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Abstract 

This paper presents multiDE, an extension of Price and Storn’s 
differential evolution (DE) algorithm that consistently 
outperforms state-of-the-art search techniques for identifying 
multiple global optima in multidimensional, discontinuous 
solution spaces. MultiDE automatically determines appropriate 
values for control parameters, and periodically updates those 
values at run-time. MultiDE requires little expert knowledge of 
the solution space, and is capable of searching both 
discontinuous and differentiable solution spaces. Innovative use 
of multiple subpopulations, minimum spanning distances, 
subpopulation expiration, and precision control contributes to 
multiDE’s speed and effectiveness. Results from several 
benchmark problems reveal MultiDE’s extraordinary power. 
 
Introduction 
DE (Price and Storn 1997) is a powerful and efficient 
technique for optimizing nonlinear and non-differentiable 
continuous space functions. Its simple yet powerful 
algorithm is illustrated by Fig. 1. DE was designed as a 
replacement for traditional methods of solving differential 
equations, such as simulated annealing (Jones and Forbes 
1995) and the well-known simplex algorithm (Nelder and 
Mead 1965). DE has distinguished itself as a fast and 
easy-to-use numerical optimization tool. 

DE begins by generating a random population of 
candidate solutions in the form of numerical vectors. The 
first of these vectors is selected as the target vector. Next, 
DE builds a trial vector by executing the following 
sequence of steps: 
1. Randomly select two vectors from the current 

generation. 
2. Use these two vectors to compute a difference vector. 
3. Multiply the difference vector by weighting factor F 

(see Fig. 1). It has been found that generally as the 
number of population members used by DE 
increases, the value of F should be decreased in order 
to aid in the convergence process (Storn 1996). 

4. Form the new trial vector by adding the weighted 
difference vector to a third vector randomly selected 
from the current population. 

The trial vector replaces the target vector in the next 
generation if and only if the trial vector represents a better 
solution, as indicated by its measured cost value. DE 
repeats this process for each of the remaining vectors in 
the current generation. DE then replaces the current 
generation with the next generation, and continues the 
evolutionary process over many generations. 

DE’s shortcomings become apparent when a 
researcher begins experimenting with problems that have

 

 
Fig. 1.  The Traditional Differential Evolution Algorithm 
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large, complex solution spaces. Filter design, population dynamics, and other applications of differential equations 
are examples of problems that extend traditional 
assumptions concerning the formation of solutions. In 
such domains, it may be critical to enhance the problem-
solving abilities of scientists and engineers by identifying 
as many globally optimal solutions as possible. 
 
The New Approach 
MultiDE incorporates several enhancements of the 
original DE framework, resulting in a fast and efficient 
method of convergence to multiple global optima. 
Researchers already familiar with DE can migrate to 
multiDE with minimal effort, and may begin exploiting 
multiDE’s power to determine multiple global optima in 
complex search spaces. 

First, multiDE assigns each candidate solution to one 
of several simultaneously evolving subpopulations. Each 
subpopulation consists of a user-specified number of 
vectors. Subpopulations evolve independently from one 
another, i.e., all three of the vectors used to create each 
trial vector are randomly selected from the subpopulation 
containing the corresponding target vector. MultiDE 
periodically transfers each current global optimum to a 
separate subpopulation known as “population 0”, 
increases the number of subpopulations, creates a new set 
of candidate solutions for each subpopulation, and begins 
the evolutionary process anew. This technique 
significantly reduces the likelihood of premature 
convergence to a subset of global optima. 

Second, multiDE uses a variable to specify the 
precision required for the current optimization problem. 
MultiDE considers real-valued solutions that differ by 
less than this variable’s value to be equal. During 
evolution, each new trial vector is compared to each 
member of population 0; if the difference between a trial 
vector and any member of population 0 is less than the 
specified precision value, then multiDE considers the trial 
vector to have rediscovered a known globally optimal 
solution, and the trial vector is dropped from further 
calculations. This process accelerates the rate at which 
multiDE converges to new global optima. Reductions in 
the magnitude of the precision value force multiDE to 
recognize increasingly smaller differences between 
candidate solutions. 

Third, multiDE dynamically adjusts the minimum 
spanning distance (MSD) between members of different 
subpopulations. MSD (Rumpler and Moore 2001) is 
initially calculated to be a factor of the user-specified 
maximum number of generations. When a new trial 
vector is created, multiDE computes its Euclidean 
distance from each of the target vectors in every other 
subpopulation of the current generation. If this distance is 
less than the MSD from at least one target vector, 
multiDE simply moves the trial vector a distance MSD in 
the opposite direction. This process is repeated until the 

trial vector is at least the MSD from every member of 
every other subpopulation. By preventing members of 
multiple subpopulations from gravitating to the same area 
of attraction, this technique encourages a more thorough 
search of the solution space, and thus increases the 
likelihood of finding larger numbers of global optima. 
Over many generations, multiDE slowly decreases the 
MSD until its value is less than or equal to the value of 
the precision variable described above. Each time the 
number of subpopulations is increased, multiDE resets the 
MSD to its initial value, and the process is repeated. 

Fourth, multiDE introduces subpopulation expiration 
to accelerate the rate of convergence. MultiDE eliminates 
subpopulations from the currently evolving generation 
when they fail to discover new global optima after a 
specified maximum amount of computation. This 
technique results in a sizable linear increase in 
convergence speed. Shorter expiring times are most 
beneficial to researchers who want to quickly identify 
several solutions, but can forgo the opportunity of finding 
all possible solutions. A more comprehensive search can 
be made simply by increasing the expiring subpopulation 
variable to a much larger value. 
 
MultiDE Solves Classic Optimization 
Problems 
MultiDE’s power can best be demonstrated by showing 
the speed and flexibility with which it solves several well-
known multidimensional optimization functions. A “run”, 
as tabulated below, was considered to be a complete 
execution of the multiDE algorithm with all parameters 
set and the function to be optimized loaded into the 
algorithm. Five test runs were made with each function. 
Each test run used a different random seed. A typical run 
used 60 vectors per subpopulation. Total computation 
time was recorded by executing multiDE via the Linux 
“time” command on a 3.06 GHz Intel Pentium 4 computer 
running Linux kernel 2.4.22. 

The strategies listed below are designated using the 
standard format that Price and Storn set forth within the 
source code of their DE algorithm. For example, in 
DE/best/1/exp, the first value, “DE”, indicates that a 
differential evolution technique has been used. The 
second parameter specifies the vector to be perturbed 
during the evolution process: “best” designates the best 
current population member, while “rand” designates a 
random population member. The third parameter 
represents the number of difference vectors to take from 
the perturbed vector to create a new trial vector. The 
fourth parameter specifies the crossover method to be 
used: “exp” designates an exponential method, while 
“bin” designates a binomial method. 

The first equation analyzed was Branin's function 
(Branin 1972). This continuous function (Fig. 2) has six 



global optima within the specified range. DE/rand/1/exp 
was used as the strategy for optimizing this function. 
Initial test runs set the expiring subpopulation variable 
equal to the maximum number of generations. This value 
resulted in rapid convergence at the expense of a less 
comprehensive report of possible optimal solutions: the 
results from five test runs (Fig. 3) indicate that, on 
average, multiDE found 5.2 unique solutions in an 
average run time of 7.22 seconds. As few as six 
subpopulations were used, resulting in an average of 
394,385 function evaluations. 

Next, the value of the expiring subpopulation 
variable was increased by a factor of 10, and all five test 
runs were repeated under otherwise identical conditions. 
In each run, multiDE located all six global optima (Fig. 
4). These results underscore a general rule: to increase the 
percentage of global optima found, the value of the 
expiring subpopulation variable must be proportional to 
the complexity of the solution space and number of 
solutions desired. 
The second equation tested was Shubert's function (Fig. 
5). This function has nine global optima within the 
specified range. Shubert’s function lends itself to 
differential evolutionary optimization because, although 
its solution space is continuous and differentiable, it also 
offers sizable slopes that tend to drive adaptive techniques 
away from the global optima. A DE/rand-to-best/1/exp 

strategy was used to optimize this function. To increase 
the likelihood of converging on all possible solutions, the 
expiring subpopulation variable was increased by a factor 
of ten. The results of these tests (Fig. 6) illustrate 
multiDE’s ability to rapidly converge to multiple optima. 
All five test runs determined all nine global optima 
solutions in an average execution time of only 5.47 
seconds. 

The third equation used to test multiDE was 
Rosenbrock's saddle (Rosenbrock 1960), shown in Fig. 7. 
This equation is an exception in this test suite: it has only 
one optimal solution. The reasons for its inclusion are to 
allow comparisons with more conventional optimizers, 
and to show that multiDE is flexible enough to solve 
problems having a single global optimum. 
Using parameters similar to those used in previous tests 
and assuming that n = 2, multiDE quickly found the 
global optimum, in spite of the sizable overhead of 
multiDE’s multi-pass algorithm. Note that after finding 
the single solution, multiDE continued executing many 
more iterations in an attempt to find additional solutions 
by increasing the number of subpopulations. Waiting for 
these additional subpopulations to complete introduced a 
function evaluation penalty that increased the total 
number of function evaluations (Fig. 8). 

An interesting phenomenon arises when multiDE is 
applied to the relatively simple equation illustrated in Fig. 
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Fig. 2.  Branin’s Function 
 

 

Run # 
# of Unique 

Solutions Found 
Maximum # of 

Subpopulations NFE Time Strategy 
1 5 8 782710 11.342 DE/rand/1/exp 
2 5 6 233580 6.57 DE/rand/1/exp 
3 5 6 227943 4.666 DE/rand/1/exp 
4 5 7 501366 9.984 DE/rand/1/exp 
5 6 6 226325 3.587 DE/rand/1/exp 

Average 5.2 6.6 394384.8 7.2298   
Fig. 3.  Branin’s Function Test Results: Shorter Subpopulation Expiration Times 

 
 

Run # 
# of Unique 

Solutions Found 
Maximum # of 

Subpopulations NFE Time Strategy 
1 6 9 543094 41.190 DE/rand/1/exp 
2 6 10 403493 36.243 DE/rand/1/exp 
3 6 9 603912 42.302 DE/rand/1/exp 
4 6 9 430934 37.584 DE/rand/1/exp 
5 6 10 574833 44.238 DE/rand/1/exp 

Average 6.0 9.4 511253.2 40.3114   
Fig. 4.  Branin’s Function Test Results: Longer Subpopulation Expiration Times 

 



9. This equation has a total of sixteen global optima. 
When run with the same parameters specified for 
Shubert’s function, multiDE quickly found up to ten 
unique solutions, but after multiple iterations failed to 
find the remaining solutions. Fig. 10 shows these results 
over five independent test runs. 

To allow multiDE to solve problems having a larger 
number of global optima, the expiring subpopulation 
variable must be increased. After the expiring variable 
was increased by a factor of ten, multiDE used 22 
subpopulations and 9,412,512 function evaluations to 
converge on all sixteen solutions in a single run in 15.72 
seconds (Fig. 11). 

 
MultiDE Outperforms Classic Optimization 
Algorithms 

Efstratiadis (Efstratiadis 2001) defines effectiveness as 
follows: 

[Effectiveness] indicated the probability of finding a 
global optimum starting from any random initial 
solution (or population of solutions)... A measure of 
the effectiveness of an algorithm in a specified 
problem is the number of successes out of a 
predefined number of independent runs. 

To demonstrate its effectiveness, multiDE was compared 
to the following classic algorithms: a multistart simplex 
technique (Torn and Zhilinskas 1989); a genetic 
algorithm-based method (Goldberg 1989); a shuffled 
complex evolution method (Duan, Gupta, and Sorooshian 
1993); and a powerful annealing-simplex algorithm 
(Efstratiadis 2001) inspired by simulated annealing. Each 
algorithm was tested using Griewank’s function and  
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Fig. 5.  Shubert’s Function
 

 

Run # 
# of Unique 

Solutions Found 
Maximum # of 

Subpopulations NFE Time Strategy 
1 9 7 304930 4.546 DE/rand-to-best/1/exp 
2 9 9 489445 6.549 DE/rand-to-best/1/exp 
3 9 7 387545 5.528 DE/rand-to-best/1/exp 
4 9 8 419430 5.762 DE/rand-to-best/1/exp 
5 9 7 334309 4.984 DE/rand-to-best/1/exp 

Average 9.0 7.6 387131.8 5.4738   
Fig. 6.  Shubert’s Function Test Results 
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Run # 
# of Unique 

Solutions Found 
Maximum # of 

Subpopulations NFE Time Strategy 
1 1 7 449231 1.221 DE/rand-to-best/1/exp 
2 1 7 449231 1.22 DE/rand-to-best/1/exp 
3 1 7 449231 1.214 DE/rand-to-best/1/exp 
4 1 7 453803 1.231 DE/rand-to-best/1/exp 
5 1 7 465712 1.237 DE/rand-to-best/1/exp 

Average 1 7 453441.6 1.2246   

Fig. 8.  Rosenbrock’s Saddle Test Results 
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Michalewicz's function. The calculated effectiveness of 
each function is defined as the percentage of global 
optima found.  

Griewank's function (Fig. 12), as tested, has a ten-
dimensional solution space of sufficient complexity to 
warrant extended convergence times and an increased 
number of function evaluations. This function is reported 
to have over 1000 optima in the range of interest 
(Efstratiadis 2001), and therefore presents an interesting 
benchmark for multiple global optima algorithms.  
Despite the multi-dimensional, non-convex nature of this 
function, the effectiveness of most of the algorithms in 
our test suite approached 100 (Fig. 14). MultiDE required 
only 7.35 seconds to find 100% of the solutions. 
Michalewicz’s function is illustrated in Fig. 13. 
Efstratiadis (Efstratiadis 2001) states that this function has 
more than 100 global optima in the specified range. This 
function, as tested, has a two dimensional solution space 
that proved to be very difficult for traditional optimization 

techniques: for the traditional four algorithms tested, the 
highest observed effectiveness rating was 58 (Fig. 14). In 
contrast, multiDE’s effectiveness in solving 
Michalewicz's function was 96. 

 The importance of this finding is that, although the 
overhead of our multiple-pass evolutionary approach may 
be significant for simple test problems, multiDE’s 
comprehensive search capabilities allow it to quickly 
converge on multiple globally optimal solutions in 
solution spaces that are too complex for the traditional 
optimization techniques included in this test suite. This 
result highlights the most important property of multiDE: 
its power to solve complex optimization problems quickly 
and reliably. MultiDE automatically adapts to the 
complexity of the given solution space, effectively 
utilizing the power of multiple simultaneously evolving 
subpopulations to find arbitrarily large numbers of global 
optima with less computational cost than traditional 
search techniques. 

 
 
 

Run # 
# of Unique 

Solutions Found 
Maximum # of 

Subpopulations NFE Time Strategy 
1 8 15 4147023 7.052 DE/rand-to-best/1/exp 
2 10 13 3011941 5.443 DE/rand-to-best/1/exp 
3 9 13 2999248 5.409 DE/rand-to-best/1/exp 
4 9 13 3012578 5.442 DE/rand-to-best/1/exp 
5 10 16 4762764 7.631 DE/rand-to-best/1/exp 

Average 9.2 14 3586710.8 6.1954   
Fig. 10.  Simple Multiple Optima – Results for Short Test Runs 

 
 

Run # 
# of Unique 

Solutions Found 
Maximum # of 

Subpopulations NFE Time Strategy 
1 16 22 9412512 15.722 DE/rand-to-best/1/exp 

Fig. 11.  Simple Multiple Optima – Results for a Longer Test Run 
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Fig. 12.  Griewank’s Function (Griewank 1981) 
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Fig. 13.  Michalewicz’s Function (Sun and Laio 2001) 
 
 

Test 
Function 

Dimensions 
(n) 

Number of 
Optima 

Multistart 
Simplex 

Genetic 
Algorithm SCE-UA 

Annealing-
simplex multiDE 

Griewank 10 >1000 100 89 100 99 100 
Michalewicz 2 >100 35 31 44 58 96 

Fig. 14.  Test Results for Complex Functions: Effectiveness (%) 
 
 



MultiDE was designed to be easy to use. Very few 
adjustments to control parameter values were necessary in 
order for the algorithm to reliably converge on multiple 
global optima; for example, to transition from testing 
Griewank's function to testing Michalewicz's function, the 
only values modified in the configuration file to reliably 
converge on multiple global optima were number of 
variables generated and the DE evolution strategy. (It is 
possible to change a larger number of variables within the 
configuration file, if the researcher desires finer control 
over the optimization process.) The nature of the 
algorithm lends itself to less reliance on the values of 
control parameters and more flexibility in convergence. 
 
Conclusions 
This paper described a new differential evolution 
algorithm that represents a significant contribution to the 
state-of-the-art in numerical optimization. Experimental 
results demonstrated multiDE’s ability to consistently 
identify multiple global optima for complex functions 
(such as Michalewicz’s function) that prove to be 
troublesome for such traditional optimization techniques 
as the multistart simplex method, the standard binary 
encoded genetic algorithm, the shuffled complex 
evolution method, and the annealing-simplex method. 
MultiDE allows researchers to experiment with a simple, 
flexible, and powerful differential evolution solver 
without a steep learning curve. MultiDE can be applied to 
a broad range of challenging optimization problems. 
Future research efforts will exploit multiDE’s power to 
solve real-world problems with arbitrarily complex 
solution spaces. 
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