
A Hybrid Approach to Pattern Classification
Using Neural Networks and Defeasible Argumentation

Sergio Alejandro Gómez
Artificial Intelligence Laboratory

Dept. of Computer Science and Eng.
Universidad Nacional del Sur

Alem 1253 – B8000CPB Bahı́a Blanca, ARGENTINA
Tel:(+54)(291) 459-5135

Email: sag@cs.uns.edu.ar

Carlos Iván Chesñevar
Artificial Intelligence Research Group

Dept. of Computer Science
Universitat de Lleida

C/Jaume II, 69 – E-25001 Lleida, SPAIN
Tel:(+34)(973)70-2764

Email: cic@eup.udl.es

KEYWORDS: Defeasible Argumentation, Neural networks,
Pattern Classification

Abstract

Many classification systems rely on clustering techniques in
which a collection of training examples is provided as an in-
put, and a number of clusters c1, . . . cm modeling some con-
cept C results as an output, such that every cluster ci is la-
beled as positive or negative. In such a setting clusters can
overlap, and a new unlabeled instance can be assigned to
more than one cluster with conflicting labels. In the litera-
ture, such a case is usually solved non-deterministically by
making a random choice. This paper introduces a novel, hy-
brid approach to solve the above problem by combining a
neural network N along with a background theory T speci-
fied in defeasible logic programming (DeLP) which models
preference criteria for performing clustering.

Introduction
Many classification systems rely on clustering techniques
in which a collection of labeled training examples {e1, e2,
. . . en } (each of them labeled as positive or negative) is pro-
vided as an input, and a number of clusters c1, . . . cm mod-
eling some concept C results as an output. Every cluster ci
is labeled as positive (resp. negative) indicating that those
examples in the cluster belong (resp. do not belong) to the
concept C. Given a new, unlabeled instance enew, the above
classification is used to determine to which particular clus-
ter ci this new instance belongs. Should the cluster ci be
labeled as positive (negative), then the instance enew is re-
garded as positive (negative). This approach has been ex-
ploited in some applications such as the web document filter-
ing agent Querando! (Gómez & Lanzarini 2001) and in the
counter-propagation neural network model (Skapura 1996;
Rao & Rao 1995). In such a setting clusters can overlap, and
a new unlabeled instance can be assigned to more than one
cluster with conflicting labels (ie., some clusters are positive
whereas others are negative). Such a case is usually solved
non-deterministically by making a random choice.

This paper introduces a novel, hybrid approach to solve
the above problem by combining a background theory T
specified in defeasible logic programming (DeLP) (Garcı́a

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

& Simari 2004) and a neural network N based on the Fuzzy
Adaptive Resonance Theory model (Carpenter, Grossberg,
& Rosen 1991). Given a new, unlabeled instance enew it will
be first analyzed and classified using the neural network N .
Should enew belong to one or more conflicting clusters, then
defeasible argumentation based on the theory T will be used
to make a decision based on preference criteria declaratively
specified by the user.

Fuzzy ART Neural Networks: Fundamentals
Fuzzy Adaptive Resonance Theory (ART) (Carpenter,
Grossberg, & Rosen 1991; Rao & Rao 1995) is a class
of neurally inspired models for clustering and classifica-
tion of sensory data, and associations between such data for
representing concepts. Fuzzy ART performs unsupervised
learning of categories under continuous presentation of in-
puts through a process of ‘adaptive resonance’ in which the
learned patterns adapt only to inputs considered to be rel-
evant. Thus the ART models solve the so-called stability-
plasticity dilemma where new patterns are learned without
forgetting those already learned.

The Fuzzy ART neural network model accepts M -
dimensional analog patterns a1, a2, . . .an (with components
in the real interval [0, 1]) (Lavoie, Crespo, & Savaria 1999)
which are clustered into categories. Its behavior can be
tuned by three parameters: α > 0, learning rate 0 ≤ β ≤ 1,
and vigilance 0 ≤ ρ ≤ 1. Each category j is represented by
a 2M -dimensional weight vector wj = (u, vc). Input vec-
tors I for the network have the form I = (a, ac). A choice
function Tj=(|I ∧ wj |)/(α + |wj |) is computed for every
category, and the similarity between wj and I is computed
on the basis of ρ using the criterion |I∧wJ |/|I| ≤ ρ. If such
test is passed, resonance occurs and learning takes place.For
every input pattern, either an existing category can be se-
lected (and possibly expanded) or a new category is created.

The behavior of a Fuzzy ART lends itself well to a geo-
metrical interpretation of category prototypes wj as hyper-
rectangles in the input space with corners u and v. Such
rectangles are allowed to overlap each other. Given a set
S = {e1, e2, . . . , en} of positive and negative training in-
stances wrt some concept C, the application of the Fuzzy
ART neural network will result in a number of labeled clus-
ters {c1, c2, . . . , cm}. A cluster labeled as positive (resp.
negative) will group instances belonging (resp. not belong-

ing) to the concept C. In the Fuzzy ART setting, conflict
appears when a new unlabeled instance is classified as be-
longing to more than one cluster with different labels. In the
literature (Lavoie, Crespo, & Savaria 1999), such situation
is usually solved nondeterministically by making a random
choice.

Modeling Argumentation in DeLP
Defeasible logic programming (DeLP) (Garcı́a & Simari
2004) is a particular formalization of defeasible argumen-
tation (Chesñevar, Maguitman, & Loui 2000; Prakken &
Vreeswijk 2002) based on logic programming. A defeasi-
ble logic program (delp) is a set K = (Π,∆) of Horn-like
clauses, where Π and ∆ stand for sets of strict and defea-
sible knowledge, respectively. The set Π of strict knowl-
edge involves strict rules of the form p ← q1 , . . . , qk
and facts (strict rules with empty body), and it is assumed
to be non-contradictory. The set ∆ of defeasible knowl-
edge involves defeasible rules of the form p −−≺ q1 , . . . , qk ,
which stands for q1, . . . qk provide a tentative reason to be-
lieve p. The underlying logical language is that of extended
logic programming, enriched with a special symbol “ −−≺ ”
to denote defeasible rules. Both default and classical nega-
tion are allowed (denoted not and ∼, resp.). Syntactically,
the symbol “ −−≺ ” is all what distinguishes a defeasible
rule p −−≺ q1 , . . . qk from a strict (non-defeasible) rule
p ← q1 , . . . , qk . DeLP rules are thus Horn-like clauses
to be thought of as inference rules rather than implications
in the object language. Deriving literals in DeLP results in
the construction of arguments. An argument A is a (possi-
bly empty) set of ground defeasible rules that together with
the set Π provide a logical proof for a given literal h, satis-
fying the additional requirements of non-contradiction and
minimality.

Definition 1 (Argument) Given a DeLP program P , an ar-
gument A for a query q, denoted 〈A, q〉, is a subset of
ground instances of defeasible rules in P , such that:

1. there exists a defeasible derivation for q from Π ∪ A,
2. Π∪A is non-contradictory (ie, Π∪ A does not entail two

complementary literals p and ∼ p (or p and not p)), and
3. A is minimal with respect to set inclusion.

An argument 〈A1, Q1〉 is a sub-argument of another argu-
ment 〈A2, Q2〉 if A1 ⊆ A2. Given a DeLP program P ,
Args(P) denotes the set of all possible arguments that can
be derived from P .

The notion of defeasible derivation corresponds to the
usual query-driven SLD derivation used in logic program-
ming, performed by backward chaining on both strict and
defeasible rules; in this context a negated literal ∼ p is
treated just as a new predicate name no p. Minimality im-
poses a kind of ‘Occam’s razor principle’ (Simari & Loui
1992) on argument construction: any superset A′ of A can
be proven to be ‘weaker’ than A itself, as the former relies
on more defeasible information. The non-contradiction re-
quirement forbids the use of (ground instances of) defeasible
rules in an argumentAwhenever Π∪ A entails two comple-
mentary literals. It should be noted that non-contradiction

captures the two usual approaches to negation in logic pro-
gramming (viz. default negation and classical negation),
both of which are present in DeLP and related to the notion
of counterargument, as shown next.

Definition 2 (Counterargument. Defeat) An argument
〈A1, q1〉 is a counterargument for an argument 〈A2, q2〉 iff

1. There is an subargument 〈A, q〉 of 〈A2, q2〉 such that the
set Π ∪ {q1, q} is contradictory.

2. A literal not q1 is present in the body of some rule in A1.

An argument 〈A1, q1〉 is a defeater for an argument
〈A2, q2〉 if 〈A1, q1〉 counterargues 〈A2, q2〉, and 〈A1, q1〉
is preferred over 〈A2, q2〉 wrt a preference criterion � on
conflicting arguments. Such criterion is defined as a par-
tial order �⊆ Args(P) × Args(P). For cases (1) and
(2) above, we distinguish between proper and blocking de-
featers as follows:

• In case 1, the argument 〈A1, q1〉 will be called a proper
defeater for 〈A2, q2〉 iff 〈A1, q1〉 is strictly preferred over
〈A, q〉 wrt �.
• In case 1, if 〈A1, q1〉 and 〈A, q〉 are unrelated to each

other, or in case 2, 〈A1, q1〉 will be called a blocking de-
feater for 〈A2, q2〉.
Specificity (Simari & Loui 1992) is typically used as a

syntax-based criterion among conflicting arguments, prefer-
ring those arguments which are more informed or more di-
rect (Simari & Loui 1992; Stolzenburg et al. 2003). How-
ever, other alternative partial orders could also be valid.

Computing Warrant Through Dialectical Analysis
An argumentation line starting in an argument 〈A0, Q0〉
(denoted λ〈A0,q0〉) is a sequence [〈A0, Q0〉, 〈A1, Q1〉,
〈A2, Q2〉, . . . , 〈An, Qn〉 . . .] that can be thought of as
an exchange of arguments between two parties, a propo-
nent (evenly-indexed arguments) and an opponent (oddly-
indexed arguments). Each 〈Ai, Qi〉 is a defeater for the pre-
vious argument 〈Ai−1, Qi−1〉 in the sequence, i > 0. In
order to avoid fallacious reasoning, dialectics imposes addi-
tional constraints on such an argument exchange to be con-
sidered rationally acceptable:

• Non-contradiction Given an argumentation line λ, the
set of arguments of the proponent (resp. opponent)
should be non-contradictory wrt P . Non-contradiction
for a set of arguments is defined as follows: a set S =⋃n

i=1{〈Ai, Qi〉} is contradictory wrt a DeLP program P
iff Π ∪⋃n

i=1Ai is contradictory.

• No circular argumentation No argument 〈Aj , Qj〉 in λ
is a sub-argument of an argument 〈Ai, Qi〉 in λ, i < j.

• Progressive argumentation Every blocking defeater
〈Ai, Qi〉 in λ is defeated by a proper defeater
〈Ai+1, Qi+1〉 in λ.

The first condition disallows the use of contradictory in-
formation on either side (proponent or opponent). The sec-
ond condition eliminates the “circulus in demonstrando”
fallacy (circular reasoning). Finally, the last condition en-
forces the use of a stronger argument to defeat an argument

which acts as a blocking defeater. An argumentation line
satisfying the above restrictions is called acceptable, and can
be proven to be finite (Garcı́a & Simari 2004).

Given a DeLP program P and an initial argument
〈A0, Q0〉, the set of all acceptable argumentation lines start-
ing in 〈A0, Q0〉 accounts for a whole dialectical analysis
for 〈A0, Q0〉 (ie., all possible dialogues about 〈A0, Q0〉 be-
tween proponent and opponent), formalized as a dialectical
tree.

Definition 3 (Dialectical Tree) Let P be a DeLP program,
and let A0 be an argument for Q0 in P . A dialectical tree
for 〈A0, Q0〉, denoted T〈A0,Q0〉, is a tree structure defined
as follows:

1. The root node of T〈A0,Q0〉 is 〈A0, Q0〉.
2. 〈B′,H ′〉 is an immediate child of 〈B,H〉 iff there

exists an acceptable argumentation line λ〈A0,Q0〉 =
[〈A0, Q0〉, 〈A1, Q1〉, . . . , 〈An, Qn〉] with two elements
〈Ai+1, Qi+1〉 = 〈B′,H ′〉 and 〈Ai, Qi〉 = 〈B,H〉, for
some i = 0 . . . n− 1.

Nodes in a dialectical tree T〈A0,Q0〉 can be marked as un-
defeated and defeated nodes (U-nodes and D-nodes, resp.).
A dialectical tree will be marked as an AND-OR tree: all
leaves in T〈A0,Q0〉 will be marked U-nodes (as they have no
defeaters), and every inner node is to be marked as D-node
iff it has at least one U-node as a child, and as U-node oth-
erwise. An argument 〈A0, Q0〉 is ultimately accepted as
valid (or warranted) wrt a DeLP program P iff the root of
its associated dialectical tree T〈A0,Q0〉 is labeled as U-node.

Given a DeLP program P , solving a query q wrt P ac-
counts for determining whether q is supported by a war-
ranted argument. Different doxastic attitudes are distin-
guished when answering that query q according to the as-
sociated status of warrant, in particular:

1. Believe q (resp. ∼ q) when there is a warranted argument
for q (resp. ∼ q) that follows from P .

2. Believe q is undecided whenever neither q nor ∼ q are
supported by warranted arguments in P .

A Hybrid Approach Combining Fuzzy ART
Networks and DeLP

As discussed in the introduction, conflict appears in the
Fuzzy ART setting when a new unlabeled instance is classi-
fied as belonging to two or more clusters with different la-
bels. The proposed hybrid approach involves combining a
traditional Fuzzy ART network N with a background theory
formalized as a DeLP program P . As the neural network
N is fed with a set of training examples, new facts encod-
ing knowledge about such examples as well as the resulting
cluster structure are added as part of a DeLP program P .
The program P also models the user’s preference criteria
to classify new, unlabeled instances belonging to conflicting
clusters. This can be encoded by providing appropriate strict
and defeasible rules as part of the program P . Several pref-
erence criteria among competing clusters are possible, such
as:

ALGORITHM ClassifyNewInstance
INPUT: Net N , DeLP program P , new instance E
OUTPUT: pos, neg, undecided {Classification of E}
BEGIN

Propagate unlabeled instance E through Net N
CL := SetOfClustersContainingNewInstance(E, F)
IF every ci ∈ CL is pos OR every ci ∈ CL is neg

THEN RETURN Label = label of any ci ∈ CL
ELSE

Solve query is(P, pos) using DeLP program P
IF is(P, pos) is warranted
THEN RETURN Label=pos
ELSE

Solve query is(P, neg) using DeLP program P
IF is(P, neg) is warranted

THEN RETURN Label=neg
ELSE RETURN Label=undecided

END

Figure 1: High-level algorithm for integrating DeLP and the
Fuzzy ART model

• The cluster with newer information is preferred over other
ones

• The cluster that subsumes more examples is preferred.

• The smallest cluster containing the new instance is pre-
ferred.

It must be noted that the above criteria may be also in con-
flict, making necessary to analyze which one prevails over
the other ones. This ultimate decision will be made on the
basis of a dialectical analysis performed by the DeLP infer-
ence engine.

Figure 1 shows a sketch of an algorithm that combines
the use of DeLP and the Fuzzy ART for determining the
classification of a new unlabeled instance enew after train-
ing the Fuzzy ART network N . The algorithm takes as in-
put a Fuzzy ART neural network, a DeLP program P (char-
acterizing a set of examples and preference criteria), and
the data corresponding to a new unlabeled instance enew.
Such an instance enew is first classified using the Fuzzy
ART neural network (modifying the cluster structure ac-
cordingly if needed). In case that such a classification can-
not be solved successfully by the network N , then the pro-
gram P is used to perform a dialectical analysis to decide
how to label the new instance E. To do so, a distinguished
predicate is(<NewInstance>,<Label>) will be consid-
ered. The classification will be (1) positive (pos) if the li-
teral is(E, pos) is warranted from P; (2) negative (neg) if
the literal is(E,neg) is warranted from P; (3) undecided if
neither (1) nor (2) hold. It must be noted that there is a theo-
rem (Garcı́a & Simari 2004) ensuring that if some argument
〈A, h〉 is warranted, then there does not exist a warranted
argument for the opposite conclusion, i.e, 〈B,∼ h〉. As a
consequence, when analyzing the labeling associated with a
new instance E, it cannot be the case that both is(E, pos)
and is(E,neg) hold, provided that pos and neg are defined
as opposite concepts.

A Worked Example
In this section we will discuss an example of how the pro-
posed approach works. First we will describe how the train-
ing of the neural network results in new facts added to a
DeLP program P . Then we will show how to specify pref-
erence criteria in P . Finally we show how to apply the algo-
rithm shown in Fig. 1 for solving a conflicting situation wrt
a new unlabeled instance enew and a particular program P .

Encoding Training Information
Suppose that a set S = {p1, p2, . . . , pk} of training instances
in a 2-dimensional space are obtained from a particular ex-
periment, each of them having an associated timestamp.
Such set S is provided as a training set for a Fuzzy ART
neural network N , resulting in three clusters c+1 , c−2 and c−3
being learnt (see Fig. 2). As the network N is trained, new
facts corresponding to a DeLP program P will be generated
to encode some of the above information, as shown below:

point(p1, neg, 5, coor(x1, y1)). trigger(p3, c2).
point(p2, neg, 7, coor(x2, y2)). trigger(p5, c1).
point(p3, neg, 9.9, coor(x3, y3)). trigger(p2, c3).
point(p4, pos, 10.7, coor(x4, y4)). cluster(c1, pos).
point(p5, pos, 12.5, coor(x5, y5)). cluster(c2, neg).
. . . cluster(c3, neg).

c+1

c−2

c−3
�

enew

Figure 2: Unlabeled instance enew belonging to conflicting
clusters c1, c2, and c3

Note that every new training instance corresponding to a
point p labeled as s at time t with coordinates (x, y) results
in a fact point(p, s, t, coor(x, y)) added to the DeLP pro-
gram P . When the dynamics of the neural network deter-
mines that a new cluster is to be created by occurrence of a
point p, a new fact trigger(p, c) is added toP . Analogously,
when the network N determines that a cluster c is labeled as
positive (resp. negative), a new fact cluster(c, pos) (resp.
cluster(c, neg)) is also added to P .

Providing Preference Criteria
Fig. 3 presents strict and defeasible rules that characterize
possible preference criteria among clusters. Predicate opp
indicates that pos and neg are opposite concepts. Pred-
icate newer(C1, C2) holds whenever cluster C1 is newer
than C2. We adopt here one possible criterion, using the
timestamp associated with the trigger point for comparing
clusters. Predicate subset(C1, C2) holds whenever cluster
C1 is subsumed by cluster C2. This is assumed to be com-
puted elsewhere, based on the data structures of the neural

opp(pos, neg).
opp(neg, pos).
newer(C1, C2) ← trigger(P1, C1), point(P1, , T1,),

trigger(P2, C2),point(P2, , T2,),
T1 > T2

subset(C1, C2) ← [computed elsewhere]
activates(P, C) ← [computed elsewhere]
∼ is(P, L1) ← is(P, L2), opp(L1, L2).

is(P, L) −−≺ assume(P, L).
assume(P, L) −−≺ belongs(P, C), cluster(C, L).

assume(P, L2) −−≺ newer(C2, C1), cluster(C1, L1),
cluster(C2, L2),
belongs(P, C2), belongs(P, C1).

belongs(P, C) −−≺ activates(P, C).
∼ belongs(P, C1) −−≺ subset(C2, C1), cluster(C1, L1),

cluster(C2, L2), opp(L1, L2),
activates(P, C2).

Figure 3: Modeling preference among clusters in DeLP

network N where cluster information is stored. The same
applies to predicate activates(P,C), which holds whenever
a point P falls within cluster C. The definition of predicate
is involves two parts: one the one hand, we specify that if a
cluster C is labeled as positive (resp. negative), then it is not
negative (resp. positive); on the other hand, we also have a
defeasible rule indicating that a clusterC gets a label L if we
have tentative reasons to assume this to be so. The predicate
assume(P,L) defeasibly holds whenever we can assume
that a point P gets a label L. First, belonging to a cluster C
with label L is a tentative reason to assume that point P gets
that label L. If point P belongs to two clusters C1 and C2,
and C2 is newer than C1, this provides a tentative reason to
assume that P should be labeled as the newer cluster C2. If
P is found within cluster C (ie. P activates C), then usually
P belongs to cluster C. If P belongs to a cluster C2 which is
a subset of another cluster C1 with a conflicting label, then
this is a tentative reason to believe that P does not belong to
C1 (the smaller cluster is preferred over the bigger one).

Performing Dialectical Analysis
Consider a new unlabeled instance enew, as shown in Fig. 2.
As discussed before, in the traditional Fuzzy ART setting,
such instance would be classified non-deterministically. A
DeLP program P as the one presented before can provide
additional, qualitative information for making such a deci-
sion. As enew belongs to the intersection of clusters c1, c2
and c3, and not all of them have the same label, the algo-
rithm shown in Fig. 1 will start searching for a warranted ar-
gument for is(enew, pos), which involves solving the query
is(enew, pos) wrt P . The DeLP inference engine will find
an argument 〈A1, is(enew, pos)〉, with
A1={ (is(enew, pos) −−≺ assume(enew, pos)),
(assume(enew, pos) −−≺ belongs(enew, c1),cluster(c1, pos)),
(belongs(enew, c1) −−≺ activates(enew, c1))}
supporting the fact that enew should be labeled as posi-
tive, as it belongs to positive cluster c1. The DeLP in-
ference engine will search (in a depth-first fashion) for
defeaters for 〈A1, is(enew, pos)〉. A blocking defeater
〈A2, is(enew, neg)〉, will be found, stating that enew should

be labeled as negative as it belongs to negative cluster c2.
Here we have
A2={(is(enew, neg) −−≺ assume(enew, neg)),
(assume(enew, neg) −−≺ belongs(enew, c2),cluster(c2, neg)),
(belongs(enew, c2) −−≺ activates(enew, c2))}
Note in this case that Π ∪ A2 derives the complement of
A1 (i.e. ∼ is(enew, pos)) via the strict rule ∼ is(P,L1)
← is(P,L2), opp(L1, L2) (see Fig. 3). This second ar-
gument is in turn defeated by a more informed argument
〈A3, is(enew, pos)〉: the new instance enew should be la-
beled as positive as it belongs to clusters c1 and c2, but pos-
itive cluster c1 is newer than negative cluster c2. Here we
have:
A3={(is(enew, pos) −−≺ assume(enew, pos)),
(assume(enew, pos) −−≺ newer(c1, c2), cluster(c1, pos),
cluster(c2, neg), belongs(enew, c2),belongs(enew, c1)),
(belongs(enew, c1) −−≺ activates(enew, c1))
(belongs(enew, c2) −−≺ activates(enew, c2))

Note that 〈A1, is(enew, pos)〉 could not be used once again
to defeat 〈A2, is(enew, neg)〉, as it would be a fallacious,
circular reasoning, which is disallowed in acceptable
argumentation lines. However there is a fourth argument
〈A4,∼ belongs(enew, c1)〉 that can be derived from
P which defeats 〈A3, is(enew, pos)〉, providing a more
informed argument about the notion of membership for an
instance: enew does not belong to cluster c1 because that
cluster subsumes c3, and enew belongs to c3. Here we have:
A4={∼ belongs(enew, c1)−−≺ subset(c3, c1), cluster(c1, pos),
cluster(c3, neg), opp(pos, neg), activates(enew, c3) }

Note that the argument 〈A4,∼ belongs(enew, c1)〉 is also
a defeater for the first argument 〈A1, is(enew, pos)〉. This
completes the computation of the dialectical tree rooted in
〈A1, is(enew, pos)〉, as there are no more arguments to con-
sider as acceptable defeaters. The dialectical tree can be
marked as discussed before: leaves will be marked as unde-
feated nodes (U-nodes), as they have no defeaters. Every in-
ner node will be marked as a defeated node (D-node) if it has
at least one U-node as a child, and as a U-node otherwise.
The original argument (the root node) will be a warranted ar-
gument iff it is marked as U-node. In the preceding analysis,
the resulting marked dialectical tree is shown in Fig. 4(a):
nodes are arguments, and branches stand for acceptable ar-
gumentation lines. As the root of the tree is marked as
D, the original argument 〈A1, is(enew, pos)〉 is not war-
ranted. The DeLP inference engine will start searching au-
tomatically for other warranted arguments for is(enew, pos).
Fig. 4(b) shows the dialectical tree for 〈A3, is(enew, pos)〉,
in which 〈A3, is(enew, pos)〉 is not a warranted argument.
There are no other arguments for is(enew, pos) to consider.
Following the algorithm shown in Fig. 1, the DeLP infer-
ence engine will now start searching for warranted argu-
ments for is(enew, neg). A warranted argument will be
found, namely 〈A2, is(enew, neg)〉, whose dialectical tree is
shown in Fig. 4(c). Therefore, program P allows us finally
to conclude that the given unlabeled instance enew should be
labeled as negative.

(a) (b) (c)

�� ❅❅
AD

1

AU
2 AU

4

AD
3

AU
4

AD
3

AU
4

AU
2

AD
3

AU
4

Figure 4: Dialectical analysis for arguments
〈A1, is(enew, pos)〉, 〈A3, is(enew, pos)〉 and
〈A2, is(enew, neg)〉

DeLP: Implementation Issues
Performing defeasible argumentation is a computationally
complex task. An abstract machine for an efficient im-
plementation of DeLP has been developed, based on an
extension of the WAM (Warren’s Abstract Machine) for
Prolog. Several features leading to efficient implementa-
tions of DeLP have been also recently studied, particularly
those related to comparing conflicting arguments by speci-
ficity (Stolzenburg et al. 2003) and pruning the search
space (Chesñevar, Simari, & Garcı́a 2000). In particular, the
search space associated with dialectical trees is reduced by
applying α− β pruning. Thus, in Fig. 4(a), the right branch
of the tree is not even computed, as the root node can be
already deemed as ultimately defeated after computing the
left branch.

Related Work
The area of clustering algorithms has a wide range of
applications which include image processing, information
retrieval (Rasmussen 1992), text filtering (Honkela 1997;
Gómez & Lanzarini 2001), among others. To the best of
our knowledge, in none of these areas argumentation has
been used for clustering as described in this paper. In par-
ticular, the pitfalls of Fuzzy ART are exploited as an advan-
tage for doing multiple categorization in (Lavoie, Crespo,
& Savaria 1999), proposing a variation on the Fuzzy ART
model. In early work for combining neural networks and
rule sets (Shavlik & Towell 1989), rules are used to initial-
ize the neural network weights, whereas we use defeasible
rules for revising a neural network classification a posteri-
ori. Other approaches (Johnston & Governatori 2003) in-
volve algorithms for inducing a defeasible theory from a set
of training examples. In our case, the defeasible logic theory
is assumed to be given. In (Inoue & Kudoh 1997), a method
to generate non-monotonic rules with exceptions from pos-
itive/negative examples and background knowledge is de-
veloped. Such a method induces a defeasible theory from
examples; in contrast, the proposed approach uses a defeasi-
ble theory for improving an incremental categorization. An-
other hybrid approach includes an agent collaboration pro-
tocol for database initialization of a memory-based reason-
ing algorithm (Lashkari, Metral, & Maes 1997), using rules
for improving learning speed. In contrast, the proposal pre-

sented in this paper is aimed to improve learning precision.

Conclusions and Future Work
The growing success of argumentation-based approaches
has caused a rich cross-breeding with interesting results in
several disciplines, such as legal reasoning (Prakken & Sar-
tor 2002), text classification (Hunter 2001) and decision sup-
port systems (Carbogim, Robertson, & Lee 2000). As we
have shown in this paper, frameworks for defeasible argu-
mentation can be also integrated with clustering techniques,
making them more attractive and suitable for solving real-
world applications. Argumentation provides a sound qual-
itative setting for commonsense reasoning, complementing
thus the pattern classification process, which relies on quan-
titative aspects of the data involved (such as numeric at-
tributes or probabilities).

Recent research in information technology is focused on
developing argument assistance systems (Verheij 2004), i.e.
systems that can assist users along the argumentation pro-
cess. We think that such assistance systems could be in-
tegrated with the approach outlined in this paper, comple-
menting existing visual tools for clustering and pattern clas-
sification (Davidson 2002).

The algorithm presented in this paper has been imple-
mented and tested successfully on several representative
problems with different competing criteria for clustering.
Part of our current research involves to test it with respect
to some benchmark standard collections.1

Acknowledgments
This research was partially supported by Project CICYT
TIC2001-1577-C03-03 and Ramón y Cajal Program funded
by the Ministerio de Ciencia y Tecnologı́a (Spain). The au-
thors would like to thank anonymous reviewers for helpful
comments to improve the final version of this paper.

References
Carbogim, D.; Robertson, D.; and Lee, J. 2000. Argument-
based applications to knowledge engineering. The Knowl-
edge Engineering Review 15(2):119–149.

Carpenter, G.; Grossberg, S.; and Rosen, D. 1991. Fuzzy
art: Fast stable learning and categorization of analog pat-
terns by an adaptive resonance system. Neural Networks
4:759–771.

Chesñevar, C. I.; Maguitman, A.; and Loui, R. 2000.
Logical Models of Argument. ACM Computing Surveys
32(4):337–383.

Chesñevar, C. I.; Simari, G. R.; and Garcı́a, A. 2000. Prun-
ing Search Space in Defeasible Argumentation. In Proc. of
the Workshop on Advances and Trends in AI, 46–55. XX
Intl. Conf. of the SCCC, Santiago, Chile.

Davidson, I. 2002. Visualizing Clustering Results. In Proc.
of 2nd SIAM International Conference on Data Mining, Ar-
lington VA, USA. SIAM.

1E.g. http://www.ics.uci.edu/∼mlearn/MLRepository.html

Garcı́a, A. J., and Simari, G. R. 2004. Defeasible Logic
Programming an Argumentative Approach. Theory and
Practice of Logic Programming 4(1):95–138.
Gómez, S. A., and Lanzarini, L. 2001. Querando!: Un
agente de filtrado de documentos web. Procs. of the VII Ar-
gentinean Conf. in Computer Science (CACIC) 1205–1217.
Honkela, T. 1997. Self-organizing maps in Natural Lan-
guage Processing. Ph.D. Dissertation, Helsinky University.
Hunter, A. 2001. Hybrid argumentation systems for
structured news reports. Knowledge Engineering Review
(16):295–329.
Inoue, K., and Kudoh, Y. 1997. Learning Extended Logic
Programs. In Proc. of the 15th IJCAI (vol.1), 176–181.
Morgan Kaufmann.
Johnston, B., and Governatori, G. 2003. An algorithm for
the induction of defeasible logic theories from databases.
In Proc. of the 14th Australasian Database Conference
(ADC2003), 75–83.
Lashkari, Y.; Metral, M.; and Maes, P. 1997. Collabora-
tive interface agents. In Readings in Agents. Morgan Kauf-
mann. 111–116.
Lavoie, P.; Crespo, J.; and Savaria, Y. 1999. General-
ization, discrimination, and multiple categorization using
adaptive resonance theory. IEEE Transactions on Neural
Networks 10(4):757–767.
Prakken, H., and Sartor, G. 2002. The role of logic in com-
putational models of legal argument - a critical survey. In
Kakas, A., and Sadri, F., eds., Computational Logic: Logic
Programming and Beyond. Springer. 342–380.
Prakken, H., and Vreeswijk, G. 2002. Logical Sys-
tems for Defeasible Argumentation. In Gabbay, D.,
and F.Guenther., eds., Handbook of Philosophical Logic.
Kluwer Academic Publishers. 219–318.
Rao, V., and Rao, H. 1995. C++ Neural Networks and
Fuzzy Logic, Second Edition. MIS Press.
Rasmussen, E. 1992. Clustering algorithms. In Frakes, W.,
and Baeza-Yates, R., eds., Information Retrieval. Prentice
Hall. 419–442.
Shavlik, J., and Towell, G. 1989. An approach to com-
bining explanation-based and neural learning algorithms.
Connection Science 1(3):233–255.
Simari, G. R., and Loui, R. P. 1992. A Mathematical Treat-
ment of Defeasible Reasoning and its Implementation. Ar-
tificial Intelligence 53:125–157.
Skapura, D. 1996. Building Neural Networks. ACM Press,
Addison-Wesley.
Stolzenburg, F.; Garcı́a, A.; Chesñevar, C. I.; and Simari,
G. R. 2003. Computing Generalized Specificity. Journal
of Non-Classical Logics 13(1):87–113.
Verheij, B. 2004. Artificial argument assistants for de-
feasible argumentation. Artificial Intelligence Journal (to
appear).

