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Abstract

In multimodal function optimization, niching tech-
niques create diversification within the population, thus
encouraging heterogeneous convergence. The key to
the effective diversification is to identify the similarity
among individuals. Without knowledge of the fitness
landscape, it is usually determined by uninformative as-
sumptions. In this article, we propose a method to esti-
mate the sharing distance for niching and the population
size. Using the Probably Approximately Correct (PAC)
learning theory and the ε-cover concept, we prove a
PAC neighborhood of a local optimum exists for a given
population size. The PAC neighbor distance is further
derived. Within this neighborbood, we uniformly sam-
ple the fitness landscape and compute its subspace fit-
ness distance correlation (FDC) coefficients. An algo-
rithm for estimating the granularity feature is described.
The sharing distance and the population size are deter-
mined when above procedure converges. Experiments
demonstrate that by using the estimated population size
and sharing distance an Evolutionary Algorithm (EA)
can correctly identify multiple optima.

Introduction
Evolutionary Algorithms have been successful in solving
single-optimum problems, such as pattern recognition (Das-
gupta & Michalewicz 1997) and image processing (Yuan,
Zhang, & Buckles 2002). When optimizing complex prob-
lem with many local optima, EAs suffer from premature
or slow convergence. To overcome difficulties imposed by
multiple local optima, hybrid EAs incorporating local search
are developed. Such techniques include clustering (Törn
1978), stochastic approximation (Liang, Yao, & Newton
1999) and parallel local search (Guo & Yu 2003). Mean-
while, niching or speciation is a particular mechanism that
allows and maintains several subpopulations so that each
optimum can attract a number of them (Mahfoud 1995).
Among niching strategies, sharing is an approach that di-
vides the fitness of an individual by the number of “similar”
individuals. Determining the similarity among individuals is
nontrivial and is usually based on user assumptions.

In our previous work (Zhang, Yuan, & Buckles 2003),
we found that population size is problem-dependent and can
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be estimated by analyzing the ruggedness of a fitness land-
scape. With the information on population size, we are able
to determine the sharing distance as well. This is, how-
ever, infeasible for a free-form function optimization prob-
lem without an impractical number of samples. Hence, we
propose an approximating approach that employs the Fitness
Distance Correlation coefficient (Jones & Forrest 1995) as a
measure of local ruggedness. FDC has been developed as a
measure of problem difficulty for Genetic Algorithms. Gen-
erally, one FDC coefficient is unable to uncover the variation
in ruggedness of a fitness landscape. Moreover, computing
FDC requires the knowledge of the global optimum, which
is usually unknown. Based on PAC learning theory, we di-
vide the search space into subspaces. A few samples are
drawn from each subspace and the largest one is assumed
to be the “local” optimum1. Subspace FDC coefficients are
computed and used as a guide for further subgrouping. The
granularity of a fitness landscape is obtained by iterating this
procedure until it converges.

The rest of this article is organized as follows. In the next
section, we briefly discuss the concept of sharing distance
in niching techniques and PAC learning theory. In Section
“PAC Neighborhood Distance” we prove that based on the
initial population a neighborhood distance exists. The ana-
lytical result is developed using PAC learning theory. In Sec-
tion “Granularity of A Fitness Landscape”, we present the
concept of subspace FDC as a measure for subspace granu-
larity. An iterative algorithm for the estimation of the over-
all granularity is described next. The sharing distance and
population size are estimated in the next section. In Section
“Experiments and Discussions”, we demonstrate the results
on 1-dimensional and 2-dimensional functions. This article
is closed with conclusions.

Background
Sharing Method
Sharing (Goldberg & Richardson 1987) is a popular and suc-
cessful niching method. It attempts to maintain a diverse
population with members distributed among niches in a mul-
timodal fitness landscape. To diversify its population, it re-
duces the fitness of an individual within a neighborhood de-

1Without loss of generality, we assume the optimization is to
find the maximum.



fined by the sharing function. This rewards individuals that
uniquely exploit regions of the fitness landscape by discour-
aging redundant solutions. The shared fitness is defined as

foi
(dij) =

fi
∑m

j=1 sh(dij)
(1)

where fi is the raw fitness of individual oi, m is the number
of individuals in the population, and dij is the distance be-
tween the ith and the jth individuals. The sharing function
sh(·) reaches a maximum of 1 at zero, decreases monoton-
ically with distance, and falls to zero for distances that are
greater than σsh. For example, the triangular sharing func-
tion shown in Figure 1 is given by

sh(dij) =

{

1 −
dij

σsh
if dij < σsh

0 otherwise
(2)

where sh(dij) measures the amount of sharing or similarity
between two individuals. The parameter σsh is vital to the
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Figure 1: Triangular sharing function

performance of the sharing method and, ideally, it should
approximate the peaks’ widths. Unfortunately, in many real
applications the number of peaks is unknown. We propose a
local search algorithm to estimate the granularity, which is a
ruggedness measure, of fitness landscape. Without knowing
the number of peaks, we derive a sharing distance from the
estimated granularity.

PAC Learning and Population Size
In this section, we briefly review PAC learning theory and
the prior research on using PAC learning to study population
size.

Let X be the set of all possible instances over which the
target function is defined and C refer to some subset of tar-
get concepts that a learner might learn. The learner consid-
ers a hypothesis space H when attempting to learn the target
concept c ∈ C. After observing a sequence of examples, a
learner must output a hypothesis h ∈ H that is a good ap-
proximation of c with high probability. In order to measure
the extent to which the output hypothesis h approximates the
actual target concept c, the error of hypothesis h with respect
to c and a distribution D is defined. D is the probability that
h mismatches an instance drawn randomly according to D,

error(h) ≡ Pr(c(x) 6= h(x))

where the probability Pr is over the distribution D. “High
probability” is indicated by the confidence parameter δ. The

number of training examples that is required by the learner
largely determines PAC-learnability. The minimum number
of training samples that is needed to attain PAC-learnability
is sample complexity (Mitchell 1997). The sample complex-
ity m for an finite hypothesis space is

m ≥
1

φ
(ln(|H|) + ln

1

δ
) (3)

where φ is the bound on error(h), |H| is the size of hypoth-
esis space H.

It is suggested that sample complexity and population
size are similar concepts (Hernández-Aguirre, Buckles, &
Martinez-Alcantara 2000). Based on the ruggedness of a
fitness landscapes, we applied PAC learning theory to gen-
erate a problem-dependent population size for real-coded
EAs (Zhang, Yuan, & Buckles 2003) .

m̃ = d
1

φ
(lnd

1

φ
e + ln

1

δ
)e (4)

where φ = g(τ)/|S|, g(τ) = τ when n = 1; g(τ) = πτ 2/4
when n = 2. d1/φe defines the size of hypothesis space,
such that with confidence δ, 0 < δ < 1, the initial popu-
lation forms an ε-cover of search space S with probability
greater than 1 − δ and ε = τ .

To estimate the granularity of fitness landscape, a decom-
position of the fitness function is performed. The granular-
ity of the fitness landscape is defined as the period of the
frequency component after which 10 percent of energy is ig-
nored. The proposed PAC population sizes for real-coded
EAs are shown to be effective and efficient. However, in
situations where fitness function is piece-wise or discontin-
uous, the decomposition-based approach is no longer appli-
cable. Therefore, a numerical method shall be developed
to estimate the granularity. In the following sections, we
describe a PAC learning based iterative granularity approxi-
mation method.

PAC Neighborhood Distance
Given the granularity of a function, an “ideal” initial popu-
lation size can be determined analytically using PAC learn-
ing theory (Zhang, Yuan, & Buckles 2003). However, in
most function optimization problems, the granularity is un-
known. To infer such knowledge from a free-form function
is non-trivial. Fortunately, PAC learning theory is a statisti-
cal method that connects the population size and granularity
in a EA-based optimization problem.

The concept of ε-cover is defined in a pseudometric space.
Let W denote a set and function ξ : W × W → R+ be
a pseudometric. Therefore, (W, ξ) forms a pseudometric
space (metric space). A set C = {γ1, γ2, . . . , γn} is an ε-
cover of S, S ⊆ W , when the following two constraints are
satisfied:

1. ε > 0,
2. ∀x ∈ S, ∃γi ∈ C such that ξ(x, γi) ≤ ε.

Based on PAC population size bounded by Equation 4, the
following theorem can be proven that infers a neighborhood
distance from a given population size.



T heorem

Draw a population of individuals uniformly on a fit-
ness landscape. Assume the population size is m, then
it forms an ε-cover of the n-dimensional search space
S, where the PAC neighborhood distance posed by ini-
tial individuals is bounded by ε with probability greater
than 1 − δ, 0 < δ < 1. The PAC Neighbor Distance α
is given by

α =
2|S|

√

ln( 1
δ
− 1)2 + 4m − (ln 1

δ
− 1)

(5)

where |S| denotes the size of space S.

Proof. Given a population size m, using Equation 4 we have

m =
1

φ
(ln

1

φ
+ ln

1

δ
)

where φ = g(x)/|S|. By substituting 1
φ

with Y , we get

m = Y (ln Y + ln
1

δ
). (6)

Since ln(1 + x) ≤ x holds for x > −1,

ln Y ≤ Y − 1, for Y > 0. (7)

Combining Equation 6 and Equation 7, we have the follow-
ing inequality

m ≤ Y [(Y − 1) + ln
1

δ
] (8)

Two solutions exist for Equation 8. Considering the sign of
PAC distance, we shall have the unique positive solution

α =
2|S|

√

ln( 1
δ
− 1)2 + 4m − (ln 1

δ
− 1)

(9)

2

Let ε|m denote the granularity given a population size m.
ε|m is approximated with a hypersphere defined by α, i.e. α
is the radius of this hypersphere. For 1-dimensional and 2-
dimensional cases, the granularity of a given population size
m, denoted by ε|m, are the functions of α as ε|m = α and

ε|m =
√

4α
π

respectively.
We notice that Equation 7 provides a loose upper bound

on ln(x) for x > 0. The neighborhood distance is decided
more precisely if a tighter bound on ln(x) can be found.
When using real numbers to represent individuals, the map-
ping process from genotype to phenotype is trivial. Thus
the continuous fitness landscapes structure is not affected by
applying genetic operators.

Granularity of A Fitness Landscape
To infer the granularity of a fitness landscape, we adopt the
concept of fitness distance correlation (FDC).

Given m individuals ~xi, i = {1, 2, . . . , m} sampled from
an unknown fitness landscape, each individual maps to a fit-
ness value f(~xi). Let D = {di, i = {1, 2, . . . , m}} denote

the distance to the global optimum. FDC, denoted by R, is
computed as

R =
cFD

σF σD

(10)

where

cFD =
1

n

m
∑

i=1

(f(~xi) − f)(di − d)

is the covariance of F , F = {f(~xi), i = {1, 2, . . . , m}},
and D. σF , σD, f and d are the standard deviations and
means of F and D respectively.

Given the PAC neighborhood distance DPAC = ε|m
in a n-dimensional search space S, an initial individual
is represented as a vector, i.e. ~x = {x1, x2, . . . , xn}.
Thus, we have a neighborhood about the kth dimension, i.e.
[xk − DPAC/2, xk + DPAC/2]. A new individual, ~xk , is
randomly drawn such that ~xk = {x1, x2, . . . , x̂k, . . . , xn}
and xk −DPAC/2 ≤ x̂k ≤ xk + DPAC/2.

When maximizing an ideal fitness function, the fitness
is expected to increase as distance to global optima de-
creases and the FDC coefficient is always negative, i.e.
R < 0 (Jones & Forrest 1995). Therefore, we know that
when R > 0 the search is led away from the optimum. In
a multimodal situation, it implies a valley between two lo-
cal optima. Figure 2 illustrates examples of an ideal fitness
function and a multimodal function.

(a) (b)

Figure 2: (a) is an ideal fitness landscape. The dot locates
the optimum and stars are the search individuals. In a multi-
modal fitness landscape, the FDC is positive (R > 0) given
the search individuals and optimum as shown in (b).

With the initial population of size m, we split the search
space S into m subspaces, i.e.

S =

m
⋃

i=1

Si

In each subspace Si, l samples are randomly drawn on its
kth dimension 2, i.e. {~x1, ~x2, . . . , ~xl}, which include the
individual in the initial population. We assume the “lo-
cal” optimum is within these samples and denote it as ~x∗,

2We consider one dimension at a time by holding the re-
maining dimensions unchanged. Therefore, drawing a sample on
the kth dimension varies only on the kth component of a vec-
tor ~x. Also notice that such random drawings are bounded by
the PAC neighborhood, i.e. the new value x̃k is in the range of
[xk − DPAC/2, xk + DPAC/2].



f(~x∗) = max(f(~xi)). Hence a l − 1 subset is generated
that excludes the “local” optimum. Denote this subset as
X−∗, X−∗ = {~x1, ~x2, . . . , ~xl} − {~x∗}. The fitness of X−∗

is F−∗ and the sample distance to ~x∗ is D−∗. The FDC of
this sample set is computed using Equation 10. We name it
as Subspace FDC. denoted by r.

To reduce computational complexity and to capture the lo-
cal landscape feature, the number of samples selected from
the subspace shall be small. From our experimental study, a
maximum of 4 samples are adequate to satisfy the computa-
tion requirements. Based on subspace FDC, an algorithm is
described below that estimates subspace granularity, τ̃ .

Algorithm – 1

—————————————————————-

1. Randomly choose the initial population size as m
and compute DPAC using Equation 5;

2. Compute fitness f(~xi) for ~xi, i = 1, 2, . . . , m;
3. On the kth dimension,
(a) Generate two neighbors of ~xi, ~x1

i and ~x2
i , and com-

pute r3 = r(~xi, ~x
1
i , ~x

2
i ) using Equation 10;

(b) Randmoly generate another neighbor of ~xi, ~x3
i , and

compute r4 = r(~xi, ~x
1
i , ~x

2
i , ~x

3
i );

(c) When sgn(r3) + sgn(r4) ≥ 0, τ̃i =
2|(argmax

A
F − argmin

A
F )|, where

sgn(x) =

{

+1 if x > 0
−1 if x < 0

A = {~xi, ~x
1
i , ~x

2
i , ~x

3
i }, and F =

{f(~xi), f(~x1
i ), f(~x2

i ), f(~x3
i )},

When sgn(r3) + sgn(r4) < 0, τ̃i = DPAC .
(d) If τ̃k(i) < DPAC , τ̃i is the local granularity on kth

dimension for subspace Si.
4. Repeat from step 3 for all dimensions.
5. Repeat from step 2 for all subspaces.

—————————————————————-

Using Algorithm 1, we compute the subspace granular-
ity of a fitness landscape of an n-dimensional function. Let
τ̂k and στ̃k

denote the mean and standard deviation of local
granularity of the kth dimension respectively, the granularity
of a fitness landscape is computed as

τ = τ̂k|στ̃k
=mink(στ̃k

) (11)

Sharing Distance and Population Size
The sharing distance and the population size are closely re-
lated and can be derived from the granularity of a fitness
landscape.

Combining granularity τ computed from Equation 11
with Equation 4, the population size can be computed as

m̃ = d
1

g(τ)/|S|
(lnd

1

g(τ)/|S|
e + ln

1

δ
)e

where in 1-dimensional function, g(τ) = τ and in 2-
dimensional function, g(τ) = πτ 2/4. This re-calculated

population size is more suitable for exploring the search
space.

When approximating the sharing distance, we consider a
local optimum as the mid-point of a peak. Therefore, the
sharing distance σsh is calculated as half of the estimated
granularity of a fitness landscape, i.e.

σsh =
1

2
τ (12)

Experiments and Discussions
Table 1 lists three 1-dimensional and one 2-dimensional
multimodal functions used in our experiments. Function

Table 1: Fitness functions.
Function Domain

f1(x) = sin6(5πx) x ∈ [0, 1]

f2(x) = e−2 log 2·( x−0.1
0.8

)2 · sin6(5πx) x ∈ [0, 1]

f3(x) =
∑10

i=1
1

(ki(x−ai))2+ci
x ∈ [0, 10]

f4(x) =







h − 2hx2

r2 if x < r
2

2h(x−r)2

r2 if r
2 ≤ x < r

0 otherwise

r ∈ [0.02, 0.1]
h ∈ [0.1, 1]

f1(x) has 5 equally spaced maxima of equal height 1.0.
Function f2(x) is similar to f1(x), but its maxima decrease
in height exponentially from 1.0 to 0.25. The global op-
timum of Shekel’s Foxhole function, f3(x), is located at
x = 0.699 with fitness value of 15.7206.

In the bell function f4(x), r is the radius of the cone, h
is the height and x is the Euclidean distance from the center
of the cone. With a different number of peaks and different
values of r and h, this function provides tunable complex-
ity. In our experiments, 30 peaks are randomly generated
in a 2-dimensional space. The radii of the bells are gen-
erated with values in the range from 0.02 to 0.1 and the
bell heights range from 0.1 to 1. The maximum locates at
(x1, x2) = (0.91, 0.67) and its function value of 1.4728.
Due to the randomness, some cones are overlapped or too
small to be shown. Therefore 24 maxima are considered,
which are illustrated in Figure 4(a).

For each test function, 50 runs are performed. A PAC
population size is generated based on Equation 4. Tests are
terminated upon a pre-determined number of generations. In
the experiments for 1-dimensional functions, the maximum
generation is 30. In the experiments for 2-dimensional bell
function, we set the maximum generation to 50. Figure 3
shows the typical population distribution for 1-dimensional
functions. The output for the bell function is shown as a
contour map in Figure 4(b).

Table 2 lists the results for our test functions. To demon-
strate the effectiveness and efficiency of using estimated
granularity in multimodal function optimization, we record
the mean and the standard deviation of global maximum
found in 50 runs, M̄ and σM respectively. We also aver-
age the number of generations at which the maximum val-
ues are found, Ḡ. It is shown that the average numbers of
generations for 1-dimensional functions are below 20, and



(a) (b) (c)

Figure 3: Population distribution on three experimental functions (a) f1(x) contains 5 equal maxima, (b) f2(x) has one global
maximum and 4 local maxima, and (c) Foxhole function f3(x) also has one global maximum and 5 irregular local maxima.
The dots represent positions of EA individuals at the termination point.

for 2-dimensional function it takes around 30 generations.
By comparing the average number of peaks found, p̄f , with
the actual number of peaks, No. Max., we show that EAs
converge correctly with small variations in evaluations, σpf .
Our results show that the global convergence is reliable for

Table 2: Convergence performance on f1 − f4 for 50 runs.
NoG denotes the number of generations EA takes to con-
verge. Pop denotes the population size.

Function f1 f2 f3 f4

Pop 18 20 35 76
σsh 0.1071 0.1017 0.6335 0.145
NoG 30 30 30 50
M̄ 0.999 0.9895 15.697 1.446
σM 0.001 0.015 0.062 0.057
Ḡ 15.54 14.88 17.98 31.14

No. Max 5 5 6 23
p̄f 4.84 4.46 5.42 18.32
σpf 0.37 0.5 0.67 1.659

all tests performed. In the peer work (Guo & Yu 2003), it
takes more than a hundred generations to converge. Our al-
gorithm exhibits a tremendous reduction in terms of evalua-
tion time. This shows that the initial populations are within
vicinity of the optima. At the same time, a majority of lo-
cal optima are found with reduced search. We observe that
over 90% of local optima are located for 1-dimentional tests,
and over 18 local optima are found for bell function. Ob-
viously, the local search obtains a rough knowledge of the
ruggedness feature of fitness landscapes. Therefore, the es-
timated population size and the sharing distance are more
appropriate for multimodal function optimization than ran-
domly generated parameters.

Conclusions
By analyzing fitness distance correlations in subspaces
within the initial population, we describe a granularity ap-
proximation scheme for fitness landscapes. The knowledge
gained is further used to estimate the sharing distance as well
as the population size. The sharing method requires determi-
nation of the sharing distance, which is usually based upon
assumptions about the number of peaks and their distribu-
tion. Population size, one important factor in multimodal
function optimization, has influences on the formation of
stable subpopulations. A small population is not able to fully
explore the search space, thus miss local optima. On the
other hand, a large population takes longer to converge and
form stable groups around local optima. Knowledge of the
ruggedness feature of certain problems is critical in deciding
both sharing distance and population size for EAs.

Our method divides the search space into subspaces based
on the PAC neighborhood distance. It is grounded in PAC
learning theory and computes subspace FDC coefficients. In
the computation, a few samples are drawn from each sub-
space and the largest one is assumed to be the “local” op-
timum. Using subspace FDC, granularity of a fitness land-
scape is estimated and is employed to set the sharing dis-
tance and population size for an EA. Our experiments verify
that the population size and the sharing distance are appro-
priate for quick convergences on multiple local optima in-
cluding the global optimum.
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