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Abstract 

This article describes an indirectly encoded evolutionary 
learning algorithm to train morphological neural networks. 
The indirect encoding method is an algorithm in which the 
training of the neural network is done by finding the 
solution without considering the exact connectivity of the 
network. Looking for the set of weights and architecture in 
a reduced search space, this simple, but powerful training 
algorithm is able to evolve to a feasible solution using up to 
three layers required to perform the pattern classification. 
This type of representation provides the necessary 
compactness required by large networks. The algorithm was 
tested using Iris Fisher data and a prototype was written 
using Matlab.⋅ 

 
 Introduction 

Morphological Neural Networks (MNN) are a new type of 
neural networks described by Ritter, Sussner, and Beavers 
(Ritter and Sussner 1996), (Ritter and Sussner 1997), 
(Sussner 1998), and (Ritter and Beavers 1999). These types 
of neural networks replace the classical operations of 
multiplication and addition by addition and maximum or 
minimum operations. The maximum and minimum 
operations allow performing a nonlinear operation before 
the application of the activation or transfer function. MNN 
utilize algebraic lattice operations structure known as semi-
ring ( , , , , ')

±∞
∨ ∧ + +ℜ , different from traditional neural 

networks that are based on the algebraic structure known 
as ring (R,+,×). The operations ∧ and ∨ denote minimum 
and maximum binary operations, respectively. 
    Genetic Algorithms (Yao 1999) have proven to be 
effective to search for an optimal solution in very large, 
complex, and irregular search spaces such as the neural 
networks architectures. This article describes a method 
using genetic algorithms that can be used to train the 
morphological neural networks introduced by Ritter, 
Sussner and Beavers. The algorithm can be used to train up 
to three layers morphological perceptron architectures 
based on evolutionary computation, which are able to 
classify most traditional pattern classification problems. 
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Morphological Neural Networks 

Morphological neural networks are a new type of neural 
network, based on lattice operations. The morphological 
neuron follows the mathematical model described by 
Equation 1,  
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j ij i iji
f p r x w
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     (1) 

where ∨  is the maximum operator (or minimum operator 
∧  can be used), xi is the i-th input value for the j-th 
neuron, wij denotes the synaptic weight associated between 
the i-th input and the j-th neuron, rij represents the 
inhibitory or excitatory pre-synaptic value between the i-th 
input and the j-th neuron, and pj represents the post-
synaptic response of the j-th neuron. Both rij and pj can 
assume values of {+1, -1}. 
    In addition, the morphological perceptron uses a special 
hard-limit transfer function, as shown in Equation 2:  
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Figure 1 shows a graphical representation of a two-layer 
morphological neural network.   
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Figure 1. Two layer morphological perceptron architecture. 

 
The articles presented by Sussner (Sussner 1998), 

describe the different effects produced by changing 
parameters of the morphological neuron. Figure 2a shows 
the effect of using positive values as the pre-synaptic 
values for a two-input morphological neuron, and the 
corresponding classification region obtained is shown in 
Figure 2b.  Figure 2c shows the effect of using negative 
values as pre-synaptic values in a morphological neuron, 



and the corresponding classification region is shown in 
Figure 2d. 
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Figure 2. (a) A morphological neuron with positive pre-synaptic 
values and (b) the corresponding region defined for the class C0. 
(c) A morphological neuron with negative pre-synaptic values 

and (d) the corresponding region defined for the class C0. 
 

Training by Indirect Encoding 
The proposed algorithm identifies the number of necessary 
neurons needed to perform the classification, the set of 
weights, and the architecture for the morphological neural 
network that can be used to classify patterns. In general, a 
morphological perceptron can separate only two classes. In 
order to classify multiple classes, a vector that contains a 
binary pattern is assigned to each class, for example:  
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A neural network may be trained for each entry in the 
classification vector. Building a neural network to classify 
all the test patterns for the first entry in the vector 
correctly, requires to assign test patterns from classes that 
have the value of 0 to a temporary class Ct0, otherwise to 
the class Ct1. Those temporary classes will be used during 
the training process of the neural network. Figure 3a shows 
the set of test patterns, and their corresponding binary 
vector. Figure 3b shows how all test patterns have been 
regrouped into temporary classes. A multilayer 
morphological perceptron is built in such a way that it will 
be able to separate the patterns from the new classes Ct0 
and Ct1. The output of that network is assigned to the first 
entry in the binary vector. Figure 3c shows the test patterns 
must be regrouped in order to build the neural network for 
the second entry in the binary vector. 

⎥
⎦

⎤
⎢
⎣

⎡
0
1

⎥
⎦

⎤
⎢
⎣

⎡
1
1

⎥
⎦

⎤
⎢
⎣

⎡
1
0

C1

C2 C0 Ct1
Ct1

Ct0
⎥
⎦

⎤
⎢
⎣

⎡
1
0

⎥
⎦

⎤
⎢
⎣

⎡
1
1

⎥
⎦

⎤
⎢
⎣

⎡
0
1

Ct0
Ct1

Ct1
⎥
⎦

⎤
⎢
⎣

⎡
1
0

⎥
⎦

⎤
⎢
⎣

⎡
1
1

⎥
⎦

⎤
⎢
⎣

⎡
0
1

 
a        b        c 

Figure 3. (a) Set of test patterns and their corresponding binary 
vector. (b) and (c) how the patterns are regrouped in temporary 

classes. 
 

The encoding of the network parameters is done using 
an indirect encoding method, instead of looking for the 
number of required neurons for the classification, the set of 

weights for each neuron, the number of layers and 
interconnections between neurons. The problem is restated 
in such a way that the solution for this new problem results 
in a simpler representation. Once a solution is found a 
morphological neural network is built using the indirectly 
encoded information.  
 The example in Figure 4 shows a 2-dimensional space 
example where the classification patterns are grouped into 
clusters. The boundaries for these clusters can be 
approximated by succession of rectangular regions where 
the corners of each of these regions can be seen as the 
decision boundaries of a morphological neural network, as 
is shown in Figure 4. The same concept can be extended to 
a higher domain space.  

Class 0

Class 1

 
Figure 4. The region of the class C0 is approximated by a 
succession of rectangles. 
 
  Once these regions are defined, the corners can be used 
as the decision boundaries in order to build a 
morphological neural network able to classify patterns 
between two classes. The indirect encoding of the problem 
provides a solution with enough information that can be 
used to rebuild a morphological neural network. An 
algorithm is implemented to define the way this 
information may be decoded to build the morphological 
neural network. This process includes the way this 
information is fit into the chromosome, and the crossover 
and mutation techniques implemented to solve the 
problem. 
 The neural network architectures used to create the 
hypercubes have the following restrictions: the neural 
network architecture must have three layers, except in the 
simple case in which all the patterns can be grouped using 
a single hypercube, where it will have only two layers; the 
last layer will have only one neuron, which uses the 
minimum operator, this neuron is connected to all the 
outputs from all the neurons of the second layer; all the 
neurons in the first layer use the maximum operator and 
one of the two neurons for each hypercube uses +1 for all 
the pre-synaptic values and the other one uses -1. 
Additionally, the weights for the connection in the layers 
two and three will always be 0 and the post-synaptic value 
for all the neurons in the neural network will be +1. Figure 
5 shows a diagram of the architecture of the neural network 
as described in this training algorithm. 
 
Encoding of the Organism 
The way the problem is encoded into the chromosome 
affects the performance of the algorithm. Different from 
other approaches, in this research nothing regarding to the 
connection weights or the relationship between the 
neurons, or the neural network architecture will be encoded 



into the chromosome. Since the problem is encoded 
indirectly, the chromosome keeps only enough information 
to identify each of the test patterns that belongs to the class 
Ct0. Inside of the chromosome or genotype, there are 
groups or set of patterns, each of them represents clusters 
of patterns. Each set must contain at least one pattern, and 
no empty groups can be used. 
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Figure 5. Shows how the morphological neural network 

architecture may look. 
 
 An example is shown in Figure 6, where the class Ct0 
contains ten 2-dimensional patterns, identified as P# 
enclosed by a square, where # is an integer number that 
represents each pattern. The patterns that do not belong to 
the class Ct0 are represented with circles. It is important to 
highlight that only those patterns that belong to class Ct0 
are encoded into the chromosome, using an integer value 
that corresponds to each pattern. When the initial 
population is generated, the patterns are randomly 
distributed into the chromosome in no particular order and 
the groups are randomly generated. In Figure 6b, shows 
how the patterns may be coded in the chromosome, in 
addition to the graphic representation of the hypercube that 
encloses each pattern group defined in the chromosome. 

After all groups are defined, the elements of each group 
are used to define the limits of the hypercube that are used 
as the decision boundaries for the morphological neural 
network.  A hypercube is defined for each group in the 
chromosome in such a way that it includes all the elements 
for that particular group.  
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Figure 6. An example of how the patterns may be encoded into 
the chromosome of a randomly generated organism. 

Recombination 
The crossover used in the implementation of the algorithm 
selects a set of n elements randomly from different groups 
defined in the chromosome of the first parent. The selected 
elements are identified and their positions are exchanged in 
the first chromosome, according to order they appear in the 
second parent. 
The process is repeated again, but this time the exchange 
of elements is done in the second parent based on the order 
they appear in the first parent.  
Figure 7a shows the chromosome of parent 1, with 10 
patterns coded on it. Also, Figure 7b shows the hypercube 
for each group defined in the chromosome. Figure 8 shows 
the chromosome of the second parent as it will be used for 
the crossover process.  
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Figure 7. (a) Chromosome of first parent and (b) the 

corresponding set of hypercubes. 
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Figure 8. (a) Second parent used for the crossover and  

(b) the corresponding set of hypercubes. 
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Figure 9. (a) First parent before the crossover and (b) the 
resulting offspring. 



 
Assume P9 and P5 are the selected elements from the 

first parent, as shown in Figure 9a. Now these elements 
must be identified in the second parent and the order is 
exchanged according the way they appear in the second 
parent. The final result after the elements were exchanged 
is shown in Figure 9b. In order to obtain the second 
offspring the process is repeated, but this time the selection 
and exchange of the elements is done in the second parent 
according to the order they appear in the first parent. 
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Figure 10. Hypercubes for the resulting offspring. 

 
Mutation 
The mutation operation on a chromosome, in the proposed 
algorithm, consists of two possible operations: fusion of 
two groups or division of a group into two new groups. In 
the fusion of two groups, two groups are randomly 
selected, and then all the elements of these two groups are 
combined to create a new group. Using this approach 
mutation is used to introduce changes in the way groups 
were created before. The other groups in the chromosome 
remain untouched. Figure 11a, shows an example of how 
the groups are defined before the mutation and Figure 11b 
shows the resulting chromosome after mutation. This 
example of mutation shows elements from different 
regions grouped into one set, combining those elements 
that may be grouped together into a single hypercube. 
Figure 12 shows the graphical effect of the mutation in the 
hypercubes. 
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Figure 11.  (a) Chromosome before mutation and (b) after 
mutation using group division. 

 
   Another example of a possible mutation operation is the 
redistribution of the elements of a group into two different 
groups. In this case, one group must be selected and all the 
elements of the group are distributed randomly between the 
two new groups. Figure 13a shows an example of a 
chromosome before the mutation and after the mutation, 

Figure 13b, where the elements of a group has been 
distributed into two different groups. This mutation 
operation helps to separate those elements that should not 
be in the same group. Figure 14 shows mutation effect 
graphically. 
 
Reconstruction of the Neural Network 
The information encoded in the chromosome will be used 
to build a morphological neural network that is evaluated 
later to calculate network fitness. The boundaries of the 
hypercubes must be decoded to build the neural network. 
Each group defined in the chromosome creates a 
hypercube large enough to enclose all the test patterns 
defined in that group. For each dimension in the 
hypercube, the maximum and minimum values will be 
used as the weights for the neurons that will define the 
hypercube. Figure 15 shows an example of a chromosome 
and a 2-dimensional space and the corresponding 
maximum and minimum values for the first hypercube 
defined in the chromosome. 
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Figure 12. (a) The effect in the regions defined by the groups in 

the chromosome before mutation and (b) after mutation. 
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Figure 13. (a) Chromosome before mutation and (b) after 

mutation by combining two groups.  
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Figure 14. (a) Graphical effect of mutation in the regions defined 

by the groups in the chromosome before mutation and (b) after 
mutation. 

 



 The maximum values for each dimension of the 
hypercube will be used as the set of weights for one of the 
neurons that will be added in the first layer, as shown in 
Figure 16a. All the pre-synaptic values for this neuron will 
be +1, the post-synaptic value will be +1, and the 
maximum operator will be the used by the neuron. On the 
other hand, the minimum values for each dimension of the 
hypercube will be used as the set of weights for the second 
neuron that will be added in the first layer, as shown in 
Figure 16b. All the pre-synaptic values for this neuron will 
be -1, the post-synaptic value will be +1, and the operator 
used by the neuron will be the maximum operator. These 
two neurons will be connected to a new neuron in the 
second layer. All the weights for the neuron in the second 
layer will be 0, the pre-synaptic values will be +1, the post-
synaptic value will be +1, and the operator used will be the 
maximum operator. Figure 17 shows the resulting neural 
network for the first hypercube. 
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Figure 15. (a) An organism encoded into a chromosome and (b) 

the corresponding hypercube for the first group defined in the 
chromosome. 
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Figure 16. (a) Upper-right corner of the hypercube and (b) lower-

left corner of the hypercube. 
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Figure 17. Neural network for a single hypercube. 

 

The boundaries of the second hypercube will be used to 
build another branch of the neural network that will be 
added to the final neural network. Figure 18 shows the 
region defined by the second hypercube enclosing all the 
elements of the second group of the chromosome, and 
Figure 19 shows the neural network that corresponds to the 
network that defines that particular hypercube. As can be 
seen in Figure 20, the first two neural networks are 
combined with an additional neuron in the third layer. All 
the weights for the last neuron will be 0, and the pre-
synaptic and post-synaptic values for this neuron will be 
+1. The third layer morphological neuron will use the 
minimum operator.  
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Figure 18. Region defined by the second group in the 

chromosome. 
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Figure 19. Resulting neural network for the second hypercube. 
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Figure 20. Final neural network for the chromosome defined in 

Figure 15a. 
 



Evaluation Function 
Each organism must be evaluated according to the features 
it has and only those organisms that have the desired 
features will survive and mate other organisms in order to 
transmit their own characteristics to the future generations. 
 One of the most important factors to take in 
consideration must be the number of misclassified patterns. 
Another objective is to reduce the network complexity by 
using the minimum number of neurons needed to classify 
all the patterns correctly. This can be achieved by 
determining the minimum number of hypercubes necessary 
to enclose all test patterns. When a hypercube is added or 
removed from the chromosome, the architecture of the 
neural network changes. Changes are limited to the 
architectural constrains previously established. New 
neurons are added or removed from the first and second 
layer of the network as a hypercube is added or removed, 
respectively. 
 The fitness function is defined in Equation 3: 

( )2

1( )
1

f o
k l

=
+ ⋅

        (3) 

where k is the number of patterns incorrectly classified. 
The value of l represents the number of neuron groups 
defined in the chromosome. Each neuron group consists of 
three neurons as shown in Figure 19. The fitness function 
allows to minimize the number of misclassified patterns as 
well as the number of hypercubes or neurons used to solve 
the problem. 

 
Selection 
A selection process is used to allow organisms who have 
higher fitness to transmit their features with higher 
probability than those who have a lower fitness. In order to 
consider that an organism is able to transmit their 
characteristics to future generations, the best 50% of the 
population that meets the requirements is selected. This 
accelerates the convergence reducing those members of the 
population that are not desirable. Wheel roulette is used to 
select the group of organism that will become parents for 
the next generation. The probability of an organism to be 
selected is equal to the fitness of the organism divided by 
the total fitness of all the organisms. 
 

Results 
Several tests were conducted using 2-, 3-, and 4- 
dimensional spaces. Experimental results show that in all 
of the performed tests 100% of the patterns used for 
training were classified correctly. Twenty organisms were 
used as the initial population, and convergence was 
reached typically in 100 iterations. However, network 
topology improves with more iterations reducing the 
number of redundant neurons while optimizing the fitness 
function. 

The algorithm was tested using the Iris Fished Data. The 
Iris Fisher Data is a set that consists of 150 patterns 
divided equally among three classes. Half of the test 

patterns were used to train the system obtaining a 100% 
correct classification. The other half of the patterns were 
used to test the network obtaining up to 96% correctly 
classified patterns.  

Figure 21 shows an example of how the algorithm 
selected the decision boundaries for a set of patterns 
presented by Sussner (Sussner 1998). 
 

Conclusion 
This paper presented an indirect encoding evolutionary 
training algorithm to obtain multiple layer morphological 
perceptron parameters. The algorithm looks for a set of 
network weights in a reduced space simplifying and 
accelerating the convergence of the problem.  The training 
algorithm determines the necessary number of neurons, 
using up to three layers, required to perform the pattern 
classification. The evolutionary training allows to obtain 
different architectural solutions for the same problem and 
the fitness function searches for the smaller number of 
neurons needed to solve the problem. The algorithm allows 
the training of networks for multidimensional data sets 
such as the Iris Fisher Data. Different solutions for the 
same problem can be accomplished using this method.  
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Figure 21.  Decision boundaries found by the learning algorithm. 
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