed in the approach.

Composing Complete Test Data
Since this step is just the computation of set products and
their union, it did not cause any problem.

Minimizing the Set of Test Data
This was the point to solve the problem, which was put off
in the very first step: The definition of the term ”output”
as either an output attribute or a statement about its value,
because the first step of the minimizing procedure associates
the test data with their outputs and forms a respective subset
for each output. The minimization procedure is applied to
every subset ofQuEST individually.

For complexity reasons (cf. first subsection) we preferred
the definition in the approach. The minimization idea is
based on revealing test data that are subsumed by others be-
cause of being in the same ”region of influence” (Knauf,
Gonzalez, and Abel 2002). In fact, such a chance occurs
only by considering non–discrete input attributes.

Applying the minimization procedure to test cases of
practical relevance was not as complex as we where afraid
of. The iterative technology as introduced in (Knauf 2000;
Knauf, Gonzalez, and Abel 2002) could be replaced by a
”quasi concurrent” technology for each possible partition-
ing with respect to an input that is non discrete. We could
show, that this way no chance of minimization is missed.

At this point, the developer of the minimization proce-
dure came to a new theoretical insight while explaining his
technology to developers of the tool which performs it in
practice.

Providing other Useful Information
The procedure to computeQuEST reveals also information
that is not its objective, but useful for (1) practicing upcom-
ing steps to implement the validation technology, (2) im-
proving the verification procedure ofVALENS, and (3) the
rule base development in general.



Refining the Minimization Technology
Based on the experiments withQUESTER another insight
lead to a refinement of the minimization technology of
(Knauf 2000). The refinement idea of (Jendreck 2003) is
based on the strategy to prefer test data that can be mapped
to as many as possible outputs to those which are mapped to
less outputs.

Summary and Outlook
The paper focuses insights while performing a first step to
bridge an important gap in the development ofBR bases:
the involvement of validation approaches.

The implementation of a test case generation method re-
vealed basic insights about the different viewpoints and ter-
minologies of foundation– and logic oriented AI research
and application oriented knowledge– and software engineer-
ing.

The experiences gained during the realization of the test
case generation for aBR language have been illustrated in
the paper. In particular, the trade–offs between logic ap-
proaches, commercial needs, and the desired involvement of
other (non–AI) software technologies are one subject of the
present paper.

Furthermore, the test case generation technology itself has
been refined based on the experience with real life applica-
tion environments. In particular, the complexity of a mini-
mization methods could be dramatically decreased by using
a more efficient algorithm. Additionally, the outcome of this
step, the test case set could be further decreased by refining
the minimization approach.

Since there is still a long way untilBR applications can
enjoy the benefits of validation approaches, the research in
both communitiesBR knowledge engineering andV &V of
intelligent systems need to adapt their terminologies and ap-
proaches to each other’s requirements. In fact, the authors
continue following this this way towards high performance
BR bases.
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